Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2015

Open Access 01-12-2015 | Review

Rodent models of neuroinflammation for Alzheimer’s disease

Authors: Amir Nazem, Roman Sankowski, Michael Bacher, Yousef Al-Abed

Published in: Journal of Neuroinflammation | Issue 1/2015

Login to get access

Abstract

Alzheimer’s disease remains incurable, and the failures of current disease-modifying strategies for Alzheimer’s disease could be attributed to a lack of in vivo models that recapitulate the underlying etiology of late-onset Alzheimer’s disease. The etiology of late-onset Alzheimer’s disease is not based on mutations related to amyloid-β (Aβ) or tau production which are currently the basis of in vivo models of Alzheimer’s disease. It has recently been suggested that mechanisms like chronic neuroinflammation may occur prior to amyloid-β and tau pathologies in late-onset Alzheimer’s disease. The aim of this study is to analyze the characteristics of rodent models of neuroinflammation in late-onset Alzheimer’s disease. Our search criteria were based on characteristics of an idealistic disease model that should recapitulate causes, symptoms, and lesions in a chronological order similar to the actual disease. Therefore, a model based on the inflammation hypothesis of late-onset Alzheimer’s disease should include the following features: (i) primary chronic neuroinflammation, (ii) manifestations of memory and cognitive impairment, and (iii) late development of tau and Aβ pathologies. The following models fit the pre-defined criteria: lipopolysaccharide- and PolyI:C-induced models of immune challenge; streptozotocin-, okadaic acid-, and colchicine neurotoxin-induced neuroinflammation models, as well as interleukin-1β, anti-nerve growth factor and p25 transgenic models. Among these models, streptozotocin, PolyI:C-induced, and p25 neuroinflammation models are compatible with the inflammation hypothesis of Alzheimer’s disease.
Literature
1.
go back to reference Castellani RJ, Perry G. Pathogenesis and disease-modifying therapy in Alzheimer’s disease: the flat line of progress. Arch Med Res. 2012;43(8):694–8. doi:10.1016/j.arcmed.2012.09.009.PubMed Castellani RJ, Perry G. Pathogenesis and disease-modifying therapy in Alzheimer’s disease: the flat line of progress. Arch Med Res. 2012;43(8):694–8. doi:10.1016/j.arcmed.2012.09.009.PubMed
2.
go back to reference Nazem A, Mansoori GA. Nanotechnology solutions for Alzheimer’s disease: advances in research tools, diagnostic methods and therapeutic agents. J Alzheimers Dis. 2008;13(2):199–223.PubMed Nazem A, Mansoori GA. Nanotechnology solutions for Alzheimer’s disease: advances in research tools, diagnostic methods and therapeutic agents. J Alzheimers Dis. 2008;13(2):199–223.PubMed
3.
go back to reference Mangialasche F, Solomon A, Winblad B, Mecocci P, Kivipelto M. Alzheimer’s disease: clinical trials and drug development. Lancet Neurol. 2010;9(7):702–16. doi:10.1016/s1474-4422(10)70119-8.PubMed Mangialasche F, Solomon A, Winblad B, Mecocci P, Kivipelto M. Alzheimer’s disease: clinical trials and drug development. Lancet Neurol. 2010;9(7):702–16. doi:10.1016/s1474-4422(10)70119-8.PubMed
4.
go back to reference Sabbagh JJ, Kinney JW, Cummings JL. Animal systems in the development of treatments for Alzheimer’s disease: challenges, methods, and implications. Neurobiol Aging. 2013;34(1):169–83. doi:10.1016/j.neurobiolaging.2012.02.027.PubMed Sabbagh JJ, Kinney JW, Cummings JL. Animal systems in the development of treatments for Alzheimer’s disease: challenges, methods, and implications. Neurobiol Aging. 2013;34(1):169–83. doi:10.1016/j.neurobiolaging.2012.02.027.PubMed
5.
go back to reference Krstic D, Madhusudan A, Doehner J, Vogel P, Notter T, Imhof C, et al. Systemic immune challenges trigger and drive Alzheimer-like neuropathology in mice. J Neuroinflammation. 2012;9:151. doi:10.1186/1742-2094-9-151.PubMedCentralPubMed Krstic D, Madhusudan A, Doehner J, Vogel P, Notter T, Imhof C, et al. Systemic immune challenges trigger and drive Alzheimer-like neuropathology in mice. J Neuroinflammation. 2012;9:151. doi:10.1186/1742-2094-9-151.PubMedCentralPubMed
6.
go back to reference Epis R, Gardoni F, Marcello E, Genazzani A, Canonico PL, Di Luca M. Searching for new animal models of Alzheimer’s disease. Eur J Pharmacol. 2010;626(1):57–63. doi:10.1016/j.ejphar.2009.10.020.PubMed Epis R, Gardoni F, Marcello E, Genazzani A, Canonico PL, Di Luca M. Searching for new animal models of Alzheimer’s disease. Eur J Pharmacol. 2010;626(1):57–63. doi:10.1016/j.ejphar.2009.10.020.PubMed
7.
go back to reference Duyckaerts C, Potier MC, Delatour B. Alzheimer disease models and human neuropathology: similarities and differences. Acta Neuropathol. 2008;115(1):5–38. doi:10.1007/s00401-007-0312-8.PubMedCentralPubMed Duyckaerts C, Potier MC, Delatour B. Alzheimer disease models and human neuropathology: similarities and differences. Acta Neuropathol. 2008;115(1):5–38. doi:10.1007/s00401-007-0312-8.PubMedCentralPubMed
8.
go back to reference Chetelat G. Alzheimer disease: Abeta-independent processes-rethinking preclinical AD. Nat Rev Neurol. 2013;9(3):123–4. doi:10.1038/nrneurol.2013.21.PubMedCentralPubMed Chetelat G. Alzheimer disease: Abeta-independent processes-rethinking preclinical AD. Nat Rev Neurol. 2013;9(3):123–4. doi:10.1038/nrneurol.2013.21.PubMedCentralPubMed
9.
go back to reference Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci. 2011;12(12):723–38. doi:10.1038/nrn3114.PubMedCentralPubMed Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci. 2011;12(12):723–38. doi:10.1038/nrn3114.PubMedCentralPubMed
10.
go back to reference Ankarcrona M, Mangialasche F, Winblad B. Rethinking Alzheimer’s disease therapy: are mitochondria the key? J Alzheimers Dis. 2010;20 Suppl 2:S579–90. doi:10.3233/jad-2010-100327.PubMed Ankarcrona M, Mangialasche F, Winblad B. Rethinking Alzheimer’s disease therapy: are mitochondria the key? J Alzheimers Dis. 2010;20 Suppl 2:S579–90. doi:10.3233/jad-2010-100327.PubMed
11.
go back to reference Oresic M, Hyotylainen T, Herukka SK, Sysi-Aho M, Mattila I, Seppanan-Laakso T, et al. Metabolome in progression to Alzheimer’s disease. Translational Psychiatry. 2011;1, e57. doi:10.1038/tp.2011.55.PubMedCentralPubMed Oresic M, Hyotylainen T, Herukka SK, Sysi-Aho M, Mattila I, Seppanan-Laakso T, et al. Metabolome in progression to Alzheimer’s disease. Translational Psychiatry. 2011;1, e57. doi:10.1038/tp.2011.55.PubMedCentralPubMed
12.
go back to reference Kuusisto J, Koivisto K, Mykkänen L, Helkala EL, Vanhanen M, Hänninen T, et al. Association between features of the insulin resistance syndrome and Alzheimer’s disease independently of apolipoprotein E4 phenotype: cross sectional population based study. BMJ. 1997;315(7115):1045–9.PubMedCentralPubMed Kuusisto J, Koivisto K, Mykkänen L, Helkala EL, Vanhanen M, Hänninen T, et al. Association between features of the insulin resistance syndrome and Alzheimer’s disease independently of apolipoprotein E4 phenotype: cross sectional population based study. BMJ. 1997;315(7115):1045–9.PubMedCentralPubMed
13.
go back to reference Krstic D, Knuesel I. Deciphering the mechanism underlying late-onset Alzheimer disease. Nat Rev Neurol. 2013;9(1):25–34. doi:10.1038/nrneurol.2012.236.PubMed Krstic D, Knuesel I. Deciphering the mechanism underlying late-onset Alzheimer disease. Nat Rev Neurol. 2013;9(1):25–34. doi:10.1038/nrneurol.2012.236.PubMed
14.
go back to reference Pizza V, Agresta A, D’Acunto CW, Festa M, Capasso A. Neuroinflamm-aging and neurodegenerative diseases: an overview. CNS Neurol Disord Drug Targets. 2011;10(5):621–34.PubMed Pizza V, Agresta A, D’Acunto CW, Festa M, Capasso A. Neuroinflamm-aging and neurodegenerative diseases: an overview. CNS Neurol Disord Drug Targets. 2011;10(5):621–34.PubMed
15.
go back to reference Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F, et al. Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev. 2007;128(1):92–105. doi:10.1016/j.mad.2006.11.016.PubMed Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F, et al. Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev. 2007;128(1):92–105. doi:10.1016/j.mad.2006.11.016.PubMed
16.
go back to reference Frank-Cannon TC, Alto LT, McAlpine FE, Tansey MG. Does neuroinflammation fan the flame in neurodegenerative diseases? Mol Neurodegener. 2009;4:47. doi:10.1186/1750-1326-4-47.PubMedCentralPubMed Frank-Cannon TC, Alto LT, McAlpine FE, Tansey MG. Does neuroinflammation fan the flame in neurodegenerative diseases? Mol Neurodegener. 2009;4:47. doi:10.1186/1750-1326-4-47.PubMedCentralPubMed
17.
go back to reference Wyss-Coray T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med. 2006;12(9):1005–15. doi:10.1038/nm1484.PubMed Wyss-Coray T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med. 2006;12(9):1005–15. doi:10.1038/nm1484.PubMed
18.
go back to reference Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, et al. TREM2 variants in Alzheimer’s disease. N Engl J Med. 2013;368(2):117–27. doi:10.1056/NEJMoa1211851.PubMedCentralPubMed Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, et al. TREM2 variants in Alzheimer’s disease. N Engl J Med. 2013;368(2):117–27. doi:10.1056/NEJMoa1211851.PubMedCentralPubMed
19.
go back to reference Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J, et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med. 2013;368(2):107–16. doi:10.1056/NEJMoa1211103.PubMedCentralPubMed Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J, et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med. 2013;368(2):107–16. doi:10.1056/NEJMoa1211103.PubMedCentralPubMed
20.
go back to reference Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN, Buros J, et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet. 2011;43(5):436–41. doi:10.1038/ng.801.PubMedCentralPubMed Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN, Buros J, et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet. 2011;43(5):436–41. doi:10.1038/ng.801.PubMedCentralPubMed
21.
go back to reference Puglielli L, Tanzi RE, Kovacs DM. Alzheimer’s disease: the cholesterol connection. Nat Neurosci. 2003;6(4):345–51. doi:10.1038/nn0403-345.PubMed Puglielli L, Tanzi RE, Kovacs DM. Alzheimer’s disease: the cholesterol connection. Nat Neurosci. 2003;6(4):345–51. doi:10.1038/nn0403-345.PubMed
22.
go back to reference Eikelenboom P, van Exel E, Hoozemans JJ, Veerhuis R, Rozemuller AJ, van Gool WA. Neuroinflammation - an early event in both the history and pathogenesis of Alzheimer’s disease. Neurodegener Dis. 2010;7(1-3):38–41. doi:10.1159/000283480.PubMed Eikelenboom P, van Exel E, Hoozemans JJ, Veerhuis R, Rozemuller AJ, van Gool WA. Neuroinflammation - an early event in both the history and pathogenesis of Alzheimer’s disease. Neurodegener Dis. 2010;7(1-3):38–41. doi:10.1159/000283480.PubMed
23.
go back to reference Ferretti MT, Cuello AC. Does a pro-inflammatory process precede Alzheimer’s disease and mild cognitive impairment? Curr Alzheimer Res. 2011;8(2):164–74.PubMed Ferretti MT, Cuello AC. Does a pro-inflammatory process precede Alzheimer’s disease and mild cognitive impairment? Curr Alzheimer Res. 2011;8(2):164–74.PubMed
24.
go back to reference Buckwalter MS, Wyss-Coray T. Modelling neuroinflammatory phenotypes in vivo. J Neuroinflammation. 2004;1(1):10. doi:10.1186/1742-2094-1-10.PubMedCentralPubMed Buckwalter MS, Wyss-Coray T. Modelling neuroinflammatory phenotypes in vivo. J Neuroinflammation. 2004;1(1):10. doi:10.1186/1742-2094-1-10.PubMedCentralPubMed
25.
go back to reference Frohman EM, Racke MK, Raine CS. Multiple sclerosis - the plaque and its pathogenesis. N Engl J Med. 2006;354(9):942–55. doi:10.1056/NEJMra052130.PubMed Frohman EM, Racke MK, Raine CS. Multiple sclerosis - the plaque and its pathogenesis. N Engl J Med. 2006;354(9):942–55. doi:10.1056/NEJMra052130.PubMed
26.
go back to reference Lehnardt S, Massillon L, Follett P, Jensen FE, Ratan R, Rosenberg PA, et al. Activation of innate immunity in the CNS triggers neurodegeneration through a toll-like receptor 4-dependent pathway. Proc Natl Acad Sci U S A. 2003;100(14):8514–9. doi:10.1073/pnas.1432609100.PubMedCentralPubMed Lehnardt S, Massillon L, Follett P, Jensen FE, Ratan R, Rosenberg PA, et al. Activation of innate immunity in the CNS triggers neurodegeneration through a toll-like receptor 4-dependent pathway. Proc Natl Acad Sci U S A. 2003;100(14):8514–9. doi:10.1073/pnas.1432609100.PubMedCentralPubMed
27.
go back to reference Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, et al. Inflammation and Alzheimer’s disease. Neurobiol Aging. 2000;21(3):383–421.PubMedCentralPubMed Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, et al. Inflammation and Alzheimer’s disease. Neurobiol Aging. 2000;21(3):383–421.PubMedCentralPubMed
28.
go back to reference Walker DG, Dalsing-Hernandez JE, Campbell NA, Lue LF. Decreased expression of CD200 and CD200 receptor in Alzheimer’s disease: a potential mechanism leading to chronic inflammation. Exp Neurol. 2009;215(1):5–19. doi:10.1016/j.expneurol.2008.09.003.PubMedCentralPubMed Walker DG, Dalsing-Hernandez JE, Campbell NA, Lue LF. Decreased expression of CD200 and CD200 receptor in Alzheimer’s disease: a potential mechanism leading to chronic inflammation. Exp Neurol. 2009;215(1):5–19. doi:10.1016/j.expneurol.2008.09.003.PubMedCentralPubMed
29.
go back to reference Johnson VE, Stewart JE, Begbie FD, Trojanowski JQ, Smith DH, Stewart W. Inflammation and white matter degeneration persist for years after a single traumatic brain injury. Brain. 2013;136(Pt 1):28–42. doi:10.1093/brain/aws322.PubMedCentralPubMed Johnson VE, Stewart JE, Begbie FD, Trojanowski JQ, Smith DH, Stewart W. Inflammation and white matter degeneration persist for years after a single traumatic brain injury. Brain. 2013;136(Pt 1):28–42. doi:10.1093/brain/aws322.PubMedCentralPubMed
30.
go back to reference Xu WL, Atti AR, Gatz M, Pedersen NL, Johansson B, Fratiglioni L. Midlife overweight and obesity increase late-life dementia risk: a population-based twin study. Neurology. 2011;76(18):1568–74. doi:10.1212/WNL.0b013e3182190d09.PubMedCentralPubMed Xu WL, Atti AR, Gatz M, Pedersen NL, Johansson B, Fratiglioni L. Midlife overweight and obesity increase late-life dementia risk: a population-based twin study. Neurology. 2011;76(18):1568–74. doi:10.1212/WNL.0b013e3182190d09.PubMedCentralPubMed
31.
go back to reference Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007;8(1):57–69. doi:10.1038/nrn2038.PubMed Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007;8(1):57–69. doi:10.1038/nrn2038.PubMed
32.
go back to reference Streit WJ, Xue QS. Human CNS immune senescence and neurodegeneration. Curr Opin Immunol. 2014;29:93–6. doi:10.1016/j.coi.2014.05.005.PubMed Streit WJ, Xue QS. Human CNS immune senescence and neurodegeneration. Curr Opin Immunol. 2014;29:93–6. doi:10.1016/j.coi.2014.05.005.PubMed
33.
go back to reference Streit WJ, Braak H, Xue QS, Bechmann I. Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer’s disease. Acta Neuropathol. 2009;118(4):475–85. doi:10.1007/s00401-009-0556-6.PubMedCentralPubMed Streit WJ, Braak H, Xue QS, Bechmann I. Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer’s disease. Acta Neuropathol. 2009;118(4):475–85. doi:10.1007/s00401-009-0556-6.PubMedCentralPubMed
34.
go back to reference Wojtera M, Sobow T, Kloszewska I, Liberski PP, Brown DR, Sikorska B. Expression of immunohistochemical markers on microglia in Creutzfeldt-Jakob disease and Alzheimer’s disease: morphometric study and review of the literature. Folia neuropathologica / Association of Polish Neuropathologists and Medical Research Centre, Polish Academy of Sciences. 2012;50(1):74–84.PubMed Wojtera M, Sobow T, Kloszewska I, Liberski PP, Brown DR, Sikorska B. Expression of immunohistochemical markers on microglia in Creutzfeldt-Jakob disease and Alzheimer’s disease: morphometric study and review of the literature. Folia neuropathologica / Association of Polish Neuropathologists and Medical Research Centre, Polish Academy of Sciences. 2012;50(1):74–84.PubMed
35.
go back to reference Li W. Phagocyte dysfunction, tissue aging and degeneration. Ageing Res Rev. 2013;12(4):1005–12. doi:10.1016/j.arr.2013.05.006.PubMed Li W. Phagocyte dysfunction, tissue aging and degeneration. Ageing Res Rev. 2013;12(4):1005–12. doi:10.1016/j.arr.2013.05.006.PubMed
36.
go back to reference Caldeira C, Oliveira AF, Cunha C, Vaz AR, Falcao AS, Fernandes A, et al. Microglia change from a reactive to an age-like phenotype with the time in culture. Front Cell Neurosci. 2014;8:152. doi:10.3389/fncel.2014.00152.PubMedCentralPubMed Caldeira C, Oliveira AF, Cunha C, Vaz AR, Falcao AS, Fernandes A, et al. Microglia change from a reactive to an age-like phenotype with the time in culture. Front Cell Neurosci. 2014;8:152. doi:10.3389/fncel.2014.00152.PubMedCentralPubMed
37.
go back to reference Schwab C, Klegeris A, McGeer PL. Inflammation in transgenic mouse models of neurodegenerative disorders. Biochim Biophys Acta. 2010;1802(10):889–902. doi:10.1016/j.bbadis.2009.10.013.PubMed Schwab C, Klegeris A, McGeer PL. Inflammation in transgenic mouse models of neurodegenerative disorders. Biochim Biophys Acta. 2010;1802(10):889–902. doi:10.1016/j.bbadis.2009.10.013.PubMed
38.
go back to reference Janelsins MC, Mastrangelo MA, Oddo S, LaFerla FM, Federoff HJ, Bowers WJ. Early correlation of microglial activation with enhanced tumor necrosis factor-alpha and monocyte chemoattractant protein-1 expression specifically within the entorhinal cortex of triple transgenic Alzheimer’s disease mice. J Neuroinflammation. 2005;2:23. doi:10.1186/1742-2094-2-23.PubMedCentralPubMed Janelsins MC, Mastrangelo MA, Oddo S, LaFerla FM, Federoff HJ, Bowers WJ. Early correlation of microglial activation with enhanced tumor necrosis factor-alpha and monocyte chemoattractant protein-1 expression specifically within the entorhinal cortex of triple transgenic Alzheimer’s disease mice. J Neuroinflammation. 2005;2:23. doi:10.1186/1742-2094-2-23.PubMedCentralPubMed
39.
go back to reference Moore AH, Wu M, Shaftel SS, Graham KA, O’Banion MK. Sustained expression of interleukin-1beta in mouse hippocampus impairs spatial memory. Neuroscience. 2009;164(4):1484–95. doi:10.1016/j.neuroscience.2009.08.073.PubMedCentralPubMed Moore AH, Wu M, Shaftel SS, Graham KA, O’Banion MK. Sustained expression of interleukin-1beta in mouse hippocampus impairs spatial memory. Neuroscience. 2009;164(4):1484–95. doi:10.1016/j.neuroscience.2009.08.073.PubMedCentralPubMed
40.
go back to reference Burton M, Johnson R. Interleukin-6 trans-signaling in the senescent mouse brain is involved in infection-related deficits in contextual fear conditioning. Brain Behav Immun. 2012;26(5):732–8. doi: 10.1016/j.bbi.2011.10.008.PubMedCentralPubMed Burton M, Johnson R. Interleukin-6 trans-signaling in the senescent mouse brain is involved in infection-related deficits in contextual fear conditioning. Brain Behav Immun. 2012;26(5):732–8. doi: 10.1016/j.bbi.2011.10.008.PubMedCentralPubMed
41.
go back to reference McLarnon JG. Correlated inflammatory responses and neurodegeneration in peptide-injected animal models of Alzheimer’s disease. Biomed Res Int. 2014;2014:923670. doi:10.1155/2014/923670.PubMedCentralPubMed McLarnon JG. Correlated inflammatory responses and neurodegeneration in peptide-injected animal models of Alzheimer’s disease. Biomed Res Int. 2014;2014:923670. doi:10.1155/2014/923670.PubMedCentralPubMed
42.
go back to reference Kitazawa M, Oddo S, Yamasaki TR, Green KN, LaFerla FM. Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer’s disease. J Neurosci. 2005;25(39):8843–53. doi:10.1523/JNEUROSCI.2868-05.2005.PubMed Kitazawa M, Oddo S, Yamasaki TR, Green KN, LaFerla FM. Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer’s disease. J Neurosci. 2005;25(39):8843–53. doi:10.1523/JNEUROSCI.2868-05.2005.PubMed
43.
go back to reference Hauss-Wegrzyniak B, Dobrzanski P, Stoehr JD, Wenk GL. Chronic neuroinflammation in rats reproduces components of the neurobiology of Alzheimer’s disease. Brain Res. 1998;780(2):294–303.PubMed Hauss-Wegrzyniak B, Dobrzanski P, Stoehr JD, Wenk GL. Chronic neuroinflammation in rats reproduces components of the neurobiology of Alzheimer’s disease. Brain Res. 1998;780(2):294–303.PubMed
44.
go back to reference Sheng JG, Bora SH, Xu G, Borchelt DR, Price DL, Koliatsos VE. Lipopolysaccharide-induced-neuroinflammation increases intracellular accumulation of amyloid precursor protein and amyloid beta peptide in APPswe transgenic mice. Neurobiol Dis. 2003;14(1):133–45.PubMed Sheng JG, Bora SH, Xu G, Borchelt DR, Price DL, Koliatsos VE. Lipopolysaccharide-induced-neuroinflammation increases intracellular accumulation of amyloid precursor protein and amyloid beta peptide in APPswe transgenic mice. Neurobiol Dis. 2003;14(1):133–45.PubMed
45.
go back to reference Hailman E, Lichenstein HS, Wurfel MM, Miller DS, Johnson DA, Kelley M, et al. Lipopolysaccharide (LPS)-binding protein accelerates the binding of LPS to CD14. J Exp Med. 1994;179(1):269–77.PubMed Hailman E, Lichenstein HS, Wurfel MM, Miller DS, Johnson DA, Kelley M, et al. Lipopolysaccharide (LPS)-binding protein accelerates the binding of LPS to CD14. J Exp Med. 1994;179(1):269–77.PubMed
46.
go back to reference Rivest S. Regulation of innate immune responses in the brain. Nat Rev Immunol. 2009;9(6):429–39. doi:10.1038/nri2565.PubMed Rivest S. Regulation of innate immune responses in the brain. Nat Rev Immunol. 2009;9(6):429–39. doi:10.1038/nri2565.PubMed
47.
go back to reference Mizuno T, Sawada M, Marunouchi T, Suzumura A. Production of interleukin-10 by mouse glial cells in culture. Biochem Biophys Res Commun. 1994;205(3):1907–15. doi:10.1006/bbrc.1994.2893.PubMed Mizuno T, Sawada M, Marunouchi T, Suzumura A. Production of interleukin-10 by mouse glial cells in culture. Biochem Biophys Res Commun. 1994;205(3):1907–15. doi:10.1006/bbrc.1994.2893.PubMed
48.
go back to reference Welser-Alves JV, Milner R. Microglia are the major source of TNF-α and TGF-β1 in postnatal glial cultures; regulation by cytokines, lipopolysaccharide, and vitronectin. Neurochem Int. 2013;63(1):47–53. doi:10.1016/j.neuint.2013.04.007.PubMed Welser-Alves JV, Milner R. Microglia are the major source of TNF-α and TGF-β1 in postnatal glial cultures; regulation by cytokines, lipopolysaccharide, and vitronectin. Neurochem Int. 2013;63(1):47–53. doi:10.1016/j.neuint.2013.04.007.PubMed
49.
go back to reference Bardou I, Kaercher RM, Brothers HM, Hopp SC, Royer S, Wenk GL. Age and duration of inflammatory environment differentially affect the neuroimmune response and catecholaminergic neurons in the midbrain and brainstem. Neurobiol Aging. 2014;35(5):1065–73. doi:10.1016/j.neurobiolaging.2013.11.006.PubMed Bardou I, Kaercher RM, Brothers HM, Hopp SC, Royer S, Wenk GL. Age and duration of inflammatory environment differentially affect the neuroimmune response and catecholaminergic neurons in the midbrain and brainstem. Neurobiol Aging. 2014;35(5):1065–73. doi:10.1016/j.neurobiolaging.2013.11.006.PubMed
50.
go back to reference Lee JW, Lee YK, Yuk DY, Choi DY, Ban SB, Oh KW, et al. Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of beta-amyloid generation. J Neuroinflammation. 2008;5:37. doi:10.1186/1742-2094-5-37.PubMedCentralPubMed Lee JW, Lee YK, Yuk DY, Choi DY, Ban SB, Oh KW, et al. Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of beta-amyloid generation. J Neuroinflammation. 2008;5:37. doi:10.1186/1742-2094-5-37.PubMedCentralPubMed
51.
go back to reference Czerniawski J, Miyashita T, Lewandowski G, Guzowski JF. Systemic lipopolysaccharide administration impairs retrieval of context-object discrimination, but not spatial, memory: evidence for selective disruption of specific hippocampus-dependent memory functions during acute neuroinflammation. Brain Behav Immun. 2015;44:159–66. doi:10.1016/j.bbi.2014.09.014.PubMed Czerniawski J, Miyashita T, Lewandowski G, Guzowski JF. Systemic lipopolysaccharide administration impairs retrieval of context-object discrimination, but not spatial, memory: evidence for selective disruption of specific hippocampus-dependent memory functions during acute neuroinflammation. Brain Behav Immun. 2015;44:159–66. doi:10.1016/j.bbi.2014.09.014.PubMed
52.
go back to reference Grudzien A, Shaw P, Weintraub S, Bigio E, Mash DC, Mesulam MM. Locus coeruleus neurofibrillary degeneration in aging, mild cognitive impairment and early Alzheimer’s disease. Neurobiol Aging. 2007;28(3):327–35. doi:10.1016/j.neurobiolaging.2006.02.007.PubMed Grudzien A, Shaw P, Weintraub S, Bigio E, Mash DC, Mesulam MM. Locus coeruleus neurofibrillary degeneration in aging, mild cognitive impairment and early Alzheimer’s disease. Neurobiol Aging. 2007;28(3):327–35. doi:10.1016/j.neurobiolaging.2006.02.007.PubMed
53.
go back to reference Cerbai F, Lana D, Nosi D, Petkova-Kirova P, Zecchi S, Brothers H, et al. The neuron-astrocyte-microglia triad in normal brain ageing and in a model of neuroinflammation in the rat hippocampus. PLoS One. 2012;7(9), e45250.PubMedCentralPubMed Cerbai F, Lana D, Nosi D, Petkova-Kirova P, Zecchi S, Brothers H, et al. The neuron-astrocyte-microglia triad in normal brain ageing and in a model of neuroinflammation in the rat hippocampus. PLoS One. 2012;7(9), e45250.PubMedCentralPubMed
54.
go back to reference Hauss-Wegrzyniak B, Vannucchi MG, Wenk GL. Behavioral and ultrastructural changes induced by chronic neuroinflammation in young rats. Brain Res. 2000;859(1):157–66.PubMed Hauss-Wegrzyniak B, Vannucchi MG, Wenk GL. Behavioral and ultrastructural changes induced by chronic neuroinflammation in young rats. Brain Res. 2000;859(1):157–66.PubMed
55.
go back to reference Wenk GL, McGann K, Mencarelli A, Hauss-Wegrzyniak B, Del Soldato P, Fiorucci S. Mechanisms to prevent the toxicity of chronic neuroinflammation on forebrain cholinergic neurons. Eur J Pharmacol. 2000;402(1-2):77–85.PubMed Wenk GL, McGann K, Mencarelli A, Hauss-Wegrzyniak B, Del Soldato P, Fiorucci S. Mechanisms to prevent the toxicity of chronic neuroinflammation on forebrain cholinergic neurons. Eur J Pharmacol. 2000;402(1-2):77–85.PubMed
56.
go back to reference Hafting T, Fyhn M, Molden S, Moser MB, Moser EI. Microstructure of a spatial map in the entorhinal cortex. Nature. 2005;436(7052):801–6. doi:10.1038/nature03721.PubMed Hafting T, Fyhn M, Molden S, Moser MB, Moser EI. Microstructure of a spatial map in the entorhinal cortex. Nature. 2005;436(7052):801–6. doi:10.1038/nature03721.PubMed
57.
go back to reference Hauss-Wegrzyniak B, Lynch MA, Vraniak PD, Wenk GL. Chronic brain inflammation results in cell loss in the entorhinal cortex and impaired LTP in perforant path-granule cell synapses. Exp Neurol. 2002;176(2):336–41.PubMed Hauss-Wegrzyniak B, Lynch MA, Vraniak PD, Wenk GL. Chronic brain inflammation results in cell loss in the entorhinal cortex and impaired LTP in perforant path-granule cell synapses. Exp Neurol. 2002;176(2):336–41.PubMed
58.
go back to reference DiCarlo G, Wilcock D, Henderson D, Gordon M, Morgan D. Intrahippocampal LPS injections reduce Abeta load in APP + PS1 transgenic mice. Neurobiol Aging. 2001;22(6):1007–12.PubMed DiCarlo G, Wilcock D, Henderson D, Gordon M, Morgan D. Intrahippocampal LPS injections reduce Abeta load in APP + PS1 transgenic mice. Neurobiol Aging. 2001;22(6):1007–12.PubMed
59.
go back to reference Deng XH, Ai WM, Lei DL, Luo XG, Yan XX, Li Z. Lipopolysaccharide induces paired immunoglobulin-like receptor B (PirB) expression, synaptic alteration, and learning-memory deficit in rats. Neuroscience. 2012;209:161–70. doi:10.1016/j.neuroscience.2012.02.022.PubMed Deng XH, Ai WM, Lei DL, Luo XG, Yan XX, Li Z. Lipopolysaccharide induces paired immunoglobulin-like receptor B (PirB) expression, synaptic alteration, and learning-memory deficit in rats. Neuroscience. 2012;209:161–70. doi:10.1016/j.neuroscience.2012.02.022.PubMed
60.
go back to reference Liu Y, Qin L, Wilson B, Wu X, Qian L, Granholm AC, et al. Endotoxin induces a delayed loss of TH-IR neurons in substantia nigra and motor behavioral deficits. Neurotoxicology. 2008;29(5):864–70. doi:10.1016/j.neuro.2008.02.014.PubMedCentralPubMed Liu Y, Qin L, Wilson B, Wu X, Qian L, Granholm AC, et al. Endotoxin induces a delayed loss of TH-IR neurons in substantia nigra and motor behavioral deficits. Neurotoxicology. 2008;29(5):864–70. doi:10.1016/j.neuro.2008.02.014.PubMedCentralPubMed
61.
go back to reference Perry VH, Nicoll JA, Holmes C. Microglia in neurodegenerative disease. Nat Rev Neurol. 2010;6(4):193–201. doi:10.1038/nrneurol.2010.17.PubMed Perry VH, Nicoll JA, Holmes C. Microglia in neurodegenerative disease. Nat Rev Neurol. 2010;6(4):193–201. doi:10.1038/nrneurol.2010.17.PubMed
62.
go back to reference Perry VH. Contribution of systemic inflammation to chronic neurodegeneration. Acta Neuropathol. 2010;120(3):277–86. doi:10.1007/s00401-010-0722-x.PubMed Perry VH. Contribution of systemic inflammation to chronic neurodegeneration. Acta Neuropathol. 2010;120(3):277–86. doi:10.1007/s00401-010-0722-x.PubMed
63.
go back to reference Town T, Jeng D, Alexopoulou L, Tan J, Flavell RA, Alexopoulou L, et al. Microglia recognize double-stranded RNA via TLR3 recognition of double-stranded RNA and activation of NF-kappaB by toll-like receptor 3. J Immunol. 2006;176(6):3804–12. doi:10.1038/35099560.PubMed Town T, Jeng D, Alexopoulou L, Tan J, Flavell RA, Alexopoulou L, et al. Microglia recognize double-stranded RNA via TLR3 recognition of double-stranded RNA and activation of NF-kappaB by toll-like receptor 3. J Immunol. 2006;176(6):3804–12. doi:10.1038/35099560.PubMed
64.
go back to reference De Miranda J, Yaddanapudi K, Hornig M, Villar G, Serge R, Lipkin WI. Induction of toll-like receptor 3-mediated immunity during gestation inhibits cortical neurogenesis and causes behavioral disturbances. MBio. 2010;1(4). doi:10.1128/mBio.00176-10. De Miranda J, Yaddanapudi K, Hornig M, Villar G, Serge R, Lipkin WI. Induction of toll-like receptor 3-mediated immunity during gestation inhibits cortical neurogenesis and causes behavioral disturbances. MBio. 2010;1(4). doi:10.1128/mBio.00176-10.
65.
go back to reference Kimura M, Toth LA, Agostini H, Cady AB, Majde JA, Krueger JM. Comparison of acute phase responses induced in rabbits by lipopolysaccharide and double-stranded RNA. Am J Physiol. 1994;267(6 Pt 2):R1596–605.PubMed Kimura M, Toth LA, Agostini H, Cady AB, Majde JA, Krueger JM. Comparison of acute phase responses induced in rabbits by lipopolysaccharide and double-stranded RNA. Am J Physiol. 1994;267(6 Pt 2):R1596–605.PubMed
66.
go back to reference Meyer U, Nyffeler M, Engler A, Urwyler A, Schedlowski M, Knuesel I, et al. The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology. J Neurosci. 2006;26(18):4752–62. doi:10.1523/JNEUROSCI.0099-06.2006.PubMed Meyer U, Nyffeler M, Engler A, Urwyler A, Schedlowski M, Knuesel I, et al. The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology. J Neurosci. 2006;26(18):4752–62. doi:10.1523/JNEUROSCI.0099-06.2006.PubMed
67.
go back to reference Bilbo SD, Smith SH, Schwarz JM. A lifespan approach to neuroinflammatory and cognitive disorders: a critical role for glia. J Neuroimmune Pharmacol. 2012;7(1):24–41. doi:10.1007/s11481-011-9299-y.PubMedCentralPubMed Bilbo SD, Smith SH, Schwarz JM. A lifespan approach to neuroinflammatory and cognitive disorders: a critical role for glia. J Neuroimmune Pharmacol. 2012;7(1):24–41. doi:10.1007/s11481-011-9299-y.PubMedCentralPubMed
68.
go back to reference Bitanihirwe BK, Peleg-Raibstein D, Mouttet F, Feldon J, Meyer U. Late prenatal immune activation in mice leads to behavioral and neurochemical abnormalities relevant to the negative symptoms of schizophrenia. Neuropsychopharmacology. 2010;35(12):2462–78. doi:10.1038/npp.2010.129.PubMedCentralPubMed Bitanihirwe BK, Peleg-Raibstein D, Mouttet F, Feldon J, Meyer U. Late prenatal immune activation in mice leads to behavioral and neurochemical abnormalities relevant to the negative symptoms of schizophrenia. Neuropsychopharmacology. 2010;35(12):2462–78. doi:10.1038/npp.2010.129.PubMedCentralPubMed
69.
go back to reference Hoyer S, Nitsch R. Cerebral excess release of neurotransmitter amino acids subsequent to reduced cerebral glucose metabolism in early-onset dementia of Alzheimer type. J Neural Transm (Vienna, Austria: 1996). 1989;75(3):227–32. Hoyer S, Nitsch R. Cerebral excess release of neurotransmitter amino acids subsequent to reduced cerebral glucose metabolism in early-onset dementia of Alzheimer type. J Neural Transm (Vienna, Austria: 1996). 1989;75(3):227–32.
70.
go back to reference Hoyer S, Nitsch R, Oesterreich K. Predominant abnormality in cerebral glucose utilization in late-onset dementia of the Alzheimer type: a cross-sectional comparison against advanced late-onset and incipient early-onset cases. J Neural Transm Park Dis Dement Sect. 1991;3(1):1–14.PubMed Hoyer S, Nitsch R, Oesterreich K. Predominant abnormality in cerebral glucose utilization in late-onset dementia of the Alzheimer type: a cross-sectional comparison against advanced late-onset and incipient early-onset cases. J Neural Transm Park Dis Dement Sect. 1991;3(1):1–14.PubMed
71.
go back to reference Craft S, Zallen G, Baker LD. Glucose and memory in mild senile dementia of the Alzheimer type. J Clin Exp Neuropsychol. 1992;14(2):253–67. doi:10.1080/01688639208402827.PubMed Craft S, Zallen G, Baker LD. Glucose and memory in mild senile dementia of the Alzheimer type. J Clin Exp Neuropsychol. 1992;14(2):253–67. doi:10.1080/01688639208402827.PubMed
72.
go back to reference Sims-Robinson C, Kim B, Rosko A, Feldman EL. How does diabetes accelerate Alzheimer disease pathology? Nat Rev Neurol. 2010;6(10):551–9. doi:10.1038/nrneurol.2010.130.PubMedCentralPubMed Sims-Robinson C, Kim B, Rosko A, Feldman EL. How does diabetes accelerate Alzheimer disease pathology? Nat Rev Neurol. 2010;6(10):551–9. doi:10.1038/nrneurol.2010.130.PubMedCentralPubMed
73.
go back to reference Yamamoto H, Uchigata Y, Okamoto H. Streptozotocin and alloxan induce DNA strand breaks and poly(ADP-ribose) synthetase in pancreatic islets. Nature. 1981;294(5838):284–6.PubMed Yamamoto H, Uchigata Y, Okamoto H. Streptozotocin and alloxan induce DNA strand breaks and poly(ADP-ribose) synthetase in pancreatic islets. Nature. 1981;294(5838):284–6.PubMed
74.
go back to reference Mansford KR, Opie L. Comparison of metabolic abnormalities in diabetes mellitus induced by streptozotocin or by alloxan. Lancet. 1968;1(7544):670–1.PubMed Mansford KR, Opie L. Comparison of metabolic abnormalities in diabetes mellitus induced by streptozotocin or by alloxan. Lancet. 1968;1(7544):670–1.PubMed
75.
go back to reference Like AA, Rossini AA. Streptozotocin-induced pancreatic insulitis: new model of diabetes mellitus. Science. 1976;193(4251):415–7.PubMed Like AA, Rossini AA. Streptozotocin-induced pancreatic insulitis: new model of diabetes mellitus. Science. 1976;193(4251):415–7.PubMed
76.
go back to reference Stranahan AM, Arumugam TV, Cutler RG, Lee K, Egan JM, Mattson MP. Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons. Nat Neurosci. 2008;11(3):309–17. doi:10.1038/nn2055.PubMedCentralPubMed Stranahan AM, Arumugam TV, Cutler RG, Lee K, Egan JM, Mattson MP. Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons. Nat Neurosci. 2008;11(3):309–17. doi:10.1038/nn2055.PubMedCentralPubMed
77.
go back to reference Wang JQ, Yin J, Song YF, Zhang L, Ren YX, Wang DG, et al. Brain aging and AD-like pathology in streptozotocin-induced diabetic rats. J Diabetes Res. 2014;2014:796840. doi:10.1155/2014/796840.PubMedCentralPubMed Wang JQ, Yin J, Song YF, Zhang L, Ren YX, Wang DG, et al. Brain aging and AD-like pathology in streptozotocin-induced diabetic rats. J Diabetes Res. 2014;2014:796840. doi:10.1155/2014/796840.PubMedCentralPubMed
78.
go back to reference Lenzen S. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia. 2008;51(2):216–26. doi:10.1007/s00125-007-0886-7.PubMed Lenzen S. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia. 2008;51(2):216–26. doi:10.1007/s00125-007-0886-7.PubMed
79.
go back to reference Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res. 2001;50(6):537–46.PubMed Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res. 2001;50(6):537–46.PubMed
80.
go back to reference Takasu N, Komiya I, Asawa T, Nagasawa Y, Yamada T. Streptozocin- and alloxan-induced H2O2 generation and DNA fragmentation in pancreatic islets. H2O2 as mediator for DNA fragmentation. Diabetes. 1991;40(9):1141–5.PubMed Takasu N, Komiya I, Asawa T, Nagasawa Y, Yamada T. Streptozocin- and alloxan-induced H2O2 generation and DNA fragmentation in pancreatic islets. H2O2 as mediator for DNA fragmentation. Diabetes. 1991;40(9):1141–5.PubMed
81.
go back to reference Turk J, Corbett JA, Ramanadham S, Bohrer A, McDaniel ML. Biochemical evidence for nitric oxide formation from streptozotocin in isolated pancreatic islets. Biochem Biophys Res Commun. 1993;197(3):1458–64. doi:10.1006/bbrc.1993.2641.PubMed Turk J, Corbett JA, Ramanadham S, Bohrer A, McDaniel ML. Biochemical evidence for nitric oxide formation from streptozotocin in isolated pancreatic islets. Biochem Biophys Res Commun. 1993;197(3):1458–64. doi:10.1006/bbrc.1993.2641.PubMed
82.
go back to reference Murata M, Takahashi A, Saito I, Kawanishi S. Site-specific DNA methylation and apoptosis: induction by diabetogenic streptozotocin. Biochem Pharmacol. 1999;57(8):881–7.PubMed Murata M, Takahashi A, Saito I, Kawanishi S. Site-specific DNA methylation and apoptosis: induction by diabetogenic streptozotocin. Biochem Pharmacol. 1999;57(8):881–7.PubMed
83.
go back to reference Pieper AA, Brat DJ, Krug DK, Watkins CC, Gupta A, Blackshaw S, et al. Poly(ADP-ribose) polymerase-deficient mice are protected from streptozotocin-induced diabetes. Proc Natl Acad Sci U S A. 1999;96(6):3059–64.PubMedCentralPubMed Pieper AA, Brat DJ, Krug DK, Watkins CC, Gupta A, Blackshaw S, et al. Poly(ADP-ribose) polymerase-deficient mice are protected from streptozotocin-induced diabetes. Proc Natl Acad Sci U S A. 1999;96(6):3059–64.PubMedCentralPubMed
84.
go back to reference Mensah-Brown EP, Obineche EN, Galadari S, Chandranath E, Shahin A, Ahmed I, et al. Streptozotocin-induced diabetic nephropathy in rats: the role of inflammatory cytokines. Cytokine. 2005;31(3):180–90. doi:10.1016/j.cyto.2005.04.006.PubMed Mensah-Brown EP, Obineche EN, Galadari S, Chandranath E, Shahin A, Ahmed I, et al. Streptozotocin-induced diabetic nephropathy in rats: the role of inflammatory cytokines. Cytokine. 2005;31(3):180–90. doi:10.1016/j.cyto.2005.04.006.PubMed
85.
go back to reference Chen YLZ, Blanchard J, Dai CL, Sun S, Lee MH, Grundke-Iqbal I, et al. A non-transgenic mouse model (icv-STZ Mouse) of Alzheimer’s disease: similarities to and differences from the transgenic model (3xTg-AD Mouse). Mol Neurobiol. 2013;47(2):711–25.PubMedCentralPubMed Chen YLZ, Blanchard J, Dai CL, Sun S, Lee MH, Grundke-Iqbal I, et al. A non-transgenic mouse model (icv-STZ Mouse) of Alzheimer’s disease: similarities to and differences from the transgenic model (3xTg-AD Mouse). Mol Neurobiol. 2013;47(2):711–25.PubMedCentralPubMed
86.
go back to reference Nitsch R, Hoyer S. Local action of the diabetogenic drug, streptozotocin, on glucose and energy metabolism in rat brain cortex. Neurosci Lett. 1991;128(2):199–202.PubMed Nitsch R, Hoyer S. Local action of the diabetogenic drug, streptozotocin, on glucose and energy metabolism in rat brain cortex. Neurosci Lett. 1991;128(2):199–202.PubMed
87.
go back to reference Plaschke K, Hoyer S. Action of the diabetogenic drug streptozotocin on glycolytic and glycogenolytic metabolism in adult rat brain cortex and hippocampus. Int J Dev Neurosci. 1993;11(4):477–83.PubMed Plaschke K, Hoyer S. Action of the diabetogenic drug streptozotocin on glycolytic and glycogenolytic metabolism in adult rat brain cortex and hippocampus. Int J Dev Neurosci. 1993;11(4):477–83.PubMed
88.
go back to reference Lester-Coll N, Rivera EJ, Soscia SJ, Doiron K, Wands JR, de la Monte SM. Intracerebral streptozotocin model of type 3 diabetes: relevance to sporadic Alzheimer’s disease. J Alzheimer’s Disease: JAD. 2006;9(1):13–33.PubMed Lester-Coll N, Rivera EJ, Soscia SJ, Doiron K, Wands JR, de la Monte SM. Intracerebral streptozotocin model of type 3 diabetes: relevance to sporadic Alzheimer’s disease. J Alzheimer’s Disease: JAD. 2006;9(1):13–33.PubMed
89.
go back to reference Kraska ASM, Dorieux O, Joseph-Mathurin N, Bourrin E, Petit F, Jan C, et al. In vivo cross-sectional characterization of cerebral alterations induced by intracerebroventricular administration of streptozotocin. PLoS One. 2012;7(9), e46196. doi:10.1371/journal.pone.0046196.PubMedCentralPubMed Kraska ASM, Dorieux O, Joseph-Mathurin N, Bourrin E, Petit F, Jan C, et al. In vivo cross-sectional characterization of cerebral alterations induced by intracerebroventricular administration of streptozotocin. PLoS One. 2012;7(9), e46196. doi:10.1371/journal.pone.0046196.PubMedCentralPubMed
90.
go back to reference Chen Y, Liang Z, Tian Z, Blanchard J, Dai CL, Chalbot S, et al. Intracerebroventricular streptozotocin exacerbates Alzheimer-like changes of 3xTg-AD mice. Mol Neurobiol. 2014;49(1):547–62. doi:10.1007/s12035-013-8539-y.PubMedCentralPubMed Chen Y, Liang Z, Tian Z, Blanchard J, Dai CL, Chalbot S, et al. Intracerebroventricular streptozotocin exacerbates Alzheimer-like changes of 3xTg-AD mice. Mol Neurobiol. 2014;49(1):547–62. doi:10.1007/s12035-013-8539-y.PubMedCentralPubMed
91.
go back to reference Plaschke K, Kopitz J, Siegelin M, Schliebs R, Salkovic-Petrisic M, Riederer P, et al. Insulin-resistant brain state after intracerebroventricular streptozotocin injection exacerbates Alzheimer-like changes in Tg2576 AbetaPP-overexpressing mice. J Alzheimers Dis. 2010;19(2):691–704. doi:10.3233/jad-2010-1270.PubMed Plaschke K, Kopitz J, Siegelin M, Schliebs R, Salkovic-Petrisic M, Riederer P, et al. Insulin-resistant brain state after intracerebroventricular streptozotocin injection exacerbates Alzheimer-like changes in Tg2576 AbetaPP-overexpressing mice. J Alzheimers Dis. 2010;19(2):691–704. doi:10.3233/jad-2010-1270.PubMed
92.
go back to reference Ke YD, Delerue F, Gladbach A, Götz J, Ittner LM. Experimental diabetes mellitus exacerbates tau pathology in a transgenic mouse model of Alzheimer’s disease. PLoS One. 2009;4(11), e7917. doi:10.1371/journal.pone.0007917.PubMedCentralPubMed Ke YD, Delerue F, Gladbach A, Götz J, Ittner LM. Experimental diabetes mellitus exacerbates tau pathology in a transgenic mouse model of Alzheimer’s disease. PLoS One. 2009;4(11), e7917. doi:10.1371/journal.pone.0007917.PubMedCentralPubMed
93.
go back to reference Devi L, Alldred MJ, Ginsberg SD, Ohno M. Mechanisms underlying insulin deficiency-induced acceleration of β-amyloidosis in a mouse model of Alzheimer’s disease. PLoS One. 2012;7(3):e32792. doi:10.1371/journal.pone.0032792.PubMedCentralPubMed Devi L, Alldred MJ, Ginsberg SD, Ohno M. Mechanisms underlying insulin deficiency-induced acceleration of β-amyloidosis in a mouse model of Alzheimer’s disease. PLoS One. 2012;7(3):e32792. doi:10.1371/journal.pone.0032792.PubMedCentralPubMed
94.
go back to reference Jolivalt CG, Hurford R, Lee CA, Dumaop W, Rockenstein E, Masliah E. Type 1 diabetes exaggerates features of Alzheimer’s disease in APP transgenic mice. Exp Neurol. 2010;223(2):422–31. doi:10.1016/j.expneurol.2009.11.005.PubMedCentralPubMed Jolivalt CG, Hurford R, Lee CA, Dumaop W, Rockenstein E, Masliah E. Type 1 diabetes exaggerates features of Alzheimer’s disease in APP transgenic mice. Exp Neurol. 2010;223(2):422–31. doi:10.1016/j.expneurol.2009.11.005.PubMedCentralPubMed
95.
go back to reference Liu P, Zou LB, Wang LH, Jiao Q, Chi TY, Ji XF, et al. Xanthoceraside attenuates tau hyperphosphorylation and cognitive deficits in intracerebroventricular-streptozotocin injected rats. Psychopharmacology (Berl). 2013. doi:10.1007/s00213-013-3240-4. Liu P, Zou LB, Wang LH, Jiao Q, Chi TY, Ji XF, et al. Xanthoceraside attenuates tau hyperphosphorylation and cognitive deficits in intracerebroventricular-streptozotocin injected rats. Psychopharmacology (Berl). 2013. doi:10.1007/s00213-013-3240-4.
96.
go back to reference Salkovic-Petrisic M, Osmanovic-Barilar J, Brückner M, Hoyer S, Arendt T, Riederer P. Cerebral amyloid angiopathy in streptozotocin rat model of sporadic Alzheimer’s disease: a long-term follow up study. J Neural Transm. 2011;118(5):765–72.PubMed Salkovic-Petrisic M, Osmanovic-Barilar J, Brückner M, Hoyer S, Arendt T, Riederer P. Cerebral amyloid angiopathy in streptozotocin rat model of sporadic Alzheimer’s disease: a long-term follow up study. J Neural Transm. 2011;118(5):765–72.PubMed
97.
go back to reference Grünblatt ES-PM, Osmanovic J, Riederer P, Hoyer S. Brain insulin system dysfunction in streptozotocin intracerebroventricularly treated rats generates hyperphosphorylated tau protein. J Neurochem. 2007;101(3):757–70.PubMed Grünblatt ES-PM, Osmanovic J, Riederer P, Hoyer S. Brain insulin system dysfunction in streptozotocin intracerebroventricularly treated rats generates hyperphosphorylated tau protein. J Neurochem. 2007;101(3):757–70.PubMed
98.
go back to reference Tapia R, Pena F, Arias C. Neurotoxic and synaptic effects of okadaic acid, an inhibitor of protein phosphatases. Neurochem Res. 1999;24(11):1423–30.PubMed Tapia R, Pena F, Arias C. Neurotoxic and synaptic effects of okadaic acid, an inhibitor of protein phosphatases. Neurochem Res. 1999;24(11):1423–30.PubMed
99.
go back to reference Sontag JM, Sontag E. Protein phosphatase 2A dysfunction in Alzheimer’s disease. Front Mol Neurosci. 2014;7:16. doi:10.3389/fnmol.2014.00016.PubMedCentralPubMed Sontag JM, Sontag E. Protein phosphatase 2A dysfunction in Alzheimer’s disease. Front Mol Neurosci. 2014;7:16. doi:10.3389/fnmol.2014.00016.PubMedCentralPubMed
100.
go back to reference Cohen PT, Brewis ND, Hughes V, Mann DJ. Protein serine/threonine phosphatases; an expanding family. FEBS Lett. 1990;268(2):355–9.PubMed Cohen PT, Brewis ND, Hughes V, Mann DJ. Protein serine/threonine phosphatases; an expanding family. FEBS Lett. 1990;268(2):355–9.PubMed
101.
go back to reference Kamat PK, Tota S, Rai S, Shukla R, Ali S, Najmi AK, et al. Okadaic acid induced neurotoxicity leads to central cholinergic dysfunction in rats. Eur J Pharmacol. 2012;690(1-3):90–8. doi:10.1016/j.ejphar.2012.06.006.PubMed Kamat PK, Tota S, Rai S, Shukla R, Ali S, Najmi AK, et al. Okadaic acid induced neurotoxicity leads to central cholinergic dysfunction in rats. Eur J Pharmacol. 2012;690(1-3):90–8. doi:10.1016/j.ejphar.2012.06.006.PubMed
102.
go back to reference Costa AP, Tramontina AC, Biasibetti R, Batassini C, Lopes MW, Wartchow KM, et al. Neuroglial alterations in rats submitted to the okadaic acid-induced model of dementia. Behav Brain Res. 2012;226(2):420–7. doi:10.1016/j.bbr.2011.09.035.PubMed Costa AP, Tramontina AC, Biasibetti R, Batassini C, Lopes MW, Wartchow KM, et al. Neuroglial alterations in rats submitted to the okadaic acid-induced model of dementia. Behav Brain Res. 2012;226(2):420–7. doi:10.1016/j.bbr.2011.09.035.PubMed
103.
go back to reference Kamat PK, Tota S, Saxena G, Shukla R, Nath C. Okadaic acid (ICV) induced memory impairment in rats: a suitable experimental model to test anti-dementia activity. Brain Res. 2010;1309:66–74. doi:10.1016/j.brainres.2009.10.064.PubMed Kamat PK, Tota S, Saxena G, Shukla R, Nath C. Okadaic acid (ICV) induced memory impairment in rats: a suitable experimental model to test anti-dementia activity. Brain Res. 2010;1309:66–74. doi:10.1016/j.brainres.2009.10.064.PubMed
104.
go back to reference Kamat PK, Rai S, Swarnkar S, Shukla R, Nath C. Molecular and cellular mechanism of okadaic acid (OKA)-induced neurotoxicity: a novel tool for Alzheimer’s disease therapeutic application. Mol Neurobiol. 2014;50(3):852–65. doi:10.1007/s12035-014-8699-4.PubMed Kamat PK, Rai S, Swarnkar S, Shukla R, Nath C. Molecular and cellular mechanism of okadaic acid (OKA)-induced neurotoxicity: a novel tool for Alzheimer’s disease therapeutic application. Mol Neurobiol. 2014;50(3):852–65. doi:10.1007/s12035-014-8699-4.PubMed
105.
go back to reference Arendt T, Holzer M, Fruth R, Bruckner MK, Gartner U. Phosphorylation of tau, Abeta-formation, and apoptosis after in vivo inhibition of PP-1 and PP-2A. Neurobiol Aging. 1998;19(1):3–13.PubMed Arendt T, Holzer M, Fruth R, Bruckner MK, Gartner U. Phosphorylation of tau, Abeta-formation, and apoptosis after in vivo inhibition of PP-1 and PP-2A. Neurobiol Aging. 1998;19(1):3–13.PubMed
106.
go back to reference Lee J, Hong H, Im J, Byun H, Kim D. The formation of PHF-1 and SMI-31 positive dystrophic neurites in rat hippocampus following acute injection of okadaic acid. Neurosci Lett. 2000;282(1-2):49–52.PubMed Lee J, Hong H, Im J, Byun H, Kim D. The formation of PHF-1 and SMI-31 positive dystrophic neurites in rat hippocampus following acute injection of okadaic acid. Neurosci Lett. 2000;282(1-2):49–52.PubMed
107.
go back to reference Kamat PK, Tota S, Rai S, Swarnkar S, Shukla R, Nath C. A study on neuroinflammatory marker in brain areas of okadaic acid (ICV) induced memory impaired rats. Life Sci. 2012;90(19-20):713–20. doi:10.1016/j.lfs.2012.03.012.PubMed Kamat PK, Tota S, Rai S, Swarnkar S, Shukla R, Nath C. A study on neuroinflammatory marker in brain areas of okadaic acid (ICV) induced memory impaired rats. Life Sci. 2012;90(19-20):713–20. doi:10.1016/j.lfs.2012.03.012.PubMed
108.
go back to reference Rajasekar N, Dwivedi S, Tota SK, Kamat PK, Hanif K, Nath C, et al. Neuroprotective effect of curcumin on okadaic acid induced memory impairment in mice. Eur J Pharmacol. 2013;715(1-3):381–94. doi:10.1016/j.ejphar.2013.04.033.PubMed Rajasekar N, Dwivedi S, Tota SK, Kamat PK, Hanif K, Nath C, et al. Neuroprotective effect of curcumin on okadaic acid induced memory impairment in mice. Eur J Pharmacol. 2013;715(1-3):381–94. doi:10.1016/j.ejphar.2013.04.033.PubMed
109.
go back to reference Kamat PK, Rai S, Swarnkar S, Shukla R, Ali S, Najmi AK, et al. Okadaic acid-induced tau phosphorylation in rat brain: role of NMDA receptor. Neuroscience. 2013;238:97–113. doi:10.1016/j.neuroscience.2013.01.075.PubMed Kamat PK, Rai S, Swarnkar S, Shukla R, Ali S, Najmi AK, et al. Okadaic acid-induced tau phosphorylation in rat brain: role of NMDA receptor. Neuroscience. 2013;238:97–113. doi:10.1016/j.neuroscience.2013.01.075.PubMed
110.
go back to reference Zimmer ER, Kalinine E, Haas CB, Torrez VR, Souza DO, Muller AP, et al. Pretreatment with memantine prevents Alzheimer-like alterations induced by intrahippocampal okadaic acid administration in rats. Curr Alzheimer Res. 2012;9(10):1182–90.PubMed Zimmer ER, Kalinine E, Haas CB, Torrez VR, Souza DO, Muller AP, et al. Pretreatment with memantine prevents Alzheimer-like alterations induced by intrahippocampal okadaic acid administration in rats. Curr Alzheimer Res. 2012;9(10):1182–90.PubMed
111.
go back to reference Kamat PK, Rai S, Swarnkar S, Shukla R, Nath C. Mechanism of synapse redox stress in okadaic acid (ICV) induced memory impairment: role of NMDA receptor. Neurochem Int. 2014;76:32–41. doi:10.1016/j.neuint.2014.06.012.PubMed Kamat PK, Rai S, Swarnkar S, Shukla R, Nath C. Mechanism of synapse redox stress in okadaic acid (ICV) induced memory impairment: role of NMDA receptor. Neurochem Int. 2014;76:32–41. doi:10.1016/j.neuint.2014.06.012.PubMed
112.
go back to reference Valdiglesias V, Laffon B, Pasaro E, Cemeli E, Anderson D, Mendez J. Induction of oxidative DNA damage by the marine toxin okadaic acid depends on human cell type. Toxicon. 2011;57(6):882–8. doi:10.1016/j.toxicon.2011.03.005.PubMed Valdiglesias V, Laffon B, Pasaro E, Cemeli E, Anderson D, Mendez J. Induction of oxidative DNA damage by the marine toxin okadaic acid depends on human cell type. Toxicon. 2011;57(6):882–8. doi:10.1016/j.toxicon.2011.03.005.PubMed
113.
go back to reference Kumar A, Seghal N, Naidu PS, Padi SS, Goyal R. Colchicines-induced neurotoxicity as an animal model of sporadic dementia of Alzheimer’s type. Pharmacol Rep. 2007;59(3):274–83.PubMed Kumar A, Seghal N, Naidu PS, Padi SS, Goyal R. Colchicines-induced neurotoxicity as an animal model of sporadic dementia of Alzheimer’s type. Pharmacol Rep. 2007;59(3):274–83.PubMed
114.
go back to reference Nakayama T, Sawada T. Involvement of microtubule integrity in memory impairment caused by colchicine. Pharmacol Biochem Behav. 2002;71(1-2):119–38.PubMed Nakayama T, Sawada T. Involvement of microtubule integrity in memory impairment caused by colchicine. Pharmacol Biochem Behav. 2002;71(1-2):119–38.PubMed
115.
go back to reference Tilson HA, Rogers BC, Grimes L, Harry GJ, Peterson NJ, Hong JS, et al. Time-dependent neurobiological effects of colchicine administered directly into the hippocampus of rats. Brain Res. 1987;408(1-2):163–72.PubMed Tilson HA, Rogers BC, Grimes L, Harry GJ, Peterson NJ, Hong JS, et al. Time-dependent neurobiological effects of colchicine administered directly into the hippocampus of rats. Brain Res. 1987;408(1-2):163–72.PubMed
116.
go back to reference Ho L, Osaka H, Aisen PS, Pasinetti GM. Induction of cyclooxygenase (COX)-2 but not COX-1 gene expression in apoptotic cell death. J Neuroimmunol. 1998;89(1-2):142–9.PubMed Ho L, Osaka H, Aisen PS, Pasinetti GM. Induction of cyclooxygenase (COX)-2 but not COX-1 gene expression in apoptotic cell death. J Neuroimmunol. 1998;89(1-2):142–9.PubMed
117.
go back to reference Sil S, Goswami AR, Dutta G, Ghosh T. Effects of naproxen on immune responses in a colchicine-induced rat model of Alzheimer’s disease. Neuroimmunomodulation. 2014;21(6):304–21. doi:10.1159/000357735.PubMed Sil S, Goswami AR, Dutta G, Ghosh T. Effects of naproxen on immune responses in a colchicine-induced rat model of Alzheimer’s disease. Neuroimmunomodulation. 2014;21(6):304–21. doi:10.1159/000357735.PubMed
118.
go back to reference Geddes JW, Bondada V, Keller JN. Effects of intrahippocampal colchicine administration on the levels and localization of microtubule-associated proteins, tau and MAP2. Brain Res. 1994;633(1-2):1–8.PubMed Geddes JW, Bondada V, Keller JN. Effects of intrahippocampal colchicine administration on the levels and localization of microtubule-associated proteins, tau and MAP2. Brain Res. 1994;633(1-2):1–8.PubMed
119.
go back to reference McMartin DN, Schedlbauer LM. Effect of experimental colchicine encephalopathy on brain protein synthesis and tubulin metabolism. J Neurobiol. 1978;9(6):453–63. doi:10.1002/neu.480090605.PubMed McMartin DN, Schedlbauer LM. Effect of experimental colchicine encephalopathy on brain protein synthesis and tubulin metabolism. J Neurobiol. 1978;9(6):453–63. doi:10.1002/neu.480090605.PubMed
120.
go back to reference Merrick SE, Demoise DC, Lee VM. Site-specific dephosphorylation of tau protein at Ser202/Thr205 in response to microtubule depolymerization in cultured human neurons involves protein phosphatase 2A. J Biol Chem. 1996;271(10):5589–94.PubMed Merrick SE, Demoise DC, Lee VM. Site-specific dephosphorylation of tau protein at Ser202/Thr205 in response to microtubule depolymerization in cultured human neurons involves protein phosphatase 2A. J Biol Chem. 1996;271(10):5589–94.PubMed
121.
go back to reference Shaftel SS, Griffin WS, O’Banion MK. The role of interleukin-1 in neuroinflammation and Alzheimer disease: an evolving perspective. J Neuroinflammation. 2008;5:7. doi:10.1186/1742-2094-5-7.PubMedCentralPubMed Shaftel SS, Griffin WS, O’Banion MK. The role of interleukin-1 in neuroinflammation and Alzheimer disease: an evolving perspective. J Neuroinflammation. 2008;5:7. doi:10.1186/1742-2094-5-7.PubMedCentralPubMed
122.
go back to reference Alboni S, Cervia D, Sugama S, Conti B. Interleukin 18 in the CNS. J Neuroinflammation. 2010;7:9. doi:10.1186/1742-2094-7-9.PubMedCentralPubMed Alboni S, Cervia D, Sugama S, Conti B. Interleukin 18 in the CNS. J Neuroinflammation. 2010;7:9. doi:10.1186/1742-2094-7-9.PubMedCentralPubMed
123.
go back to reference Griffin WS, Stanley LC, Ling C, White L, MacLeod V, Perrot LJ, et al. Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci U S A. 1989;86(19):7611–5.PubMedCentralPubMed Griffin WS, Stanley LC, Ling C, White L, MacLeod V, Perrot LJ, et al. Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci U S A. 1989;86(19):7611–5.PubMedCentralPubMed
124.
go back to reference Ojala J, Alafuzoff I, Herukka SK, van Groen T, Tanila H, Pirttilä T. Expression of interleukin-18 is increased in the brains of Alzheimer’s disease patients. Neurobiol Aging. 2009;30(2):198–209. doi:10.1016/j.neurobiolaging.2007.06.006.PubMed Ojala J, Alafuzoff I, Herukka SK, van Groen T, Tanila H, Pirttilä T. Expression of interleukin-18 is increased in the brains of Alzheimer’s disease patients. Neurobiol Aging. 2009;30(2):198–209. doi:10.1016/j.neurobiolaging.2007.06.006.PubMed
125.
go back to reference Malaguarnera L, Motta M, Di Rosa M, Anzaldi M, Malaguarnera M. Interleukin-18 and transforming growth factor-beta 1 plasma levels in Alzheimer’s disease and vascular dementia. Neuropathology. 2006;26(4):307–12.PubMed Malaguarnera L, Motta M, Di Rosa M, Anzaldi M, Malaguarnera M. Interleukin-18 and transforming growth factor-beta 1 plasma levels in Alzheimer’s disease and vascular dementia. Neuropathology. 2006;26(4):307–12.PubMed
126.
go back to reference Shaftel SS, Kyrkanides S, Olschowka JA, Miller JN, Johnson RE, O’Banion MK. Sustained hippocampal IL-1 beta overexpression mediates chronic neuroinflammation and ameliorates Alzheimer plaque pathology. J Clin Invest. 2007;117(6):1595–604. doi:10.1172/jci31450.PubMedCentralPubMed Shaftel SS, Kyrkanides S, Olschowka JA, Miller JN, Johnson RE, O’Banion MK. Sustained hippocampal IL-1 beta overexpression mediates chronic neuroinflammation and ameliorates Alzheimer plaque pathology. J Clin Invest. 2007;117(6):1595–604. doi:10.1172/jci31450.PubMedCentralPubMed
127.
go back to reference Matousek SB, Ghosh S, Shaftel SS, Kyrkanides S, Olschowka JA, O’Banion MK. Chronic IL-1beta-mediated neuroinflammation mitigates amyloid pathology in a mouse model of Alzheimer’s disease without inducing overt neurodegeneration. J Neuroimmune Pharmacol. 2012;7(1):156–64. doi:10.1007/s11481-011-9331-2.PubMedCentralPubMed Matousek SB, Ghosh S, Shaftel SS, Kyrkanides S, Olschowka JA, O’Banion MK. Chronic IL-1beta-mediated neuroinflammation mitigates amyloid pathology in a mouse model of Alzheimer’s disease without inducing overt neurodegeneration. J Neuroimmune Pharmacol. 2012;7(1):156–64. doi:10.1007/s11481-011-9331-2.PubMedCentralPubMed
128.
go back to reference Ghosh S, Wu MD, Shaftel SS, Kyrkanides S, Laferla FM, Olschowka JA, et al. Sustained interleukin-1beta overexpression exacerbates tau pathology despite reduced amyloid burden in an Alzheimer’s mouse model. J Neurosci. 2013;11:5053–64. Ghosh S, Wu MD, Shaftel SS, Kyrkanides S, Laferla FM, Olschowka JA, et al. Sustained interleukin-1beta overexpression exacerbates tau pathology despite reduced amyloid burden in an Alzheimer’s mouse model. J Neurosci. 2013;11:5053–64.
129.
go back to reference Neumann H, Kotter MR, Franklin RJ. Debris clearance by microglia: an essential link between degeneration and regeneration. Brain. 2009;132(Pt 2):288–95. doi:10.1093/brain/awn109.PubMedCentralPubMed Neumann H, Kotter MR, Franklin RJ. Debris clearance by microglia: an essential link between degeneration and regeneration. Brain. 2009;132(Pt 2):288–95. doi:10.1093/brain/awn109.PubMedCentralPubMed
130.
go back to reference Norden DM, Muccigrosso MM, Godbout JP., Microglial Priming and Enhanced Reactivity to Secondary Insult in Aging, and Traumatic CNS injury, and Neurodegenerative Disease., Neuropharmacology. 2014. pii: S0028-3908(14)00403-1. doi: 10.1016/j.neuropharm.2014.10.028. Norden DM, Muccigrosso MM, Godbout JP., Microglial Priming and Enhanced Reactivity to Secondary Insult in Aging, and Traumatic CNS injury, and Neurodegenerative Disease., Neuropharmacology. 2014. pii: S0028-3908(14)00403-1. doi: 10.1016/j.neuropharm.2014.10.028.
131.
go back to reference Smith MZ, Nagy Z, Esiri MM. Cell cycle-related protein expression in vascular dementia and Alzheimer’s disease. Neurosci Lett. 1999;271(1):45–8.PubMed Smith MZ, Nagy Z, Esiri MM. Cell cycle-related protein expression in vascular dementia and Alzheimer’s disease. Neurosci Lett. 1999;271(1):45–8.PubMed
132.
go back to reference Yang Y, Geldmacher DS, Herrup K. DNA replication precedes neuronal cell death in Alzheimer’s disease. J Neurosci. 2001;21(8):2661–8.PubMed Yang Y, Geldmacher DS, Herrup K. DNA replication precedes neuronal cell death in Alzheimer’s disease. J Neurosci. 2001;21(8):2661–8.PubMed
133.
go back to reference Smith TW, Lippa CF. Ki-67 immunoreactivity in Alzheimer’s disease and other neurodegenerative disorders. J Neuropathol Exp Neurol. 1995;54(3):297–303.PubMed Smith TW, Lippa CF. Ki-67 immunoreactivity in Alzheimer’s disease and other neurodegenerative disorders. J Neuropathol Exp Neurol. 1995;54(3):297–303.PubMed
134.
go back to reference Busser J, Geldmacher DS, Herrup K. Ectopic cell cycle proteins predict the sites of neuronal cell death in Alzheimer’s disease brain. J Neurosci. 1998;18(8):2801–7.PubMed Busser J, Geldmacher DS, Herrup K. Ectopic cell cycle proteins predict the sites of neuronal cell death in Alzheimer’s disease brain. J Neurosci. 1998;18(8):2801–7.PubMed
135.
go back to reference Morgan DO. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol. 1997;13:261–91. doi: 10.1146/annurev.cellbio.13.1.261.PubMed Morgan DO. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol. 1997;13:261–91. doi: 10.1146/annurev.cellbio.13.1.261.PubMed
136.
go back to reference Nikolic M, Dudek H, Kwon YT, Ramos YF, Tsai LH. The cdk5/p35 kinase is essential for neurite outgrowth during neuronal differentiation. Genes Dev. 1996;10(7):816–25.PubMed Nikolic M, Dudek H, Kwon YT, Ramos YF, Tsai LH. The cdk5/p35 kinase is essential for neurite outgrowth during neuronal differentiation. Genes Dev. 1996;10(7):816–25.PubMed
137.
go back to reference Hellmich MR, Pant HC, Wada E, Battey JF. Neuronal cdc2-like kinase: a cdc2-related protein kinase with predominantly neuronal expression. Proc Natl Acad Sci U S A. 1992;89(22):10867–71.PubMedCentralPubMed Hellmich MR, Pant HC, Wada E, Battey JF. Neuronal cdc2-like kinase: a cdc2-related protein kinase with predominantly neuronal expression. Proc Natl Acad Sci U S A. 1992;89(22):10867–71.PubMedCentralPubMed
138.
go back to reference Tsai LH, Delalle I, Caviness VS, Chae T, Harlow E. p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature. 1994;371(6496):419–23. doi:10.1038/371419a0.PubMed Tsai LH, Delalle I, Caviness VS, Chae T, Harlow E. p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature. 1994;371(6496):419–23. doi:10.1038/371419a0.PubMed
139.
go back to reference Patrick GN, Zukerberg L, Nikolic M, de la Monte S, Dikkes P, Tsai LH. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature. 1999;402(6762):615–22. doi:10.1038/45159.PubMed Patrick GN, Zukerberg L, Nikolic M, de la Monte S, Dikkes P, Tsai LH. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature. 1999;402(6762):615–22. doi:10.1038/45159.PubMed
140.
go back to reference Lee MS, Kwon YT, Li M, Peng J, Friedlander RM, Tsai LH. Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature. 2000;405(6784):360–4. doi:10.1038/35012636.PubMed Lee MS, Kwon YT, Li M, Peng J, Friedlander RM, Tsai LH. Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature. 2000;405(6784):360–4. doi:10.1038/35012636.PubMed
141.
go back to reference Ahlijanian MK, Barrezueta NX, Williams RD, Jakowski A, Kowsz KP, McCarthy S, et al. Hyperphosphorylated tau and neurofilament and cytoskeletal disruptions in mice overexpressing human p25, an activator of cdk5. Proc Natl Acad Sci U S A. 2000;97(6):2910–5.PubMedCentralPubMed Ahlijanian MK, Barrezueta NX, Williams RD, Jakowski A, Kowsz KP, McCarthy S, et al. Hyperphosphorylated tau and neurofilament and cytoskeletal disruptions in mice overexpressing human p25, an activator of cdk5. Proc Natl Acad Sci U S A. 2000;97(6):2910–5.PubMedCentralPubMed
142.
go back to reference Monaco EA. Recent evidence regarding a role for Cdk5 dysregulation in Alzheimer’s disease. Curr Alzheimer Res. 2004;1(1):33–8.PubMed Monaco EA. Recent evidence regarding a role for Cdk5 dysregulation in Alzheimer’s disease. Curr Alzheimer Res. 2004;1(1):33–8.PubMed
143.
go back to reference Sundaram JR, Chan ES, Poore CP, Pareek TK, Cheong WF, Shui G, et al. Cdk5/p25-induced cytosolic PLA2-mediated lysophosphatidylcholine production regulates neuroinflammation and triggers neurodegeneration. J Neurosci. 2012;32(3):1020–34. doi: 10.523/JNEUROSCI.5177-11.2012.PubMed Sundaram JR, Chan ES, Poore CP, Pareek TK, Cheong WF, Shui G, et al. Cdk5/p25-induced cytosolic PLA2-mediated lysophosphatidylcholine production regulates neuroinflammation and triggers neurodegeneration. J Neurosci. 2012;32(3):1020–34. doi: 10.523/JNEUROSCI.5177-11.2012.PubMed
144.
go back to reference Fischer A, Sananbenesi F, Pang PT, Lu B, Tsai LH. Opposing roles of transient and prolonged expression of p25 in synaptic plasticity and hippocampus-dependent memory. Neuron. 2005;48(5):825–38.PubMed Fischer A, Sananbenesi F, Pang PT, Lu B, Tsai LH. Opposing roles of transient and prolonged expression of p25 in synaptic plasticity and hippocampus-dependent memory. Neuron. 2005;48(5):825–38.PubMed
145.
go back to reference Muyllaert D, Terwel D, Kremer A, Sennvik K, Borghgraef P, Devijver H, et al. Neurodegeneration and neuroinflammation in cdk5/p25-inducible mice: a model for hippocampal sclerosis and neocortical degeneration. Am J Pathol. 2008;172(2):470–85. doi:10.2353/ajpath.008.070693. Epub 2008 Jan 17.PubMedCentralPubMed Muyllaert D, Terwel D, Kremer A, Sennvik K, Borghgraef P, Devijver H, et al. Neurodegeneration and neuroinflammation in cdk5/p25-inducible mice: a model for hippocampal sclerosis and neocortical degeneration. Am J Pathol. 2008;172(2):470–85. doi:10.2353/ajpath.008.070693. Epub 2008 Jan 17.PubMedCentralPubMed
146.
go back to reference Houeland G, Romani A, Marchetti C, Amato G, Capsoni S, Cattaneo A, et al. Transgenic mice with chronic NGF deprivation and Alzheimer’s disease-like pathology display hippocampal region-specific impairments in short- and long-term plasticities. J Neurosci. 2010;30(39):13089–94. doi:10.1523/jneurosci.0457-10.2010.PubMed Houeland G, Romani A, Marchetti C, Amato G, Capsoni S, Cattaneo A, et al. Transgenic mice with chronic NGF deprivation and Alzheimer’s disease-like pathology display hippocampal region-specific impairments in short- and long-term plasticities. J Neurosci. 2010;30(39):13089–94. doi:10.1523/jneurosci.0457-10.2010.PubMed
147.
go back to reference Capsoni S, Tiveron C, Vignone D, Amato G, Cattaneo A. Dissecting the involvement of tropomyosin-related kinase A and p75 neurotrophin receptor signaling in NGF deficit-induced neurodegeneration. Proc Natl Acad Sci U S A. 2010;107(27):12299–304. doi:10.1073/pnas.1007181107.PubMedCentralPubMed Capsoni S, Tiveron C, Vignone D, Amato G, Cattaneo A. Dissecting the involvement of tropomyosin-related kinase A and p75 neurotrophin receptor signaling in NGF deficit-induced neurodegeneration. Proc Natl Acad Sci U S A. 2010;107(27):12299–304. doi:10.1073/pnas.1007181107.PubMedCentralPubMed
148.
go back to reference De Rosa R, Garcia AA, Braschi C, Capsoni S, Maffei L, Berardi N, et al. Intranasal administration of nerve growth factor (NGF) rescues recognition memory deficits in AD11 anti-NGF transgenic mice. Proc Natl Acad Sci U S A. 2005;102(10):3811–6. doi:10.1073/pnas.0500195102.PubMedCentralPubMed De Rosa R, Garcia AA, Braschi C, Capsoni S, Maffei L, Berardi N, et al. Intranasal administration of nerve growth factor (NGF) rescues recognition memory deficits in AD11 anti-NGF transgenic mice. Proc Natl Acad Sci U S A. 2005;102(10):3811–6. doi:10.1073/pnas.0500195102.PubMedCentralPubMed
149.
go back to reference Capsoni S, Giannotta S, Cattaneo A. Beta-amyloid plaques in a model for sporadic Alzheimer’s disease based on transgenic anti-nerve growth factor antibodies. Mol Cell Neurosci. 2002;21(1):15–28.PubMed Capsoni S, Giannotta S, Cattaneo A. Beta-amyloid plaques in a model for sporadic Alzheimer’s disease based on transgenic anti-nerve growth factor antibodies. Mol Cell Neurosci. 2002;21(1):15–28.PubMed
150.
go back to reference Capsoni S, Cattaneo A. On the molecular basis linking nerve growth factor (NGF) to Alzheimer’s disease. Cell Mol Neurobiol. 2006;26(4-6):619–33. doi:10.1007/s10571-006-9112-2.PubMed Capsoni S, Cattaneo A. On the molecular basis linking nerve growth factor (NGF) to Alzheimer’s disease. Cell Mol Neurobiol. 2006;26(4-6):619–33. doi:10.1007/s10571-006-9112-2.PubMed
151.
go back to reference D’Onofrio M, Arisi I, Brandi R, Di Mambro A, Felsani A, Capsoni S, et al. Early inflammation and immune response mRNAs in the brain of AD11 anti-NGF mice. Neurobiol Aging. 2011;32(6):1007–22. doi:10.1016/j.neurobiolaging.2009.05.023.PubMed D’Onofrio M, Arisi I, Brandi R, Di Mambro A, Felsani A, Capsoni S, et al. Early inflammation and immune response mRNAs in the brain of AD11 anti-NGF mice. Neurobiol Aging. 2011;32(6):1007–22. doi:10.1016/j.neurobiolaging.2009.05.023.PubMed
152.
go back to reference Capsoni S, Brandi R, Arisi I, D’Onofrio M, Cattaneo A. A dual mechanism linking NGF/proNGF imbalance and early inflammation to Alzheimer’s disease neurodegeneration in the AD11 anti-NGF mouse model. CNS Neurol Disord Drug Targets. 2011;10(5):635–47.PubMed Capsoni S, Brandi R, Arisi I, D’Onofrio M, Cattaneo A. A dual mechanism linking NGF/proNGF imbalance and early inflammation to Alzheimer’s disease neurodegeneration in the AD11 anti-NGF mouse model. CNS Neurol Disord Drug Targets. 2011;10(5):635–47.PubMed
153.
go back to reference Capsoni S, Tiveron C, Amato G, Vignone D, Cattaneo A. Peripheral neutralization of nerve growth factor induces immunosympathectomy and central neurodegeneration in transgenic mice. J Alzheimers Dis. 2010;20(2):527–46. doi:10.3233/jad-2010-091357.PubMed Capsoni S, Tiveron C, Amato G, Vignone D, Cattaneo A. Peripheral neutralization of nerve growth factor induces immunosympathectomy and central neurodegeneration in transgenic mice. J Alzheimers Dis. 2010;20(2):527–46. doi:10.3233/jad-2010-091357.PubMed
154.
go back to reference Tzanoulinou S, Brandi R, Arisi I, D’Onofrio M, Urfer SM, Sandi C, et al. Pathogen-free husbandry conditions alleviate behavioral deficits and neurodegeneration in AD10 anti-NGF mice. J Alzheimers Dis. 2014;38(4):951–64. doi:10.3233/jad-131037.PubMed Tzanoulinou S, Brandi R, Arisi I, D’Onofrio M, Urfer SM, Sandi C, et al. Pathogen-free husbandry conditions alleviate behavioral deficits and neurodegeneration in AD10 anti-NGF mice. J Alzheimers Dis. 2014;38(4):951–64. doi:10.3233/jad-131037.PubMed
155.
go back to reference Flanders KC, Ren RF, Lippa CF. Transforming growth factor-betas in neurodegenerative disease. Prog Neurobiol. 1998;54(1):71–85.PubMed Flanders KC, Ren RF, Lippa CF. Transforming growth factor-betas in neurodegenerative disease. Prog Neurobiol. 1998;54(1):71–85.PubMed
156.
go back to reference Ueberham U, Ueberham E, Bruckner MK, Seeger G, Gartner U, Gruschka H, et al. Inducible neuronal expression of transgenic TGF-beta1 in vivo: dissection of short-term and long-term effects. Eur J Neurosci. 2005;22(1):50–64. doi:10.1111/j.1460-9568.2005.04189.x.PubMed Ueberham U, Ueberham E, Bruckner MK, Seeger G, Gartner U, Gruschka H, et al. Inducible neuronal expression of transgenic TGF-beta1 in vivo: dissection of short-term and long-term effects. Eur J Neurosci. 2005;22(1):50–64. doi:10.1111/j.1460-9568.2005.04189.x.PubMed
157.
go back to reference Unsicker K, Krieglstein K. TGF-betas and their roles in the regulation of neuron survival. Adv Exp Med Biol. 2002;513:353–74.PubMed Unsicker K, Krieglstein K. TGF-betas and their roles in the regulation of neuron survival. Adv Exp Med Biol. 2002;513:353–74.PubMed
158.
go back to reference Grammas P, Ovase R. Cerebrovascular transforming growth factor-beta contributes to inflammation in the Alzheimer’s disease brain. Am J Pathol. 2002;160(5):1583–7.PubMedCentralPubMed Grammas P, Ovase R. Cerebrovascular transforming growth factor-beta contributes to inflammation in the Alzheimer’s disease brain. Am J Pathol. 2002;160(5):1583–7.PubMedCentralPubMed
159.
go back to reference Wyss-Coray T, Lin C, Yan F, Yu GQ, Rohde M, McConlogue L, et al. TGF-beta1 promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice. Nat Med. 2001;7(5):612–8. doi:10.1038/87945.PubMed Wyss-Coray T, Lin C, Yan F, Yu GQ, Rohde M, McConlogue L, et al. TGF-beta1 promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice. Nat Med. 2001;7(5):612–8. doi:10.1038/87945.PubMed
160.
go back to reference Brionne TC, Tesseur I, Masliah E, Wyss-Coray T. Loss of TGF-beta 1 leads to increased neuronal cell death and microgliosis in mouse brain. Neuron. 2003;40(6):1133–45.PubMed Brionne TC, Tesseur I, Masliah E, Wyss-Coray T. Loss of TGF-beta 1 leads to increased neuronal cell death and microgliosis in mouse brain. Neuron. 2003;40(6):1133–45.PubMed
161.
go back to reference Wyss-Coray T, Mucke L. Inflammation in neurodegenerative disease - a double-edged sword. Neuron. 2002;35(3):419–32.PubMed Wyss-Coray T, Mucke L. Inflammation in neurodegenerative disease - a double-edged sword. Neuron. 2002;35(3):419–32.PubMed
162.
go back to reference Dhull DK, Jindal A, Dhull RK, Aggarwal S, Bhateja D, Padi SS. Neuroprotective effect of cyclooxygenase inhibitors in ICV-STZ induced sporadic Alzheimer’s disease in rats. J Mol Neurosci. 2012;46(1):223–35. doi:10.1007/s12031-011-9583-6.PubMed Dhull DK, Jindal A, Dhull RK, Aggarwal S, Bhateja D, Padi SS. Neuroprotective effect of cyclooxygenase inhibitors in ICV-STZ induced sporadic Alzheimer’s disease in rats. J Mol Neurosci. 2012;46(1):223–35. doi:10.1007/s12031-011-9583-6.PubMed
163.
go back to reference Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A. 1986;83(13):4913–7.PubMedCentralPubMed Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A. 1986;83(13):4913–7.PubMedCentralPubMed
164.
go back to reference Jaworski T, Dewachter I, Seymour CM, Borghgraef P, Devijver H, Kugler S, et al. Alzheimer’s disease: old problem, new views from transgenic and viral models. Biochim Biophys Acta. 2010;1802(10):808–18. doi:10.1016/j.bbadis.2010.03.005.PubMed Jaworski T, Dewachter I, Seymour CM, Borghgraef P, Devijver H, Kugler S, et al. Alzheimer’s disease: old problem, new views from transgenic and viral models. Biochim Biophys Acta. 2010;1802(10):808–18. doi:10.1016/j.bbadis.2010.03.005.PubMed
165.
go back to reference Pintado C, Gavilan MP, Gavilan E, Garcia-Cuervo L, Gutierrez A, Vitorica J, et al. Lipopolysaccharide-induced neuroinflammation leads to the accumulation of ubiquitinated proteins and increases susceptibility to neurodegeneration induced by proteasome inhibition in rat hippocampus. J Neuroinflammation. 2012;9(1):87. doi:10.1186/1742-2094-9-87.PubMedCentralPubMed Pintado C, Gavilan MP, Gavilan E, Garcia-Cuervo L, Gutierrez A, Vitorica J, et al. Lipopolysaccharide-induced neuroinflammation leads to the accumulation of ubiquitinated proteins and increases susceptibility to neurodegeneration induced by proteasome inhibition in rat hippocampus. J Neuroinflammation. 2012;9(1):87. doi:10.1186/1742-2094-9-87.PubMedCentralPubMed
166.
go back to reference Heneka MT, Nadrigny F, Regen T, Martinez-Hernandez A, Dumitrescu-Ozimek L, Terwel D, et al. Locus ceruleus controls Alzheimer’s disease pathology by modulating microglial functions through norepinephrine. Proc Natl Acad Sci U S A. 2010;107(13):6058–63. doi:10.1073/pnas.0909586107.PubMedCentralPubMed Heneka MT, Nadrigny F, Regen T, Martinez-Hernandez A, Dumitrescu-Ozimek L, Terwel D, et al. Locus ceruleus controls Alzheimer’s disease pathology by modulating microglial functions through norepinephrine. Proc Natl Acad Sci U S A. 2010;107(13):6058–63. doi:10.1073/pnas.0909586107.PubMedCentralPubMed
167.
go back to reference Maia LF, Kaeser SA, Reichwald J, Hruscha M, Martus P, Staufenbiel M, et al. Changes in amyloid-β and tau in the cerebrospinal fluid of transgenic mice overexpressing amyloid precursor protein. Sci Transl Med. 2013;5(194):194re2. doi: 10.1126/scitranslmed.3006446.PubMed Maia LF, Kaeser SA, Reichwald J, Hruscha M, Martus P, Staufenbiel M, et al. Changes in amyloid-β and tau in the cerebrospinal fluid of transgenic mice overexpressing amyloid precursor protein. Sci Transl Med. 2013;5(194):194re2. doi: 10.1126/scitranslmed.3006446.PubMed
Metadata
Title
Rodent models of neuroinflammation for Alzheimer’s disease
Authors
Amir Nazem
Roman Sankowski
Michael Bacher
Yousef Al-Abed
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2015
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-015-0291-y

Other articles of this Issue 1/2015

Journal of Neuroinflammation 1/2015 Go to the issue