Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2015

Open Access 01-12-2015 | Research

Anti-inflammatory activity of Wnt signaling in enteric nervous system: in vitro preliminary evidences in rat primary cultures

Authors: Rosa Di Liddo, Thomas Bertalot, Anne Schuster, Sandra Schrenk, Alessia Tasso, Ilenia Zanusso, Maria Teresa Conconi, Karl Herbert Schäfer

Published in: Journal of Neuroinflammation | Issue 1/2015

Login to get access

Abstract

Background

In the last years, Wnt signaling was demonstrated to regulate inflammatory processes. In particular, an increased expression of Wnts and Frizzled receptors was reported in inflammatory bowel disease (IBD) and ulcerative colitis to exert both anti- and pro-inflammatory functions regulating the intestinal activated nuclear factor κB (NF-кB), TNFa release, and IL10 expression.

Methods

To investigate the role of Wnt pathway in the response of the enteric nervous system (ENS) to inflammation, neurons and glial cells from rat myenteric plexus were treated with exogenous Wnt3a and/or LPS with or without supporting neurotrophic factors such as basic fibroblast growth factor (bFGF), epithelial growth factor (EGF), and glial cell-derived neurotrophic factor (GDNF). The immunophenotypical characterization by flow cytometry and the protein and gene expression analysis by qPCR and Western blotting were carried out.

Results

Flow cytometry and immunofluorescence staining evidenced that enteric neurons coexpressed Frizzled 9 and toll-like receptor 4 (TLR4) while glial cells were immunoreactive to TLR4 and Wnt3a suggesting that canonical Wnt signaling is active in ENS.
Under in vitro LPS treatment, Western blot analysis demonstrated an active cross talk between canonical Wnt signaling and NF-кB pathway that is essential to negatively control enteric neuronal response to inflammatory stimuli. Upon costimulation with LPS and Wnt3a, a significant anti-inflammatory activity was detected by RT-PCR based on an increased IL10 expression and a downregulation of pro-inflammatory cytokines TNFa, IL1B, and interleukin 6 (IL6). When the availability of neurotrophic factors in ENS cultures was abolished, a changed cell reactivity by Wnt signaling was observed at basal conditions and after LPS treatment.

Conclusions

The results of this study suggested the existence of neuronal surveillance through FZD9 and Wnt3a in enteric myenteric plexus. Moreover, experimental evidences were provided to clarify the correlation among soluble trophic factors, Wnt signaling, and anti-inflammatory protection of ENS.
Literature
1.
go back to reference De Santa Barbara P, Van den Brink GR, Roberts DJ. Development and differentiation of the intestinal epithelium. Cell Mol Life Sci. 2003;60(7):1322–32.PubMedCentralPubMed De Santa Barbara P, Van den Brink GR, Roberts DJ. Development and differentiation of the intestinal epithelium. Cell Mol Life Sci. 2003;60(7):1322–32.PubMedCentralPubMed
2.
go back to reference Stuhlmiller TJ, García Castro MI. Current perspectives of the signalling pathways directing neural crest induction. Cell Mol Life Sci. 2012;69(22):3715–37.PubMedCentralPubMed Stuhlmiller TJ, García Castro MI. Current perspectives of the signalling pathways directing neural crest induction. Cell Mol Life Sci. 2012;69(22):3715–37.PubMedCentralPubMed
3.
go back to reference Gregorieff A, Pinto D, Begthel H, Destrée O, Kielman M, Clevers H. Expression pattern of Wnt signaling components in the adult intestine. Gastroenterology. 2005;129(2):626–38.PubMed Gregorieff A, Pinto D, Begthel H, Destrée O, Kielman M, Clevers H. Expression pattern of Wnt signaling components in the adult intestine. Gastroenterology. 2005;129(2):626–38.PubMed
4.
go back to reference Wodarz A, Nusse R. Mechanisms of Wnt signalling in development. Annu Rev Cell Dev Biol. 1998;14:59–88.PubMed Wodarz A, Nusse R. Mechanisms of Wnt signalling in development. Annu Rev Cell Dev Biol. 1998;14:59–88.PubMed
5.
go back to reference Bhanot P, Brink M, Samos CH, Hsieh JC, Wang Y, Macke JP, et al. A new member of the frizzled family from Drosophila functions as a wingless receptor. Nature. 1996;382(6588):225–30.PubMed Bhanot P, Brink M, Samos CH, Hsieh JC, Wang Y, Macke JP, et al. A new member of the frizzled family from Drosophila functions as a wingless receptor. Nature. 1996;382(6588):225–30.PubMed
6.
go back to reference Katoh M. Cross talk of WNT and FGF signalling pathways at GSK3beta to regulate beta catenin and SNAIL signalling cascades. Cancer Biol Ther. 2006;5(9):1059–64.PubMed Katoh M. Cross talk of WNT and FGF signalling pathways at GSK3beta to regulate beta catenin and SNAIL signalling cascades. Cancer Biol Ther. 2006;5(9):1059–64.PubMed
7.
go back to reference Ojeda L, Gao J, Hooten KG, Wang E, Thonhoff JR, Dunn TJ, et al. Critical role of PI3K/Akt/GSK3β in motoneuron specification from human neural stem cells in response to FGF2 and EGF. PLoS One. 2011;6(8):e23414.PubMedCentralPubMed Ojeda L, Gao J, Hooten KG, Wang E, Thonhoff JR, Dunn TJ, et al. Critical role of PI3K/Akt/GSK3β in motoneuron specification from human neural stem cells in response to FGF2 and EGF. PLoS One. 2011;6(8):e23414.PubMedCentralPubMed
8.
go back to reference Srinivasan S, Anitha M, Mwangi S, Heuckeroth RO. Enteric neuroblasts require the phosphatidylinositol 3 kinase/Akt/forkhead pathway for GDNF stimulated survival. Mol Cell Neurosci. 2005;29(1):107–19.PubMed Srinivasan S, Anitha M, Mwangi S, Heuckeroth RO. Enteric neuroblasts require the phosphatidylinositol 3 kinase/Akt/forkhead pathway for GDNF stimulated survival. Mol Cell Neurosci. 2005;29(1):107–19.PubMed
9.
go back to reference Higuchi M, Onishi K, Masuyama N, Gotoh Y. The phosphatidylinositol 3 kinase (PI3K) Akt pathway suppresses neurite branch formation in NGF treated PC12 cells. Genes Cells. 2003;8(8):657–69.PubMed Higuchi M, Onishi K, Masuyama N, Gotoh Y. The phosphatidylinositol 3 kinase (PI3K) Akt pathway suppresses neurite branch formation in NGF treated PC12 cells. Genes Cells. 2003;8(8):657–69.PubMed
10.
go back to reference Clevers H, Nusse R. Wnt/β catenin signalling and disease. Cell. 2012;149(6):1192–205.PubMed Clevers H, Nusse R. Wnt/β catenin signalling and disease. Cell. 2012;149(6):1192–205.PubMed
11.
go back to reference Kalani MY, Cheshier SH, Cord BJ, Bababeygy SR, Vogel H, Weissman IL, et al. Wnt-mediated self-renewal of neural stem/progenitor cells. Proc Natl Acad Sci U S A. 2008;105(44):16970–5.PubMedCentralPubMed Kalani MY, Cheshier SH, Cord BJ, Bababeygy SR, Vogel H, Weissman IL, et al. Wnt-mediated self-renewal of neural stem/progenitor cells. Proc Natl Acad Sci U S A. 2008;105(44):16970–5.PubMedCentralPubMed
12.
go back to reference Polakis P. Wnt signalling and cancer. Genes Dev. 2000;14(15):1837–51.PubMed Polakis P. Wnt signalling and cancer. Genes Dev. 2000;14(15):1837–51.PubMed
13.
go back to reference Andoh A, Bamba S, Brittan M, Fujiyama Y, Wright NA. Role of intestinal subepithelial myofibroblasts in inflammation and regenerative response in the gut. Pharmacol Ther. 2007;114(1):94–106.PubMed Andoh A, Bamba S, Brittan M, Fujiyama Y, Wright NA. Role of intestinal subepithelial myofibroblasts in inflammation and regenerative response in the gut. Pharmacol Ther. 2007;114(1):94–106.PubMed
14.
go back to reference van de Wetering M, Sancho E, Verweij C, de Lau W, Oving I, Hurlstone A, et al. The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell. 2002;111(2):241–50.PubMed van de Wetering M, Sancho E, Verweij C, de Lau W, Oving I, Hurlstone A, et al. The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell. 2002;111(2):241–50.PubMed
15.
go back to reference Batlle E, Henderson JT, Beghtel H, van den Born MM, Sancho E, Huls G, et al. Beta-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell. 2002;111(2):251–63.PubMed Batlle E, Henderson JT, Beghtel H, van den Born MM, Sancho E, Huls G, et al. Beta-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell. 2002;111(2):251–63.PubMed
16.
go back to reference Logan CY, Nusse R. The Wnt signalling pathway in development and disease. Annu Rev Cell Dev Biol. 2004;20:781–810.PubMed Logan CY, Nusse R. The Wnt signalling pathway in development and disease. Annu Rev Cell Dev Biol. 2004;20:781–810.PubMed
17.
go back to reference You XJ, Bryant PJ, Jurnak F, Holcombe RF. Expression of Wnt pathway components Frizzled and Disheveled in colon cancer arising in patients with inflammatory bowel disease. Oncol Rep. 2007;18(3):691–4.PubMed You XJ, Bryant PJ, Jurnak F, Holcombe RF. Expression of Wnt pathway components Frizzled and Disheveled in colon cancer arising in patients with inflammatory bowel disease. Oncol Rep. 2007;18(3):691–4.PubMed
18.
go back to reference Sun J, Hobert ME, Duan Y, Rao AS, He TC, Chang EB, et al. Crosstalk between NF-kappaB and beta-catenin pathways in bacterial-colonized intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2005;289(1):G129–37.PubMed Sun J, Hobert ME, Duan Y, Rao AS, He TC, Chang EB, et al. Crosstalk between NF-kappaB and beta-catenin pathways in bacterial-colonized intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2005;289(1):G129–37.PubMed
19.
go back to reference Neumann J, Schaale K, Farhat K, Endermann T, Ulmer AJ, Ehlers S, et al. Frizzled1 is a marker of inflammatory macrophages, and its ligand Wnt3a is involved in reprogramming Mycobacterium tuberculosis-infected macrophages. FASEB J. 2010;24(11):4599–612.PubMed Neumann J, Schaale K, Farhat K, Endermann T, Ulmer AJ, Ehlers S, et al. Frizzled1 is a marker of inflammatory macrophages, and its ligand Wnt3a is involved in reprogramming Mycobacterium tuberculosis-infected macrophages. FASEB J. 2010;24(11):4599–612.PubMed
20.
go back to reference Manicassamy S, Reizis B, Ravindran R, Nakaya H, Salazar-Gonzalez RM, Wang YC, et al. Activation of beta-catenin in dendritic cells regulates immunity versus tolerance in the intestine. Science. 2010;329(5993):849–53.PubMedCentralPubMed Manicassamy S, Reizis B, Ravindran R, Nakaya H, Salazar-Gonzalez RM, Wang YC, et al. Activation of beta-catenin in dendritic cells regulates immunity versus tolerance in the intestine. Science. 2010;329(5993):849–53.PubMedCentralPubMed
21.
go back to reference Sen M, Ghosh G. Transcriptional outcome of Wnt Frizzled signal transduction in inflammation: evolving concepts. J Immunol. 2008;181(7):4441–5.PubMed Sen M, Ghosh G. Transcriptional outcome of Wnt Frizzled signal transduction in inflammation: evolving concepts. J Immunol. 2008;181(7):4441–5.PubMed
22.
go back to reference Cadigan KM, Nusse R. Wnt signalling: a common theme in animal development. Genes Dev. 1997;11(24):3286–305.PubMed Cadigan KM, Nusse R. Wnt signalling: a common theme in animal development. Genes Dev. 1997;11(24):3286–305.PubMed
23.
go back to reference Moon RT, Brown JD, Torres M. WNTs modulate cell fate and behavior during vertebrate development. Trends Genet. 1997;13(4):157–62.PubMed Moon RT, Brown JD, Torres M. WNTs modulate cell fate and behavior during vertebrate development. Trends Genet. 1997;13(4):157–62.PubMed
24.
go back to reference Kühl M, Sheldahl LC, Park M, Miller JR, Moon RT. The Wnt/Ca2+ pathway: a new vertebrate Wnt signalling pathway takes shape. Trends Genet. 2000;16(7):279–83.PubMed Kühl M, Sheldahl LC, Park M, Miller JR, Moon RT. The Wnt/Ca2+ pathway: a new vertebrate Wnt signalling pathway takes shape. Trends Genet. 2000;16(7):279–83.PubMed
25.
go back to reference Parr BA, Shea MJ, Vassileva G, McMahon AP. Mouse Wnt genes exhibit discrete domains of expression in the early embryonic CNS and limb buds. Development. 1993;119(1):247–61.PubMed Parr BA, Shea MJ, Vassileva G, McMahon AP. Mouse Wnt genes exhibit discrete domains of expression in the early embryonic CNS and limb buds. Development. 1993;119(1):247–61.PubMed
26.
go back to reference de Lau W, Barker N, Clevers H. WNT signalling in the normal intestine and colorectal cancer. Front Biosci. 2007;12:471–91.PubMed de Lau W, Barker N, Clevers H. WNT signalling in the normal intestine and colorectal cancer. Front Biosci. 2007;12:471–91.PubMed
27.
go back to reference Pinto D, Clevers H. Wnt control of stem cells and differentiation in the intestinal epithelium. Exp Cell Res. 2005;306(2):357–63.PubMed Pinto D, Clevers H. Wnt control of stem cells and differentiation in the intestinal epithelium. Exp Cell Res. 2005;306(2):357–63.PubMed
28.
go back to reference Kawaguchi J, Nichols J, Gierl MS, Faial T, Smith A. Isolation and propagation of enteric neural crest progenitor cells from mouse embryonic stem cells and embryos. Development. 2010;137(5):693–704.PubMedCentralPubMed Kawaguchi J, Nichols J, Gierl MS, Faial T, Smith A. Isolation and propagation of enteric neural crest progenitor cells from mouse embryonic stem cells and embryos. Development. 2010;137(5):693–704.PubMedCentralPubMed
29.
go back to reference Koch S, Nava P, Addis C, Kim W, Denning TL, Li L, et al. The Wnt antagonist Dkk1 regulates intestinal epithelial homeostasis and wound repair. Gastroenterology. 2011;141(1):259–68. 268.e1 8.PubMedCentralPubMed Koch S, Nava P, Addis C, Kim W, Denning TL, Li L, et al. The Wnt antagonist Dkk1 regulates intestinal epithelial homeostasis and wound repair. Gastroenterology. 2011;141(1):259–68. 268.e1 8.PubMedCentralPubMed
30.
31.
go back to reference You J, Nguyen AV, Albers CG, Lin F, Holcombe RF. Wnt pathway related gene expression in inflammatory bowel disease. Dig Dis Sci. 2008;53(4):1013–9.PubMed You J, Nguyen AV, Albers CG, Lin F, Holcombe RF. Wnt pathway related gene expression in inflammatory bowel disease. Dig Dis Sci. 2008;53(4):1013–9.PubMed
32.
go back to reference Rulifson EJ, Wu CH, Nusse R. Pathway specificity by the bifunctional receptor frizzled is determined by affinity for wingless. Mol Cell. 2000;6(1):117–26.PubMed Rulifson EJ, Wu CH, Nusse R. Pathway specificity by the bifunctional receptor frizzled is determined by affinity for wingless. Mol Cell. 2000;6(1):117–26.PubMed
33.
go back to reference Wu CH, Nusse R. Ligand receptor interactions in the Wnt signalling pathway in Drosophila. J Biol Chem. 2002;277(44):41762–9.PubMed Wu CH, Nusse R. Ligand receptor interactions in the Wnt signalling pathway in Drosophila. J Biol Chem. 2002;277(44):41762–9.PubMed
34.
go back to reference Takada R, Hijikata H, Kondoh H, Takada S. Analysis of combinatorial effects of Wnts and Frizzleds on beta catenin/armadillo stabilization and Dishevelled phosphorylation. Genes Cells. 2005;10(9):919–28.PubMed Takada R, Hijikata H, Kondoh H, Takada S. Analysis of combinatorial effects of Wnts and Frizzleds on beta catenin/armadillo stabilization and Dishevelled phosphorylation. Genes Cells. 2005;10(9):919–28.PubMed
35.
go back to reference Wang YK, Spörle R, Paperna T, Schughart K, Francke U. Characterization and expression pattern of the Frizzled gene Fzd9, the mouse homolog of FZD9 which is deleted in Williams Beuren syndrome. Genomics. 1999;57(2):235–48.PubMed Wang YK, Spörle R, Paperna T, Schughart K, Francke U. Characterization and expression pattern of the Frizzled gene Fzd9, the mouse homolog of FZD9 which is deleted in Williams Beuren syndrome. Genomics. 1999;57(2):235–48.PubMed
36.
go back to reference Van Raay TJ, Wang YK, Stark MR, Rasmussen JT, Francke U, Vetter ML, et al. Frizzled 9 is expressed in neural precursor cells in the developing neural tube. Dev Genes Evol. 2001;211(8 9):453–7.PubMed Van Raay TJ, Wang YK, Stark MR, Rasmussen JT, Francke U, Vetter ML, et al. Frizzled 9 is expressed in neural precursor cells in the developing neural tube. Dev Genes Evol. 2001;211(8 9):453–7.PubMed
37.
go back to reference Karasawa T, Yokokura H, Kitajewski J, Lombroso PJ. Frizzled 9 is activated by Wnt 2 and functions in Wnt/beta catenin signalling. J Biol Chem. 2002;277(40):37479–86.PubMed Karasawa T, Yokokura H, Kitajewski J, Lombroso PJ. Frizzled 9 is activated by Wnt 2 and functions in Wnt/beta catenin signalling. J Biol Chem. 2002;277(40):37479–86.PubMed
38.
go back to reference Cai J, Wu Y, Mirua T, Pierce JL, Lucero MT, Albertine KH, et al. Properties of a fetal multipotent neural stem cell (NEP cell). Dev Biol. 2002;251(2):221–40.PubMed Cai J, Wu Y, Mirua T, Pierce JL, Lucero MT, Albertine KH, et al. Properties of a fetal multipotent neural stem cell (NEP cell). Dev Biol. 2002;251(2):221–40.PubMed
39.
go back to reference Schäfer KH, Mestres P. The GDNF induced neurite outgrowth and neuronal survival in dissociated myenteric plexus cultures of the rat small intestine decreases postnatally. Exp Brain Res. 1999;125:447–52.PubMed Schäfer KH, Mestres P. The GDNF induced neurite outgrowth and neuronal survival in dissociated myenteric plexus cultures of the rat small intestine decreases postnatally. Exp Brain Res. 1999;125:447–52.PubMed
40.
go back to reference Friedman WJ, Greene LA. Neurotrophin signalling via Trks and p75. Exp Cell Res. 1999;253:131–42.PubMed Friedman WJ, Greene LA. Neurotrophin signalling via Trks and p75. Exp Cell Res. 1999;253:131–42.PubMed
41.
go back to reference Chadi G, Gomide VC, Rodrigues de Souza R, Scabello RT, Maurício da Silva C. Basic fibroblast growth factor, neurofilament, and glial fibrillary acidic protein immunoreactivities in the myenteric plexus of the rat esophagus and colon. J Morphol. 2004;261(3):323–33.PubMed Chadi G, Gomide VC, Rodrigues de Souza R, Scabello RT, Maurício da Silva C. Basic fibroblast growth factor, neurofilament, and glial fibrillary acidic protein immunoreactivities in the myenteric plexus of the rat esophagus and colon. J Morphol. 2004;261(3):323–33.PubMed
42.
go back to reference McLeay LM, Comeskey MA, Waters MJ. Effects of epidermal growth factor on gastrointestinal electromyographic activity of conscious sheep. J Endocrinol. 1990;124:109–15.PubMed McLeay LM, Comeskey MA, Waters MJ. Effects of epidermal growth factor on gastrointestinal electromyographic activity of conscious sheep. J Endocrinol. 1990;124:109–15.PubMed
43.
go back to reference Chalazonitis A, Rothman TP, Chen J, Vinson EN, MacLennan AJ, Gershon MD. Promotion of the development of enteric neurons and glia by neuropoietic cytokines: interactions with neurotrophin 3. Dev Biol. 1998;198:343–65.PubMed Chalazonitis A, Rothman TP, Chen J, Vinson EN, MacLennan AJ, Gershon MD. Promotion of the development of enteric neurons and glia by neuropoietic cytokines: interactions with neurotrophin 3. Dev Biol. 1998;198:343–65.PubMed
44.
go back to reference Schuster A, Klotz M, Schwab T, Di Liddo R, Bertalot T, Schrenk S, et al. Maintenance of the enteric stem cell niche by bacterial lipopolysaccharides? Evidence and perspectives. J Cell Mol Med. 2014;18(7):1429–43.PubMedCentralPubMed Schuster A, Klotz M, Schwab T, Di Liddo R, Bertalot T, Schrenk S, et al. Maintenance of the enteric stem cell niche by bacterial lipopolysaccharides? Evidence and perspectives. J Cell Mol Med. 2014;18(7):1429–43.PubMedCentralPubMed
45.
go back to reference Moore MW, Klein RD, Farinas I, Sauer H, Armanini M. Renal and neuronal abnormalities in mice lacking GDNF. Nature. 1996;382:76–9.PubMed Moore MW, Klein RD, Farinas I, Sauer H, Armanini M. Renal and neuronal abnormalities in mice lacking GDNF. Nature. 1996;382:76–9.PubMed
46.
go back to reference Kuroda T, Ueda M, Nakano M, Saeki M. Altered production of nerve growth factor in aganglionic intestines. J Pediatr Surg. 1994;29(2):288–92. discussion 292 3.PubMed Kuroda T, Ueda M, Nakano M, Saeki M. Altered production of nerve growth factor in aganglionic intestines. J Pediatr Surg. 1994;29(2):288–92. discussion 292 3.PubMed
47.
go back to reference Hagl CI, Heumüller Klug S, Wink E, Wessel L, Schäfer KH. The human gastrointestinal tract, a potential autologous neural stem cell source. PLoS One. 2013;8(9):e72948.PubMedCentralPubMed Hagl CI, Heumüller Klug S, Wink E, Wessel L, Schäfer KH. The human gastrointestinal tract, a potential autologous neural stem cell source. PLoS One. 2013;8(9):e72948.PubMedCentralPubMed
48.
go back to reference Wester T, Olsen L. Expression of leukaemia inhibitory factor during the development of the human enteric nervous system. Histochem J. 2000;32(6):345–8.PubMed Wester T, Olsen L. Expression of leukaemia inhibitory factor during the development of the human enteric nervous system. Histochem J. 2000;32(6):345–8.PubMed
49.
go back to reference Rusmini M, Griseri P, Lantieri F, Matera I, Hudspeth KL, Roberto A, et al. Induction of RET dependent and independent pro-inflammatory programs in human peripheral blood mononuclear cells from Hirschsprung patients. PLoS One. 2013;8(3):e59066.PubMedCentralPubMed Rusmini M, Griseri P, Lantieri F, Matera I, Hudspeth KL, Roberto A, et al. Induction of RET dependent and independent pro-inflammatory programs in human peripheral blood mononuclear cells from Hirschsprung patients. PLoS One. 2013;8(3):e59066.PubMedCentralPubMed
50.
go back to reference Ding VM, Ling L, Natarajan S, Yap MG, Cool SM, Choo AB. FGF-2 modulates Wnt signaling in undifferentiated hESC and iPS cells through activated PI3-K/GSK3beta signaling. J Cell Physiol. 2010;225(2):417–28.PubMed Ding VM, Ling L, Natarajan S, Yap MG, Cool SM, Choo AB. FGF-2 modulates Wnt signaling in undifferentiated hESC and iPS cells through activated PI3-K/GSK3beta signaling. J Cell Physiol. 2010;225(2):417–28.PubMed
51.
go back to reference Mwangi S, Anitha M, Fu H, Sitaraman SV, Srinivasan S. Glial cell line derived neurotrophic factor mediated enteric neuronal survival involves glycogen synthase kinase 3beta phosphorylation and coupling with 14 3 3. Neuroscience. 2006;143(1):241–51.PubMed Mwangi S, Anitha M, Fu H, Sitaraman SV, Srinivasan S. Glial cell line derived neurotrophic factor mediated enteric neuronal survival involves glycogen synthase kinase 3beta phosphorylation and coupling with 14 3 3. Neuroscience. 2006;143(1):241–51.PubMed
52.
go back to reference Frykman PK, Short SS. Hirschsprung associated enterocolitis: prevention and therapy. Semin Pediatr Surg. 2012;21(4):328–35.PubMedCentralPubMed Frykman PK, Short SS. Hirschsprung associated enterocolitis: prevention and therapy. Semin Pediatr Surg. 2012;21(4):328–35.PubMedCentralPubMed
53.
go back to reference Cirillo C, Sarnelli G, Turco F, Mango A, Grosso M, Aprea G, et al. Proinflammatory stimuli activates human-derived enteroglial cells and induces autocrine nitric oxide production. Neurogastroenterol Motil. 2011;23(9):e372–82.PubMed Cirillo C, Sarnelli G, Turco F, Mango A, Grosso M, Aprea G, et al. Proinflammatory stimuli activates human-derived enteroglial cells and induces autocrine nitric oxide production. Neurogastroenterol Motil. 2011;23(9):e372–82.PubMed
54.
go back to reference Dodd PR. Excited to death: different ways to lose your neurones. Biogerontology. 2002;3(1 2):51–6.PubMed Dodd PR. Excited to death: different ways to lose your neurones. Biogerontology. 2002;3(1 2):51–6.PubMed
55.
go back to reference Lien E, Means TK, Heine H, Yoshimura A, Kusumoto S, Fukase K, et al. Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. J Clin Invest. 2000;105(4):497–504.PubMedCentralPubMed Lien E, Means TK, Heine H, Yoshimura A, Kusumoto S, Fukase K, et al. Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. J Clin Invest. 2000;105(4):497–504.PubMedCentralPubMed
56.
go back to reference Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky F. Toll like receptor 4 mediates lipopolysaccharide induced signal transduction. J Biol Chem. 1999;274:10689–92.PubMed Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky F. Toll like receptor 4 mediates lipopolysaccharide induced signal transduction. J Biol Chem. 1999;274:10689–92.PubMed
57.
go back to reference Cario E, Podolsky DK. Intestinal epithelial TOLLerance versus inTOLLerance of commensals. Mol Immunol. 2005;42(8):887–93. 23.PubMed Cario E, Podolsky DK. Intestinal epithelial TOLLerance versus inTOLLerance of commensals. Mol Immunol. 2005;42(8):887–93. 23.PubMed
58.
go back to reference Medert R, Schuster A, Schwarz LK, Schwab T, Schaefer KH. Spiking rate of myenteric neurons recorded from multi electrode arrays depending on local microenvironment. Phys Status Solidi C. 2013;10(5):877–81. Medert R, Schuster A, Schwarz LK, Schwab T, Schaefer KH. Spiking rate of myenteric neurons recorded from multi electrode arrays depending on local microenvironment. Phys Status Solidi C. 2013;10(5):877–81.
59.
go back to reference Dobrovolskaia MA, Vogel SN. Toll receptors, CD14, and macrophage activation and deactivation by LPS. Microbes Infect. 2002;4:903–14.PubMed Dobrovolskaia MA, Vogel SN. Toll receptors, CD14, and macrophage activation and deactivation by LPS. Microbes Infect. 2002;4:903–14.PubMed
60.
go back to reference Arciszewski M, Pierzynowski S, Ekblad E. Lipopolysaccharide induces cell death in cultured porcine myenteric neurons. Dig Dis Sci. 2005;50(9):1661–8.PubMed Arciszewski M, Pierzynowski S, Ekblad E. Lipopolysaccharide induces cell death in cultured porcine myenteric neurons. Dig Dis Sci. 2005;50(9):1661–8.PubMed
61.
go back to reference Okun E, Griffioen KJ, Mattson MP. Toll like receptor signalling in neural plasticity and disease. Trends Neurosci. 2011;34:269–81.PubMedCentralPubMed Okun E, Griffioen KJ, Mattson MP. Toll like receptor signalling in neural plasticity and disease. Trends Neurosci. 2011;34:269–81.PubMedCentralPubMed
62.
go back to reference Monick MM, Carter AB, Robeff PK, Flaherty DM, Peterson MW, Hunninghake GW. Lipopolysaccharide activates Akt in human alveolar macrophages resulting in nuclear accumulation and transcriptional activity of beta-catenin. J Immunol. 2001;166(7):4713–20.PubMed Monick MM, Carter AB, Robeff PK, Flaherty DM, Peterson MW, Hunninghake GW. Lipopolysaccharide activates Akt in human alveolar macrophages resulting in nuclear accumulation and transcriptional activity of beta-catenin. J Immunol. 2001;166(7):4713–20.PubMed
63.
go back to reference Arciszewski MB, Sand E, Ekblad E. Vasoactive intestinal peptide rescues cultured rat myenteric neurons from lipopolysaccharide induced cell death. Regul Pept. 2008;146(1 3):218–23.PubMed Arciszewski MB, Sand E, Ekblad E. Vasoactive intestinal peptide rescues cultured rat myenteric neurons from lipopolysaccharide induced cell death. Regul Pept. 2008;146(1 3):218–23.PubMed
64.
go back to reference He Z, Gao Y, Deng Y, Li W, Chen Y, Xing S, et al. Lipopolysaccharide induces lung fibroblast proliferation through toll-like receptor 4 signaling and the phosphoinositide3-kinase-Akt pathway. PLoS One. 2012;7(4):e35926.PubMedCentralPubMed He Z, Gao Y, Deng Y, Li W, Chen Y, Xing S, et al. Lipopolysaccharide induces lung fibroblast proliferation through toll-like receptor 4 signaling and the phosphoinositide3-kinase-Akt pathway. PLoS One. 2012;7(4):e35926.PubMedCentralPubMed
65.
go back to reference Lamberti C, Lin KM, Yamamoto Y, Verma U, Verma IM, Byers S, et al. Regulation of beta-catenin function by the IkappaB kinases. J Biol Chem. 2001;276(45):42276–86.PubMed Lamberti C, Lin KM, Yamamoto Y, Verma U, Verma IM, Byers S, et al. Regulation of beta-catenin function by the IkappaB kinases. J Biol Chem. 2001;276(45):42276–86.PubMed
66.
go back to reference Häcker H, Karin M. Regulation and function of IKK and IKK related kinases. Sci STKE. 2006;2006(357):re13.PubMed Häcker H, Karin M. Regulation and function of IKK and IKK related kinases. Sci STKE. 2006;2006(357):re13.PubMed
67.
go back to reference Wan F, Lenardo MJ. Specification of DNA binding activity of NF kappaB proteins. Cold Spring Harb Perspect Biol. 2009;1(4):a000067.PubMedCentralPubMed Wan F, Lenardo MJ. Specification of DNA binding activity of NF kappaB proteins. Cold Spring Harb Perspect Biol. 2009;1(4):a000067.PubMedCentralPubMed
68.
go back to reference Nusse R. Wnt signalling and stem cell control. Cell Res. 2008;18:523–7.PubMed Nusse R. Wnt signalling and stem cell control. Cell Res. 2008;18:523–7.PubMed
69.
go back to reference Katoh M. WNT signalling pathway and stem cell signalling network. Clin Cancer Res. 2007;13:4042–5.PubMed Katoh M. WNT signalling pathway and stem cell signalling network. Clin Cancer Res. 2007;13:4042–5.PubMed
70.
go back to reference Kleber M, Sommer L. Wnt signalling and the regulation of stem cell function. Curr Opin Cell Biol. 2004;16:681–7.PubMed Kleber M, Sommer L. Wnt signalling and the regulation of stem cell function. Curr Opin Cell Biol. 2004;16:681–7.PubMed
71.
go back to reference Vasina V, Barbara G, Talamonti L, Stanghellini V, Corinaldesi R, Tonini M, et al. Enteric neuroplasticity evoked by inflammation. Auton Neurosci. 2006;126–127:264–72.PubMed Vasina V, Barbara G, Talamonti L, Stanghellini V, Corinaldesi R, Tonini M, et al. Enteric neuroplasticity evoked by inflammation. Auton Neurosci. 2006;126–127:264–72.PubMed
72.
go back to reference Bondurand N, Natarajan D, Thapar N, Atkins C, Pachnis V. Neuron and glia generating progenitors of the mammalian enteric nervous system isolated from foetal and postnatal gut cultures. Development. 2003;130:6387–400.PubMed Bondurand N, Natarajan D, Thapar N, Atkins C, Pachnis V. Neuron and glia generating progenitors of the mammalian enteric nervous system isolated from foetal and postnatal gut cultures. Development. 2003;130:6387–400.PubMed
73.
go back to reference Wood JD. Enteric neuroimmunophysiology and pathophysiology. Gastroenterology. 2004;127:635–57.PubMed Wood JD. Enteric neuroimmunophysiology and pathophysiology. Gastroenterology. 2004;127:635–57.PubMed
74.
go back to reference Ikeya M, Lee SM, Johnson JE, McMahon AP, Takada S. Wnt signalling required for expansion of neural crest and CNS progenitors. Nature. 1997;389:966–70.PubMed Ikeya M, Lee SM, Johnson JE, McMahon AP, Takada S. Wnt signalling required for expansion of neural crest and CNS progenitors. Nature. 1997;389:966–70.PubMed
76.
go back to reference Schäfer KH, Saffrey MJ, Burnstock G, Mestres VP. A new method for the isolation of myenteric plexus from the newborn rat gastrointestinal tract. Brain Res Brain Res Protoc. 1997;1(2):109–13.PubMed Schäfer KH, Saffrey MJ, Burnstock G, Mestres VP. A new method for the isolation of myenteric plexus from the newborn rat gastrointestinal tract. Brain Res Brain Res Protoc. 1997;1(2):109–13.PubMed
77.
go back to reference Bonifacino JS, Dell’Angelica EC. Immunoprecipitation. Curr Protoc Cell Biol. 2001;Chapter 7:Unit 7.2.PubMed Bonifacino JS, Dell’Angelica EC. Immunoprecipitation. Curr Protoc Cell Biol. 2001;Chapter 7:Unit 7.2.PubMed
78.
go back to reference Deng J, Miller SA, Wang HY, Xia W, Wen Y, Zhou BP, et al. Beta-catenin interacts with and inhibits NF-kappa B in human colon and breast cancer. Cancer Cell. 2002;2(4):323–34.PubMed Deng J, Miller SA, Wang HY, Xia W, Wen Y, Zhou BP, et al. Beta-catenin interacts with and inhibits NF-kappa B in human colon and breast cancer. Cancer Cell. 2002;2(4):323–34.PubMed
79.
go back to reference Storsteen KA, Kernohan JW, Bargen JA. The myenteric plexus in chronic ulcerative colitis. Surg Gynecol Obstet. 1953;97(3):335–43.PubMed Storsteen KA, Kernohan JW, Bargen JA. The myenteric plexus in chronic ulcerative colitis. Surg Gynecol Obstet. 1953;97(3):335–43.PubMed
80.
go back to reference Davis DR, Dockerty MB, Mayo CW. The myenteric plexus in regional enteritis: a study of the number of ganglion cells in the ileum in 24 cases. Surg Gynecol Obstet. 1955;101(2):208–16.PubMed Davis DR, Dockerty MB, Mayo CW. The myenteric plexus in regional enteritis: a study of the number of ganglion cells in the ileum in 24 cases. Surg Gynecol Obstet. 1955;101(2):208–16.PubMed
81.
go back to reference Dvorak AM, Monahan RA, Osage JE, Dickersin GR. Crohn’s disease: transmission electron microscopic studies. II. Immunologic inflammatory response: alterations of mast cells, basophils, eosinophils, and the microvasculature. Hum Pathol. 1980;11(6):606–19.PubMed Dvorak AM, Monahan RA, Osage JE, Dickersin GR. Crohn’s disease: transmission electron microscopic studies. II. Immunologic inflammatory response: alterations of mast cells, basophils, eosinophils, and the microvasculature. Hum Pathol. 1980;11(6):606–19.PubMed
82.
go back to reference Villanacci V, Bassotti G, Nascimbeni R, Antonelli E, Cadei M, Fisogni S, et al. Enteric nervous system abnormalities in inflammatory bowel diseases. Neurogastroenterol Motil. 2008;20(9):1009–16.PubMed Villanacci V, Bassotti G, Nascimbeni R, Antonelli E, Cadei M, Fisogni S, et al. Enteric nervous system abnormalities in inflammatory bowel diseases. Neurogastroenterol Motil. 2008;20(9):1009–16.PubMed
83.
go back to reference Lomax AE, Fernandez E, Sharkey KA. Plasticity of the enteric nervous system during intestinal inflammation. Neurogastroenterol Motil. 2005;17:4–15.PubMed Lomax AE, Fernandez E, Sharkey KA. Plasticity of the enteric nervous system during intestinal inflammation. Neurogastroenterol Motil. 2005;17:4–15.PubMed
84.
go back to reference Schäfer KH, Van Ginneken C, Copray S. Plasticity and neural stem cells in the enteric nervous system. Anat Rec (Hoboken). 2009;292:1940–52. Schäfer KH, Van Ginneken C, Copray S. Plasticity and neural stem cells in the enteric nervous system. Anat Rec (Hoboken). 2009;292:1940–52.
85.
go back to reference Rumio C, Besusso D, Arnaboldi F, Palazzo M, Selleri S, Gariboldi S, et al. Activation of smooth muscle and myenteric plexus cells of jejunum via toll-like receptor 4. J Cell Physiol. 2006;208(1):47–54.PubMed Rumio C, Besusso D, Arnaboldi F, Palazzo M, Selleri S, Gariboldi S, et al. Activation of smooth muscle and myenteric plexus cells of jejunum via toll-like receptor 4. J Cell Physiol. 2006;208(1):47–54.PubMed
86.
go back to reference Barajon I, Serrao G, Arnaboldi F, Opizzi E, Ripamonti G, Balsari A, et al. Toll-like receptors 3, 4, and 7 are expressed in the enteric nervous system and dorsal root ganglia. J Histochem Cytochem. 2009;57(11):1013–23.PubMedCentralPubMed Barajon I, Serrao G, Arnaboldi F, Opizzi E, Ripamonti G, Balsari A, et al. Toll-like receptors 3, 4, and 7 are expressed in the enteric nervous system and dorsal root ganglia. J Histochem Cytochem. 2009;57(11):1013–23.PubMedCentralPubMed
87.
go back to reference Metzger M, Caldwell C, Barlow AJ, Burns AJ, Thapar N. Enteric nervous system stem cells derived from human gut mucosa for the treatment of aganglionic gut disorders. Gastroenterology. 2009;136:2214–25. e1–3.PubMed Metzger M, Caldwell C, Barlow AJ, Burns AJ, Thapar N. Enteric nervous system stem cells derived from human gut mucosa for the treatment of aganglionic gut disorders. Gastroenterology. 2009;136:2214–25. e1–3.PubMed
88.
go back to reference Ruhl A. Glial cells in the gut. Neurogastroenterol Motil. 2005;17:777–90.PubMed Ruhl A. Glial cells in the gut. Neurogastroenterol Motil. 2005;17:777–90.PubMed
89.
go back to reference Na T, Tabin CJ. Wnt signalling during development of the gastrointestinal tract. Dev Biol. 2003;259:258–71. Na T, Tabin CJ. Wnt signalling during development of the gastrointestinal tract. Dev Biol. 2003;259:258–71.
90.
go back to reference Leedham SJ, Rodenas-Cuadrado P, Howarth K, Lewis A, Mallappa S, Segditsas S, et al. A basal gradient of Wnt and stem-cell number influences regional tumour distribution in human and mouse intestinal tracts. Gut. 2013;62(1):83–93.PubMedCentralPubMed Leedham SJ, Rodenas-Cuadrado P, Howarth K, Lewis A, Mallappa S, Segditsas S, et al. A basal gradient of Wnt and stem-cell number influences regional tumour distribution in human and mouse intestinal tracts. Gut. 2013;62(1):83–93.PubMedCentralPubMed
91.
go back to reference Wang YK, Samos CH, Peoples R, Pérez-Jurado LA, Nusse R, Francke U. A novel human homologue of the Drosophila Frizzled Wnt receptor gene binds wingless protein and is in the Williams syndrome deletion at 7q11.23. Hum Mol Genet. 1997;6(3):465–72.PubMed Wang YK, Samos CH, Peoples R, Pérez-Jurado LA, Nusse R, Francke U. A novel human homologue of the Drosophila Frizzled Wnt receptor gene binds wingless protein and is in the Williams syndrome deletion at 7q11.23. Hum Mol Genet. 1997;6(3):465–72.PubMed
92.
go back to reference Chang CH, Tsai RK, Tsai MH, Lin YH, Hirobe T. The roles of Frizzled 3 and Wnt3a on melanocyte development: in vitro studies on neural crest cells and melanocyte precursor cell lines. J Dermatol Sci. 2014;75(2):100–8.PubMed Chang CH, Tsai RK, Tsai MH, Lin YH, Hirobe T. The roles of Frizzled 3 and Wnt3a on melanocyte development: in vitro studies on neural crest cells and melanocyte precursor cell lines. J Dermatol Sci. 2014;75(2):100–8.PubMed
93.
go back to reference Shah SM, Kang YJ, Christensen BL, Feng AS, Kollmar R. Expression of Wnt receptors in adult spiral ganglion neurons: Frizzled 9 localization at growth cones of regenerating neurites. Neuroscience. 2009;164(2):478–87.PubMedCentralPubMed Shah SM, Kang YJ, Christensen BL, Feng AS, Kollmar R. Expression of Wnt receptors in adult spiral ganglion neurons: Frizzled 9 localization at growth cones of regenerating neurites. Neuroscience. 2009;164(2):478–87.PubMedCentralPubMed
94.
go back to reference Gianino S, Grider JR, Cresswell J, Enomoto H, Heuckeroth RO. GDNF availability determines enteric neuron number by controlling precursor proliferation. Development. 2003;130(10):2187–98.PubMed Gianino S, Grider JR, Cresswell J, Enomoto H, Heuckeroth RO. GDNF availability determines enteric neuron number by controlling precursor proliferation. Development. 2003;130(10):2187–98.PubMed
95.
go back to reference Becker L, Kulkarni S, Tiwari G, Micci MA, Pasricha PJ. Divergent fate and origin of neurosphere like bodies from different layers of the gut. Am J Physiol Gastrointest Liver Physiol. 2012;302(9):G958–65.PubMedCentralPubMed Becker L, Kulkarni S, Tiwari G, Micci MA, Pasricha PJ. Divergent fate and origin of neurosphere like bodies from different layers of the gut. Am J Physiol Gastrointest Liver Physiol. 2012;302(9):G958–65.PubMedCentralPubMed
96.
go back to reference Rauch U, Hänsgen A, Hagl C, Holland Cunz S, Schäfer KH. Isolation and cultivation of neuronal precursor cells from the developing human enteric nervous system as a tool for cell therapy in dysganglionosis. Int J Colorectal Dis. 2006;21(6):554–9.PubMed Rauch U, Hänsgen A, Hagl C, Holland Cunz S, Schäfer KH. Isolation and cultivation of neuronal precursor cells from the developing human enteric nervous system as a tool for cell therapy in dysganglionosis. Int J Colorectal Dis. 2006;21(6):554–9.PubMed
97.
go back to reference Almond S, Lindley RM, Kenny SE, Connell MG, Edgar DH. Characterisation and transplantation of enteric nervous system progenitor cells. Gut. 2007;56(4):489–96.PubMedCentralPubMed Almond S, Lindley RM, Kenny SE, Connell MG, Edgar DH. Characterisation and transplantation of enteric nervous system progenitor cells. Gut. 2007;56(4):489–96.PubMedCentralPubMed
98.
go back to reference Laranjeira C, Sandgren K, Kessaris N, Richardson W, Potocnik A, Vanden Berghe P, et al. Glial cells in the mouse enteric nervous system can undergo neurogenesis in response to injury. J Clin Invest. 2011;121(9):3412–24.PubMedCentralPubMed Laranjeira C, Sandgren K, Kessaris N, Richardson W, Potocnik A, Vanden Berghe P, et al. Glial cells in the mouse enteric nervous system can undergo neurogenesis in response to injury. J Clin Invest. 2011;121(9):3412–24.PubMedCentralPubMed
99.
go back to reference Rafii S, Shapiro F, Rimarachin J, Nachman RL, Ferris B, Weksler B, et al. Isolation and characterization of human bone marrow microvascular endothelial cells: hematopoietic progenitor cell adhesion. Blood. 1994;84(1):10–9.PubMed Rafii S, Shapiro F, Rimarachin J, Nachman RL, Ferris B, Weksler B, et al. Isolation and characterization of human bone marrow microvascular endothelial cells: hematopoietic progenitor cell adhesion. Blood. 1994;84(1):10–9.PubMed
100.
go back to reference Holyoake TL, Alcorn MJ. CD34+ positive haemopoietic cells: biology and clinical applications. Blood Rev. 1994;8:113–24.PubMed Holyoake TL, Alcorn MJ. CD34+ positive haemopoietic cells: biology and clinical applications. Blood Rev. 1994;8:113–24.PubMed
101.
go back to reference Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275(5302):964–7.PubMed Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275(5302):964–7.PubMed
102.
go back to reference Zvaifler NJ, Marinova-Mutafchieva L, Adams G, Edwards CJ, Moss J, Burger JA, et al. Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res. 2000;2(6):477–88.PubMedCentralPubMed Zvaifler NJ, Marinova-Mutafchieva L, Adams G, Edwards CJ, Moss J, Burger JA, et al. Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res. 2000;2(6):477–88.PubMedCentralPubMed
103.
go back to reference Sanders KM, Ordög T, Koh SD, Torihashi S, Ward SM. Development and plasticity of interstitial cells of Cajal. Neurogastroenterol Motil. 1999;11(5):311–38.PubMed Sanders KM, Ordög T, Koh SD, Torihashi S, Ward SM. Development and plasticity of interstitial cells of Cajal. Neurogastroenterol Motil. 1999;11(5):311–38.PubMed
104.
go back to reference Suarez Rodriguez R, Belkind GJ. Cultured nestin positive cells from postnatal mouse small bowel differentiate ex vivo into neurons, glia, and smooth muscle. Stem Cells. 2004;22:1373–85.PubMed Suarez Rodriguez R, Belkind GJ. Cultured nestin positive cells from postnatal mouse small bowel differentiate ex vivo into neurons, glia, and smooth muscle. Stem Cells. 2004;22:1373–85.PubMed
105.
go back to reference Kruger GM, Mosher JT, Bixby S, Joseph N, Iwashita T, Morrison SJ. Neural crest stem cells persist in the adult gut but undergo changes in self-renewal, neuronal subtype potential, and factor responsiveness. Neuron. 2002;35(4):657–69.PubMedCentralPubMed Kruger GM, Mosher JT, Bixby S, Joseph N, Iwashita T, Morrison SJ. Neural crest stem cells persist in the adult gut but undergo changes in self-renewal, neuronal subtype potential, and factor responsiveness. Neuron. 2002;35(4):657–69.PubMedCentralPubMed
106.
go back to reference Heanue T, Pachnis V. Prospective identification and isolation of enteric nervous system progenitors using Sox2. Stem Cells. 2011;29:128–40.PubMedCentralPubMed Heanue T, Pachnis V. Prospective identification and isolation of enteric nervous system progenitors using Sox2. Stem Cells. 2011;29:128–40.PubMedCentralPubMed
107.
go back to reference Lake JI, Heuckeroth RO. Enteric nervous system development: migration, differentiation, and disease. Am J Physiol Gastrointest Liver Physiol. 2013;305(1):G1–24.PubMedCentralPubMed Lake JI, Heuckeroth RO. Enteric nervous system development: migration, differentiation, and disease. Am J Physiol Gastrointest Liver Physiol. 2013;305(1):G1–24.PubMedCentralPubMed
108.
go back to reference Joseph NM, He S, Quintana E, Kim YG, Núñez G, Morrison SJ. Enteric glia are multipotent in culture but primarily form glia in the adult rodent gut. J Clin Invest. 2011;121(9):3398–411.PubMedCentralPubMed Joseph NM, He S, Quintana E, Kim YG, Núñez G, Morrison SJ. Enteric glia are multipotent in culture but primarily form glia in the adult rodent gut. J Clin Invest. 2011;121(9):3398–411.PubMedCentralPubMed
109.
go back to reference Graham V, Khudyakov J, Ellis P, Pevny L. SOX2 functions to maintain neural progenitor identity. Neuron. 2003;39(5):749–65.PubMed Graham V, Khudyakov J, Ellis P, Pevny L. SOX2 functions to maintain neural progenitor identity. Neuron. 2003;39(5):749–65.PubMed
110.
go back to reference Richardson WD, Young KM, Tripathi RB, McKenzie I. NG2 glia as multipotent neural stem cells: fact or fantasy? Neuron. 2011;70:661–73.PubMedCentralPubMed Richardson WD, Young KM, Tripathi RB, McKenzie I. NG2 glia as multipotent neural stem cells: fact or fantasy? Neuron. 2011;70:661–73.PubMedCentralPubMed
111.
go back to reference Nishiyama A, Komitova M, Suzuki R, Zhu X. Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity. Nat Rev Neurosci. 2009;10(1):9–22.PubMed Nishiyama A, Komitova M, Suzuki R, Zhu X. Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity. Nat Rev Neurosci. 2009;10(1):9–22.PubMed
112.
go back to reference Hwang I, Choi YS, Jeon MY, Jeong S. NF κB p65 represses β catenin activated transcription of cyclin D1. Biochem Biophys Res Commun. 2010;403(1):79–84.PubMed Hwang I, Choi YS, Jeon MY, Jeong S. NF κB p65 represses β catenin activated transcription of cyclin D1. Biochem Biophys Res Commun. 2010;403(1):79–84.PubMed
113.
go back to reference Lickert H, Kutsch S, Kanzler B, Tamai Y, Taketo MM, Kemler R. Formation of multiple hearts in mice following deletion of beta-catenin in the embryonic endoderm. Dev Cell. 2002;3(2):171–81.PubMed Lickert H, Kutsch S, Kanzler B, Tamai Y, Taketo MM, Kemler R. Formation of multiple hearts in mice following deletion of beta-catenin in the embryonic endoderm. Dev Cell. 2002;3(2):171–81.PubMed
114.
go back to reference Liu L, Rao JN, Zou T, Xiao L, Smith A, Zhuang R, et al. Activation of Wnt3a signaling stimulates intestinal epithelial repair by promoting c-Myc-regulated gene expression. Am J Physiol Cell Physiol. 2012;302(1):C277–85.PubMedCentralPubMed Liu L, Rao JN, Zou T, Xiao L, Smith A, Zhuang R, et al. Activation of Wnt3a signaling stimulates intestinal epithelial repair by promoting c-Myc-regulated gene expression. Am J Physiol Cell Physiol. 2012;302(1):C277–85.PubMedCentralPubMed
115.
go back to reference Crosnier C, Stamataki D, Lewis J. Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nat Rev Genet. 2006;7(5):349–59.PubMed Crosnier C, Stamataki D, Lewis J. Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nat Rev Genet. 2006;7(5):349–59.PubMed
116.
go back to reference Kalyani A, Hobson K, Rao MS. Neuroepithelial stem cells from the embryonic spinal cord: isolation, characterization, and clonal analysis. Dev Biol. 1997;186(2):202–23.PubMed Kalyani A, Hobson K, Rao MS. Neuroepithelial stem cells from the embryonic spinal cord: isolation, characterization, and clonal analysis. Dev Biol. 1997;186(2):202–23.PubMed
117.
go back to reference Rao MS. Multipotent and restricted precursors in the central nervous system. Anat Rec. 1999;257(4):137–48.PubMed Rao MS. Multipotent and restricted precursors in the central nervous system. Anat Rec. 1999;257(4):137–48.PubMed
118.
go back to reference Cohen P, Frame S. The renaissance of GSK3. Nat Rev Mol Cell Biol. 2001;2:769–76.PubMed Cohen P, Frame S. The renaissance of GSK3. Nat Rev Mol Cell Biol. 2001;2:769–76.PubMed
119.
go back to reference Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, et al. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J. 1996;15(23):6541–51.PubMedCentralPubMed Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, et al. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J. 1996;15(23):6541–51.PubMedCentralPubMed
120.
go back to reference Fang D, Hawke D, Zheng Y, Xia Y, Meisenhelder J, Nika H, et al. Phosphorylation of beta-catenin by AKT promotes beta-catenin transcriptional activity. J Biol Chem. 2007;282(15):11221–9.PubMedCentralPubMed Fang D, Hawke D, Zheng Y, Xia Y, Meisenhelder J, Nika H, et al. Phosphorylation of beta-catenin by AKT promotes beta-catenin transcriptional activity. J Biol Chem. 2007;282(15):11221–9.PubMedCentralPubMed
121.
go back to reference Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition of glycogen synthase kinase 3 by insulin mediated by protein kinase B. Nature. 1995;378(6559):785–9.PubMed Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition of glycogen synthase kinase 3 by insulin mediated by protein kinase B. Nature. 1995;378(6559):785–9.PubMed
122.
go back to reference Villanueva S, Glavic A, Ruiz P, Mayor R. Posteriorization by FGF, Wnt, and retinoic acid is required for neural crest induction. Dev Biol. 2002;241:289–301.PubMed Villanueva S, Glavic A, Ruiz P, Mayor R. Posteriorization by FGF, Wnt, and retinoic acid is required for neural crest induction. Dev Biol. 2002;241:289–301.PubMed
123.
go back to reference Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM, et al. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science. 1997;275(5300):661–5.PubMed Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM, et al. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science. 1997;275(5300):661–5.PubMed
124.
go back to reference Salinas M, Martin D, Alvarez A, Cuadrado A. Akt1/PKBalpha protects PC12 cells against the parkinsonism inducing neurotoxin 1 methyl 4 phenylpyridinium and reduces the levels of oxygen free radicals. Mol Cell Neurosci. 2001;17:67–77.PubMed Salinas M, Martin D, Alvarez A, Cuadrado A. Akt1/PKBalpha protects PC12 cells against the parkinsonism inducing neurotoxin 1 methyl 4 phenylpyridinium and reduces the levels of oxygen free radicals. Mol Cell Neurosci. 2001;17:67–77.PubMed
125.
go back to reference Noshita N, Lewén A, Sugawara T, Chan PH. Akt phosphorylation and neuronal survival after traumatic brain injury in mice. Neurobiol Dis. 2002;9(3):294–304.PubMed Noshita N, Lewén A, Sugawara T, Chan PH. Akt phosphorylation and neuronal survival after traumatic brain injury in mice. Neurobiol Dis. 2002;9(3):294–304.PubMed
126.
go back to reference Humbert S, Bryson EA, Cordelières FP, Connors NC, Datta SR, Finkbeiner S, et al. The IGF-1/Akt pathway is neuroprotective in Huntington’s disease and involves Huntingtin phosphorylation by Akt. Dev Cell. 2002;2(6):831–7.PubMed Humbert S, Bryson EA, Cordelières FP, Connors NC, Datta SR, Finkbeiner S, et al. The IGF-1/Akt pathway is neuroprotective in Huntington’s disease and involves Huntingtin phosphorylation by Akt. Dev Cell. 2002;2(6):831–7.PubMed
127.
go back to reference Kane LP, Shapiro VS, Stokoe E, Weiss A. Induction of NF kB by the Akt/PKB kinase. Curr Biol. 1999;9:601–4.PubMed Kane LP, Shapiro VS, Stokoe E, Weiss A. Induction of NF kB by the Akt/PKB kinase. Curr Biol. 1999;9:601–4.PubMed
128.
go back to reference Hoeflich KP, Luo J, Rubie EA, Tsao MS, Jin O, Woodgett JR. Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature. 2000;406(6791):86–90.PubMed Hoeflich KP, Luo J, Rubie EA, Tsao MS, Jin O, Woodgett JR. Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature. 2000;406(6791):86–90.PubMed
129.
go back to reference Anitha M, Vijay Kumar M, Sitaraman SV, Gewirtz AT, Srinivasan S. Gut microbial products regulate murine gastrointestinal motility via toll like receptor 4 signalling. Gastroenterology. 2012;143(4):1006–16. e4.PubMedCentralPubMed Anitha M, Vijay Kumar M, Sitaraman SV, Gewirtz AT, Srinivasan S. Gut microbial products regulate murine gastrointestinal motility via toll like receptor 4 signalling. Gastroenterology. 2012;143(4):1006–16. e4.PubMedCentralPubMed
130.
go back to reference Cohen P, Goedert M. GSK3 inhibitors: development and therapeutic potential. Nat Rev Drug Discov. 2004;3(6):479–87.PubMed Cohen P, Goedert M. GSK3 inhibitors: development and therapeutic potential. Nat Rev Drug Discov. 2004;3(6):479–87.PubMed
131.
go back to reference Kozikowski AP, Gaisina IN, Petukhov PA, Sridhar J, King LT, Blond SY, et al. Highly potent and specific GSK-3beta inhibitors that block tau phosphorylation and decrease alpha-synuclein protein expression in a cellular model of Parkinson’s disease. ChemMedChem. 2006;1(2):256–66.PubMed Kozikowski AP, Gaisina IN, Petukhov PA, Sridhar J, King LT, Blond SY, et al. Highly potent and specific GSK-3beta inhibitors that block tau phosphorylation and decrease alpha-synuclein protein expression in a cellular model of Parkinson’s disease. ChemMedChem. 2006;1(2):256–66.PubMed
132.
go back to reference Shakoori A, Ougolkov A, Yu ZW, Zhang B, Modarressi MH, Billadeau DD, et al. Deregulated GSK3beta activity in colorectal cancer: its association with tumor cell survival and proliferation. Biochem Biophys Res Commun. 2005;334(4):1365–73.PubMed Shakoori A, Ougolkov A, Yu ZW, Zhang B, Modarressi MH, Billadeau DD, et al. Deregulated GSK3beta activity in colorectal cancer: its association with tumor cell survival and proliferation. Biochem Biophys Res Commun. 2005;334(4):1365–73.PubMed
133.
go back to reference Shakoori A, Mai W, Miyashita K, Yasumoto K, Takahashi Y, Ooi A, et al. Inhibition of GSK-3 beta activity attenuates proliferation of human colon cancer cells in rodents. Cancer Sci. 2007;98(9):1388–93.PubMed Shakoori A, Mai W, Miyashita K, Yasumoto K, Takahashi Y, Ooi A, et al. Inhibition of GSK-3 beta activity attenuates proliferation of human colon cancer cells in rodents. Cancer Sci. 2007;98(9):1388–93.PubMed
134.
go back to reference Ougolkov AV, Fernandez Zapico ME, Savoy DN, Urrutia RA, Billadeau DD. Glycogen synthase kinase 3beta participates in nuclear factor kappaB mediated gene transcription and cell survival in pancreatic cancer cells. Cancer Res. 2005;65(6):2076–81.PubMed Ougolkov AV, Fernandez Zapico ME, Savoy DN, Urrutia RA, Billadeau DD. Glycogen synthase kinase 3beta participates in nuclear factor kappaB mediated gene transcription and cell survival in pancreatic cancer cells. Cancer Res. 2005;65(6):2076–81.PubMed
135.
go back to reference Cross DA, Culbert AA, Chalmers KA, Facci L, Skaper SD, Reith AD. Selective small-molecule inhibitors of glycogen synthase kinase-3 activity protect primary neurones from death. J Neurochem. 2000;77(1):94–102. Cross DA, Culbert AA, Chalmers KA, Facci L, Skaper SD, Reith AD. Selective small-molecule inhibitors of glycogen synthase kinase-3 activity protect primary neurones from death. J Neurochem. 2000;77(1):94–102.
136.
go back to reference Culbert AA, Brown MJ, Frame S, Hagen T, Cross DA, Bax B, et al. GSK-3 inhibition by adenoviral FRAT1 overexpression is neuroprotective and induces Tau dephosphorylation and beta-catenin stabilisation without elevation of glycogen synthase activity. FEBS Lett. 2001;507(3):288–94.PubMed Culbert AA, Brown MJ, Frame S, Hagen T, Cross DA, Bax B, et al. GSK-3 inhibition by adenoviral FRAT1 overexpression is neuroprotective and induces Tau dephosphorylation and beta-catenin stabilisation without elevation of glycogen synthase activity. FEBS Lett. 2001;507(3):288–94.PubMed
137.
go back to reference Schaale K, Neumann J, Schneider D, Ehlers S, Reiling N. Wnt signalling in macrophages: augmenting and inhibiting mycobacteria induced inflammatory responses. Eur J Cell Biol. 2011;90(6 7):553–9.PubMed Schaale K, Neumann J, Schneider D, Ehlers S, Reiling N. Wnt signalling in macrophages: augmenting and inhibiting mycobacteria induced inflammatory responses. Eur J Cell Biol. 2011;90(6 7):553–9.PubMed
138.
go back to reference Li B, Zhong L, Yang X, Andersson T, Huang M, Tang SJ. WNT5A signalling contributes to Aβ-induced neuroinflammation and neurotoxicity. PLoS One. 2011;6(8):e22920.PubMedCentralPubMed Li B, Zhong L, Yang X, Andersson T, Huang M, Tang SJ. WNT5A signalling contributes to Aβ-induced neuroinflammation and neurotoxicity. PLoS One. 2011;6(8):e22920.PubMedCentralPubMed
139.
go back to reference Li B, Shi Y, Shu J, Gao J, Wu P, Tang SJ. Wingless-type mammary tumor virus integration site family, member 5A (Wnt5a) regulates human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein 120 (gp120)-induced expression of pro-inflammatory cytokines via the Ca2+/calmodulin-dependent protein kinase II (CaMKII) and c-Jun N-terminal kinase (JNK) signalling pathways. J Biol Chem. 2013;288(19):13610–9.PubMedCentralPubMed Li B, Shi Y, Shu J, Gao J, Wu P, Tang SJ. Wingless-type mammary tumor virus integration site family, member 5A (Wnt5a) regulates human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein 120 (gp120)-induced expression of pro-inflammatory cytokines via the Ca2+/calmodulin-dependent protein kinase II (CaMKII) and c-Jun N-terminal kinase (JNK) signalling pathways. J Biol Chem. 2013;288(19):13610–9.PubMedCentralPubMed
Metadata
Title
Anti-inflammatory activity of Wnt signaling in enteric nervous system: in vitro preliminary evidences in rat primary cultures
Authors
Rosa Di Liddo
Thomas Bertalot
Anne Schuster
Sandra Schrenk
Alessia Tasso
Ilenia Zanusso
Maria Teresa Conconi
Karl Herbert Schäfer
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2015
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-015-0248-1

Other articles of this Issue 1/2015

Journal of Neuroinflammation 1/2015 Go to the issue