Skip to main content
Top
Published in: Journal of the International Society of Sports Nutrition 1/2019

Open Access 01-12-2019 | Research article

Creatine electrolyte supplement improves anaerobic power and strength: a randomized double-blind control study

Authors: Erik Hummer, David N. Suprak, Harsh H. Buddhadev, Lorrie Brilla, Jun G. San Juan

Published in: Journal of the International Society of Sports Nutrition | Issue 1/2019

Login to get access

Abstract

Background

Creatine supplementation aids the Phosphagen system by increasing the amount of free creatine and phosphocreatine available to replenish adenosine triphosphate. The purpose of this study was to investigate the effects of a creatine and electrolyte formulated multi-ingredient performance supplement (MIPS) on strength and power performance compared to a placebo. Maximal strength along with total concentric work, mean rate of force development (mRFD), mean power, peak power, and peak force for both bench press and back squat were determined at pre-test and post-test separated by 6 weeks of supplementation.

Methods

Twenty-two subjects (6 females, 21 ± 2 yrs., 72.46 ± 11.18 kg, 1.72 ± 0.09 m) performed a one-repetition maximum (1RM) for back squat and bench press. Eighty percent of the subject’s pre-test 1RM was used for a maximal repetition test to assess performance variables. Testing was separated by 6 weeks of supplementation of a MIPS dose per day in a double-blind fashion for comparison. A two-way mixed analysis of covariance (ANCOVA) was applied with an alpha level of 0.05.

Results

For their back squat 1RM, the MIPS group displayed significant increase of 13.4% (95% CI: 2.77, 23.8%) while placebo displayed a decrease of − 0.2% (95% CI: − 1.46, 2.87%) (p = 0.047, ηp2 = 0.201). The MIPS displayed a significant increase of 5.9% (95% CI: 2.5, 10.1%) and placebo displayed a non-significant increase of 0.7% (95% CI: − 3.49, 3.9%) in bench press maximal strength (p = 0.033,0.217). The MIPS group displayed a significant increase as well in total concentric work (26.5, 95% CI: 6.07, 46.87%, p = 0.008, ηp2 = 0.330) and mean power (17.9, 95% CI: 3.42, 32.46%, p = 0.003, ηp2 = 0.402) for the maximal repetition bench press test at 80% of their 1RM.

Conclusions

The MIPS was found to be beneficial to recreationally trained individuals compared to a placebo. The greatest benefits are seen in bench press and back squat maximal strength as well as multiple repetition tests to fatigue during the bench press exercise.
Literature
1.
go back to reference Bemben MG, Bemben DA, Loftiss DD, Knehans AW. Creatine supplementation during resistance training in college football athletes. Med Sci Sports Exerc. 2001;33:1667–73.CrossRef Bemben MG, Bemben DA, Loftiss DD, Knehans AW. Creatine supplementation during resistance training in college football athletes. Med Sci Sports Exerc. 2001;33:1667–73.CrossRef
2.
go back to reference Larson-Meyer E, Hunter G, Trowbridge C, Turk J, Ernest J, Torman S, Harbin P. The effect of creatine supplementation on muscle strength and body composition during off-season training in female soccer players. J Strength Cond Res. 2000;14:434–42. Larson-Meyer E, Hunter G, Trowbridge C, Turk J, Ernest J, Torman S, Harbin P. The effect of creatine supplementation on muscle strength and body composition during off-season training in female soccer players. J Strength Cond Res. 2000;14:434–42.
3.
go back to reference Aedma M, Timpmann S, Lätt E, Ööpik V. Short-term creatine supplementation has no impact on upper-body anaerobic power in trained wrestlers. J Int Soc Sports Nutr. 2015;12:45.CrossRef Aedma M, Timpmann S, Lätt E, Ööpik V. Short-term creatine supplementation has no impact on upper-body anaerobic power in trained wrestlers. J Int Soc Sports Nutr. 2015;12:45.CrossRef
4.
go back to reference Becque MD, Lochmann JD, Melrose DR. Effects of oral creatine supplementation on muscular strength and body composition. Med Sci Sports Exerc. 2000;32:654–8.CrossRef Becque MD, Lochmann JD, Melrose DR. Effects of oral creatine supplementation on muscular strength and body composition. Med Sci Sports Exerc. 2000;32:654–8.CrossRef
5.
go back to reference Kresta JY, Oliver JM, Jagim AR, Fluckey J, Riechman S, Kelly K, et al. Effects of 28 days of beta-alanine and creatine supplementation on muscle carnosine, body composition and exercise performance in recreationally active females. J Int Soc Sports Nutr. 2014;11(1):55–70.CrossRef Kresta JY, Oliver JM, Jagim AR, Fluckey J, Riechman S, Kelly K, et al. Effects of 28 days of beta-alanine and creatine supplementation on muscle carnosine, body composition and exercise performance in recreationally active females. J Int Soc Sports Nutr. 2014;11(1):55–70.CrossRef
6.
go back to reference Wiroth JB, Bermon S, Andreï S, Dalloz E, Hébuterne X, Dolisi C. Effects of oral creatine supplementation on maximal pedalling performance in older adults. Eur J Appl Physiol. 2001;84:533–9.CrossRef Wiroth JB, Bermon S, Andreï S, Dalloz E, Hébuterne X, Dolisi C. Effects of oral creatine supplementation on maximal pedalling performance in older adults. Eur J Appl Physiol. 2001;84:533–9.CrossRef
7.
go back to reference Schoch RD, Willoughby D, Greenwood M. The regulation and expression of the creatine transporter: a brief review of creatine supplementation in humans and animals. J Int Soc Sports Nutr. 2006;3:60–6.CrossRef Schoch RD, Willoughby D, Greenwood M. The regulation and expression of the creatine transporter: a brief review of creatine supplementation in humans and animals. J Int Soc Sports Nutr. 2006;3:60–6.CrossRef
8.
go back to reference Greenhaff PL, Bodin K, Soderlund K, Hultman E. Effect of oral creatine supplementation on skeletal muscle phosphocreatine resynthesis. Am J Phys. 1994;266:725–30. Greenhaff PL, Bodin K, Soderlund K, Hultman E. Effect of oral creatine supplementation on skeletal muscle phosphocreatine resynthesis. Am J Phys. 1994;266:725–30.
9.
go back to reference Earnest CP, Snell PG, Rodriguez R, Almada AL, Mitchell TL. The effect of creatine monohydrate ingestion on anaerobic power indices, muscular strength and body composition. Acta Psychiatr Scand. 1995;153:207–9.CrossRef Earnest CP, Snell PG, Rodriguez R, Almada AL, Mitchell TL. The effect of creatine monohydrate ingestion on anaerobic power indices, muscular strength and body composition. Acta Psychiatr Scand. 1995;153:207–9.CrossRef
10.
go back to reference Francaux M, Poortmans JR. Effects of training and creatine supplement on muscle strength and body mass. Eur J Appl Physiol. 1999;80:165–8.CrossRef Francaux M, Poortmans JR. Effects of training and creatine supplement on muscle strength and body mass. Eur J Appl Physiol. 1999;80:165–8.CrossRef
11.
go back to reference Peeters B, Lantz C, Mayhew J. Effect of oral creatine monohydrate and creatine phosphate supplementation on maximal strength indices, body composition, and blood pressure. J Strength Cond Res. 1999;13:1. Peeters B, Lantz C, Mayhew J. Effect of oral creatine monohydrate and creatine phosphate supplementation on maximal strength indices, body composition, and blood pressure. J Strength Cond Res. 1999;13:1.
13.
go back to reference Herda TJ, Beck TW, Ryan ED, Smith AE, Walter AA, Hartman MJ, et al. Effects of creatine monohydrate and polyethylene glycosylated creatine supplementation on muscular strength, endurance, and power output. J Strength Cond Res. 2009;23:818–26.CrossRef Herda TJ, Beck TW, Ryan ED, Smith AE, Walter AA, Hartman MJ, et al. Effects of creatine monohydrate and polyethylene glycosylated creatine supplementation on muscular strength, endurance, and power output. J Strength Cond Res. 2009;23:818–26.CrossRef
14.
go back to reference Allen PJ. Creatine metabolism and psychiatric disorders: does creatine supplementation have therapeutic value? Neurosci Biobehav Rev. 2012;36:1442–62.CrossRef Allen PJ. Creatine metabolism and psychiatric disorders: does creatine supplementation have therapeutic value? Neurosci Biobehav Rev. 2012;36:1442–62.CrossRef
15.
go back to reference Brilla L, Giroux M, Taylor A, Knutzen K. Magnesium-creatine supplementation effects on body water. Metab. 2003;52:1136–40.CrossRef Brilla L, Giroux M, Taylor A, Knutzen K. Magnesium-creatine supplementation effects on body water. Metab. 2003;52:1136–40.CrossRef
16.
go back to reference Stout JR, Eckerson J, Noonan D, Moore G, Cullen D. Effects of 8 weeks of creatine supplementation on exercise performance and fat-free weight in football players during training. Nutr Res. 1999;19:217–25.CrossRef Stout JR, Eckerson J, Noonan D, Moore G, Cullen D. Effects of 8 weeks of creatine supplementation on exercise performance and fat-free weight in football players during training. Nutr Res. 1999;19:217–25.CrossRef
17.
go back to reference Dai W, Vinnakota S, Qian X, Kunze DL, Sarkar HK. Molecular characterization of the human CRT-1 creatine transporter expressed in Xenopus oocytes. Arch Biochem Biophys. 1999;361:75–84.CrossRef Dai W, Vinnakota S, Qian X, Kunze DL, Sarkar HK. Molecular characterization of the human CRT-1 creatine transporter expressed in Xenopus oocytes. Arch Biochem Biophys. 1999;361:75–84.CrossRef
18.
go back to reference Guimbal C, Kilimann MW. A Na+ −dependent creatine transporter in rabbit brain, muscle, heart, and kidney. J Biol Chem. 1993;268:8418–21. 32.PubMed Guimbal C, Kilimann MW. A Na+ −dependent creatine transporter in rabbit brain, muscle, heart, and kidney. J Biol Chem. 1993;268:8418–21. 32.PubMed
19.
go back to reference Peral MJ, García-Delgado M, Calonge ML, Durán JM, De La Horra MC, Wallimann T, et al. Human, rat and chicken small intestinal Na+ −cl− −creatine transporter: functional, molecular characterization and localization. J Physiol. 2002;545:133–44. 33.CrossRef Peral MJ, García-Delgado M, Calonge ML, Durán JM, De La Horra MC, Wallimann T, et al. Human, rat and chicken small intestinal Na+ −cl− −creatine transporter: functional, molecular characterization and localization. J Physiol. 2002;545:133–44. 33.CrossRef
20.
go back to reference Snow RJ, Murphy RM. Creatine and the creatine transporter: a review. Mol Cell Biochem. 2001;224:169–81. 34.CrossRef Snow RJ, Murphy RM. Creatine and the creatine transporter: a review. Mol Cell Biochem. 2001;224:169–81. 34.CrossRef
21.
go back to reference Cooper R, Naclerio F, Larumbe-Zabala E, Chassin L, Allgrove J, Jimenez A. Effects of a carbohydrate-protein-creatine supplement on strength performance and body composition in recreationally resistance trained young men. J Exerc Physiol Online. 2013;16:72–85. Cooper R, Naclerio F, Larumbe-Zabala E, Chassin L, Allgrove J, Jimenez A. Effects of a carbohydrate-protein-creatine supplement on strength performance and body composition in recreationally resistance trained young men. J Exerc Physiol Online. 2013;16:72–85.
22.
go back to reference Souza-Junior TP, Willardson JM, Bloomer R, Leite RD, Fleck SJ, Oliverira PR, Simao R. Strength and hypertrophy responses to constant and decreasing rest intervals in trained men using creatine supplementation. J Int Soc Sports Nutr. 2011. https://doi.org/10.1186/1550-2783-8-17. Souza-Junior TP, Willardson JM, Bloomer R, Leite RD, Fleck SJ, Oliverira PR, Simao R. Strength and hypertrophy responses to constant and decreasing rest intervals in trained men using creatine supplementation. J Int Soc Sports Nutr. 2011. https://​doi.​org/​10.​1186/​1550-2783-8-17.
23.
go back to reference Mayhew JL, Johnson BD, LaMonte MJ, Lauber D, Kemmler W. Accuracy of prediction equations for determining one repetition maximum bench press in women before and after resistance training. J Strength Cond Res. 2008;22(5):1570–7.CrossRef Mayhew JL, Johnson BD, LaMonte MJ, Lauber D, Kemmler W. Accuracy of prediction equations for determining one repetition maximum bench press in women before and after resistance training. J Strength Cond Res. 2008;22(5):1570–7.CrossRef
24.
go back to reference Hultman E, Soderland K, Timmons JA, Cederblad G, Greenhaff PL. Muscle creatine loading in men. J Appl Physiol. 1985;81:232–7.CrossRef Hultman E, Soderland K, Timmons JA, Cederblad G, Greenhaff PL. Muscle creatine loading in men. J Appl Physiol. 1985;81:232–7.CrossRef
25.
go back to reference Vincent WJ. Statistics in Kinesiology. 2nd ed. Champaign: Human Kinetics; 1999. Vincent WJ. Statistics in Kinesiology. 2nd ed. Champaign: Human Kinetics; 1999.
26.
go back to reference Hoffman JR, Ratamess NA, Kang J, Mangine G, Faigenbaum A, Stout J. Effect of creatine and beta-alanine supplementation on performance and endocrine responses in strength/power athletes. Int J Sport Nutr Exerc Metab. 2006;16:430–46.CrossRef Hoffman JR, Ratamess NA, Kang J, Mangine G, Faigenbaum A, Stout J. Effect of creatine and beta-alanine supplementation on performance and endocrine responses in strength/power athletes. Int J Sport Nutr Exerc Metab. 2006;16:430–46.CrossRef
27.
go back to reference Pearson D, Hambx Wade Russel D, Harris T. Long-term effects of creatine monohydrate on strength and power. J Strength Cond Res. 1999;13:3. Pearson D, Hambx Wade Russel D, Harris T. Long-term effects of creatine monohydrate on strength and power. J Strength Cond Res. 1999;13:3.
28.
go back to reference del Favero S, Roschel H, Artioli G, Ugrinowitsch C, Tricoli V, Costa A, et al. Creatine but not betaine supplementation increases muscle phosphorylcreatine content and strength performance. J Amino Acids. 2014;42:2299–305.CrossRef del Favero S, Roschel H, Artioli G, Ugrinowitsch C, Tricoli V, Costa A, et al. Creatine but not betaine supplementation increases muscle phosphorylcreatine content and strength performance. J Amino Acids. 2014;42:2299–305.CrossRef
29.
go back to reference Syrotuik D, Bell G, Burnham R, Sim L, Calvert R, Maclean I. Absolute and relative strength performance following creatine monohydrate supplementation combined with periodized resistance training. J Strength Cond Res. 2000;14:2. Syrotuik D, Bell G, Burnham R, Sim L, Calvert R, Maclean I. Absolute and relative strength performance following creatine monohydrate supplementation combined with periodized resistance training. J Strength Cond Res. 2000;14:2.
30.
go back to reference Antonio J, Ciccone V. The effects of pre versus post workout supplementation of creatine monohydrate on body composition and strength. J Int Soc Sports Nutr. 2013;10(1):36. Antonio J, Ciccone V. The effects of pre versus post workout supplementation of creatine monohydrate on body composition and strength. J Int Soc Sports Nutr. 2013;10(1):36.
31.
go back to reference Zuniga JM, Housh TJ, Camic CL, Hendrix CR, Mielke M, Johnson GO, et al. The effects of creatine monohydrate loading on anaerobic performance and one-repetition maximum strength. J Strength Cond Res. 2012;26:1651–6.CrossRef Zuniga JM, Housh TJ, Camic CL, Hendrix CR, Mielke M, Johnson GO, et al. The effects of creatine monohydrate loading on anaerobic performance and one-repetition maximum strength. J Strength Cond Res. 2012;26:1651–6.CrossRef
32.
go back to reference Maffiuletti NA, Aagaard P, Blazevich AJ, Folland J, Tillin N, Duchateau J. Rate of force development: physiological and methodological considerations. Eur J Appl Physiol. 2016;116:1091–116.CrossRef Maffiuletti NA, Aagaard P, Blazevich AJ, Folland J, Tillin N, Duchateau J. Rate of force development: physiological and methodological considerations. Eur J Appl Physiol. 2016;116:1091–116.CrossRef
33.
go back to reference Crisafulli DL, Buddhadev HH, Brilla LR, Chalmers GR, Suprak DN, San Juan JG. Creatine-electrolyte supplementation improves repeated spring cycling performance: a double blind randomized control study. J Int Soc Sports Nutr. 2018;15:21.CrossRef Crisafulli DL, Buddhadev HH, Brilla LR, Chalmers GR, Suprak DN, San Juan JG. Creatine-electrolyte supplementation improves repeated spring cycling performance: a double blind randomized control study. J Int Soc Sports Nutr. 2018;15:21.CrossRef
34.
go back to reference Vincent K, Jenkins D. Effect of oral creatine supplementation on near-maximal strength and repeated sets of high-intensity bench press exercise. J Strength Cond Res. 1998;12:109–15. Vincent K, Jenkins D. Effect of oral creatine supplementation on near-maximal strength and repeated sets of high-intensity bench press exercise. J Strength Cond Res. 1998;12:109–15.
Metadata
Title
Creatine electrolyte supplement improves anaerobic power and strength: a randomized double-blind control study
Authors
Erik Hummer
David N. Suprak
Harsh H. Buddhadev
Lorrie Brilla
Jun G. San Juan
Publication date
01-12-2019
Publisher
BioMed Central
DOI
https://doi.org/10.1186/s12970-019-0291-x

Other articles of this Issue 1/2019

Journal of the International Society of Sports Nutrition 1/2019 Go to the issue