Skip to main content
Top
Published in: Journal of the International Society of Sports Nutrition 1/2018

Open Access 01-12-2018 | Research article

β-Alanine supplementation increased physical performance and improved executive function following endurance exercise in middle aged individuals

Authors: Taylor Furst, Alyssa Massaro, Courtney Miller, Brian T. Williams, Zach M. LaMacchia, Peter J. Horvath

Published in: Journal of the International Society of Sports Nutrition | Issue 1/2018

Login to get access

Abstract

Background

Sarcopenia, a reduction in muscle mass and function seen in aging populations, may be countered by improving systemic carnosine stores via beta-Alanine (β-alanine) supplementation. Increasing systemic carnosine levels may result in enhanced anti-oxidant, neuro-protective and pH buffering capabilities. This enhancement should result in improved exercise capacity and executive function.

Methods

Twelve healthy adults (average age = 60.5 ± 8.6 yrs, weight = 81.5 ± 12.6 kg) were randomized and given either 2.4 g/d of β-alanine (BA) or Placebo (PL) for 28 days. Exercise capacity was tested via bouts on a cycle ergometer at 70% VO2 peak. Executive function was measured by Stroop Tests 5 min before exercise (T1), immediately before exercise (T2), immediately following fatigue (T3), and 5 min after fatigue (T4). Lactate measures were taken pre/post exercise. Heart rate, Rating of Perceived Exertion (RPE) and VO2 were recorded throughout exercise testing.

Results

PRE average time-to-exhaustion (TTE) for the PL and BA group were not significantly different (Mean ± SD; 9.4 ± 1.4mins vs 11.1 ± 2.4mins, respectively, P = 0.7). POST BA supplemented subjects cycled significantly longer than PRE (14.6 ± 3.8mins vs 11.1 ± 2.4mins, respectively, P = 0.04) while those given PL did not (8.7 ± 2.4mins vs 9.4 ± 1.4mins, respectively, P = 0.7). PL subjects were slower in completing the Stroop test POST at T4 compared to T3 (T3 = − 13.3 ± 8.6% vs T4 = 2.1 ± 8.3%, P = 0.04), while the BA group (T3 = − 9.2 ± 6.4% vs T4 = − 2.5 ± 3.5%, P = 0.5) was not. POST lactate production expressed a trend when comparing treatments, as the BA group produced 2.4 ± 2.6 mmol/L more lactate than the PL group (P = 0.06). Within group lactate production for BA (P = 0.4) and PL (P = 0.5), RPE (P = 0.9) and heart rate (P = 0.7) did not differ with supplementation.

Conclusion

BA supplementation increased exercise capacity and eliminated endurance exercise induced declines in executive function seen after recovery. Increased POST TTE coupled with similar PRE vs POST lactate production indicates an improvement in the ability of BA to extend exercise durations. Furthermore, by countering endurance exercise’s accompanying deficits in executive function, the aging population can maintain benefits from exercise with improved safety.
Literature
1.
go back to reference Fiatarone MA, O’Neill EF, Ryan ND, Clements KM, Solares GR, Nelson ME, Evans WJ. Exercise training and nutritional supplementation for physical frailty in very elderly people. N Engl J Med. 1994;330:1769–75.CrossRefPubMed Fiatarone MA, O’Neill EF, Ryan ND, Clements KM, Solares GR, Nelson ME, Evans WJ. Exercise training and nutritional supplementation for physical frailty in very elderly people. N Engl J Med. 1994;330:1769–75.CrossRefPubMed
2.
go back to reference del Favero S, Roschel H, Solis MY, Hayashi AP, Artioli GG, Otaduy MC, Gualano B. Beta-alanine (Carnosyn™) supplementation in elderly subjects (60-80 years): effects on muscle carnosine content and physical capacity. Amino Acids. 2012;43:49–56.CrossRefPubMed del Favero S, Roschel H, Solis MY, Hayashi AP, Artioli GG, Otaduy MC, Gualano B. Beta-alanine (Carnosyn™) supplementation in elderly subjects (60-80 years): effects on muscle carnosine content and physical capacity. Amino Acids. 2012;43:49–56.CrossRefPubMed
3.
go back to reference McCormack WP, Stout JR, Emerson NS, Scanlon TC, Warren AM, Wells AJ, Hoffman JR. Oral nutritional supplement fortified with beta-alanine improves physical working capacity in older adults: a randomized, placebo-controlled study. Exp Gerontol. 2013;48:933–9.CrossRefPubMed McCormack WP, Stout JR, Emerson NS, Scanlon TC, Warren AM, Wells AJ, Hoffman JR. Oral nutritional supplement fortified with beta-alanine improves physical working capacity in older adults: a randomized, placebo-controlled study. Exp Gerontol. 2013;48:933–9.CrossRefPubMed
4.
go back to reference Stout JR, Graves BS, Smith AE, Hartman MJ, Cramer JT, Beck TW, Harris RC. The effect of beta-alanine supplementation on neuromuscular fatigue in elderly (55–92 years): a double-blind randomized study. J Int Soc Sports Nutr. 2008;5:21.CrossRefPubMedPubMedCentral Stout JR, Graves BS, Smith AE, Hartman MJ, Cramer JT, Beck TW, Harris RC. The effect of beta-alanine supplementation on neuromuscular fatigue in elderly (55–92 years): a double-blind randomized study. J Int Soc Sports Nutr. 2008;5:21.CrossRefPubMedPubMedCentral
5.
go back to reference Stuerenburg HJ, Kunze K. Concentrations of free carnosine (a putative membrane-protective antioxidant) in human muscle biopsies and rat muscles. Arch Gerontol Geriatr. 1999;29:107–13.CrossRefPubMed Stuerenburg HJ, Kunze K. Concentrations of free carnosine (a putative membrane-protective antioxidant) in human muscle biopsies and rat muscles. Arch Gerontol Geriatr. 1999;29:107–13.CrossRefPubMed
6.
go back to reference Artioli GG, Gualano B, Smith A, Stout J, Lancha AH Jr. Role of beta-alanine supplementation on muscle carnosine and exercise performance. Med Sci Sports Exerc. 2010;42:1162–73.CrossRefPubMed Artioli GG, Gualano B, Smith A, Stout J, Lancha AH Jr. Role of beta-alanine supplementation on muscle carnosine and exercise performance. Med Sci Sports Exerc. 2010;42:1162–73.CrossRefPubMed
7.
go back to reference Bellia F, Vecchio G, Cuzzocrea S, Calabrese V, Rizzarelli E. Neuroprotective features of carnosine in oxidative driven diseases. Mol Asp Med. 2011;32:258–66.CrossRef Bellia F, Vecchio G, Cuzzocrea S, Calabrese V, Rizzarelli E. Neuroprotective features of carnosine in oxidative driven diseases. Mol Asp Med. 2011;32:258–66.CrossRef
8.
go back to reference Culbertson JY, Kreider RB, Greenwood M, Cooke M. Effects of Beta-alanine on muscle carnosine and exercise performance: a review of the current literature. Nutrients. 2010;2:75–98.CrossRefPubMedPubMedCentral Culbertson JY, Kreider RB, Greenwood M, Cooke M. Effects of Beta-alanine on muscle carnosine and exercise performance: a review of the current literature. Nutrients. 2010;2:75–98.CrossRefPubMedPubMedCentral
9.
go back to reference Hoffman JR, Landau G, Stout JR, Dabora M, Moran DS, Sharvit N, Ostfeld I. Beta-alanine supplementation improves tactical performance but not cognitive function in combat soldiers. J Int Soc Sport Nutr. 2014;11:8.CrossRef Hoffman JR, Landau G, Stout JR, Dabora M, Moran DS, Sharvit N, Ostfeld I. Beta-alanine supplementation improves tactical performance but not cognitive function in combat soldiers. J Int Soc Sport Nutr. 2014;11:8.CrossRef
10.
go back to reference Kendrick IP, Kim HJ, Harris RC, Kim CK, Dang VH, Lam TQ, Bui TT, Wise JA. The effect of 4 weeks beta-alanine supplementation and isokinetic training on carnosine concentrations in type I and II human skeletal muscle fibres. Eur J Appl Physiol. 2009;106:131–8.CrossRefPubMed Kendrick IP, Kim HJ, Harris RC, Kim CK, Dang VH, Lam TQ, Bui TT, Wise JA. The effect of 4 weeks beta-alanine supplementation and isokinetic training on carnosine concentrations in type I and II human skeletal muscle fibres. Eur J Appl Physiol. 2009;106:131–8.CrossRefPubMed
11.
go back to reference Derave W, Everaert I, Beeckman S, Baguet A. Muscle carnosine metabolism and beta-alanine supplementation in relation to exercise and training. Sports Med. 2010;40:247–63.CrossRefPubMed Derave W, Everaert I, Beeckman S, Baguet A. Muscle carnosine metabolism and beta-alanine supplementation in relation to exercise and training. Sports Med. 2010;40:247–63.CrossRefPubMed
12.
go back to reference Hill CA, Harris RC, Kim HJ, Harris BD, Sale C, Boobis LH, Kim CK, Wise JA. Influence of beta-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. Amino Acids. 2007;32:225–33.CrossRefPubMed Hill CA, Harris RC, Kim HJ, Harris BD, Sale C, Boobis LH, Kim CK, Wise JA. Influence of beta-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. Amino Acids. 2007;32:225–33.CrossRefPubMed
13.
go back to reference Guiotto A, Calderan A, Ruzza P, Borin G. Carnosine and carnosine-related antioxidants: a review. Curr Med Chem. 2005;12:2293–315.CrossRefPubMed Guiotto A, Calderan A, Ruzza P, Borin G. Carnosine and carnosine-related antioxidants: a review. Curr Med Chem. 2005;12:2293–315.CrossRefPubMed
14.
go back to reference Sale C, Saunders B, Harris RC. Effect of beta-alanine supplementation on muscle carnosine concentrations and exercise performance. Amino Acids. 2010;39:321–33.CrossRefPubMed Sale C, Saunders B, Harris RC. Effect of beta-alanine supplementation on muscle carnosine concentrations and exercise performance. Amino Acids. 2010;39:321–33.CrossRefPubMed
15.
go back to reference Stegen S, Blancquaert L, Everaert I, Bex T, Taes Y, Calders P, Derave W. Meal and beta-alanine coingestion enhances muscle carnosine loading. Med Sci Sports Exerc. 2013;45:1478–85.CrossRefPubMed Stegen S, Blancquaert L, Everaert I, Bex T, Taes Y, Calders P, Derave W. Meal and beta-alanine coingestion enhances muscle carnosine loading. Med Sci Sports Exerc. 2013;45:1478–85.CrossRefPubMed
16.
go back to reference Hoffman JR, Emerson NS, Stout JR. Beta-Alanine Supplementation. Curr Sport Med Rep. 2012;11:189–95.CrossRef Hoffman JR, Emerson NS, Stout JR. Beta-Alanine Supplementation. Curr Sport Med Rep. 2012;11:189–95.CrossRef
17.
go back to reference Harris RC, Tallon MJ, Dunnett M, Boobis L, Coakley J, Kim HJ, Fallowfield JL, Hill CA, Sale C, Wise JA. The absorption of orally supplied beta-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids. 2006;30:279–89.CrossRefPubMed Harris RC, Tallon MJ, Dunnett M, Boobis L, Coakley J, Kim HJ, Fallowfield JL, Hill CA, Sale C, Wise JA. The absorption of orally supplied beta-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids. 2006;30:279–89.CrossRefPubMed
18.
go back to reference Tobias G, Benatti FB, Painelli VD, Roschel H, Gualano B, Sale C, Artioli GG. Additive effects of beta-alanine and sodium bicarbonate on upper-body intermittent performance. Amino Acids. 2013;45:309–17.CrossRefPubMedPubMedCentral Tobias G, Benatti FB, Painelli VD, Roschel H, Gualano B, Sale C, Artioli GG. Additive effects of beta-alanine and sodium bicarbonate on upper-body intermittent performance. Amino Acids. 2013;45:309–17.CrossRefPubMedPubMedCentral
19.
go back to reference Williams BT, Horvath PJ, Burton HW, Leddy J, Wilding GE, Rosney DM, Shan G. The effect of pre exercise carbohydrate consumption on cognitive function. J Athl Enhancement. 2015;4:1. Williams BT, Horvath PJ, Burton HW, Leddy J, Wilding GE, Rosney DM, Shan G. The effect of pre exercise carbohydrate consumption on cognitive function. J Athl Enhancement. 2015;4:1.
20.
go back to reference Tallon MJ, Harris RC, Maffulli N, Tarnopolsky MA. Carnosine, taurine and enzyme activities of human skeletal muscle fibres from elderly subjects with osteoarthritis and young moderately active subjects. Biogerontology. 2007;8:129–37.CrossRefPubMed Tallon MJ, Harris RC, Maffulli N, Tarnopolsky MA. Carnosine, taurine and enzyme activities of human skeletal muscle fibres from elderly subjects with osteoarthritis and young moderately active subjects. Biogerontology. 2007;8:129–37.CrossRefPubMed
21.
go back to reference Hoffman JR, Ostfeld I, Stout JR, Harris RC, Kaplan Z, Cohen H. Beta-alanine supplemented diets enhance behavioral resilience to stress exposure in an animal model of PTSD. Amino Acids. 2015;47:1247–57.CrossRefPubMedPubMedCentral Hoffman JR, Ostfeld I, Stout JR, Harris RC, Kaplan Z, Cohen H. Beta-alanine supplemented diets enhance behavioral resilience to stress exposure in an animal model of PTSD. Amino Acids. 2015;47:1247–57.CrossRefPubMedPubMedCentral
22.
go back to reference Solis MY, Cooper S, Hobson RM, Artioli GG, Otaduy MC, Roschel H, Robertson J, Martin D, Painelli VS, Harris RC, Gualano B, Sale C. Effects of beta-alanine supplementation on brain homocarnosine/carnosine signal and cognitive function: an exploratory study. PLoS One. 2015;10:16.CrossRef Solis MY, Cooper S, Hobson RM, Artioli GG, Otaduy MC, Roschel H, Robertson J, Martin D, Painelli VS, Harris RC, Gualano B, Sale C. Effects of beta-alanine supplementation on brain homocarnosine/carnosine signal and cognitive function: an exploratory study. PLoS One. 2015;10:16.CrossRef
23.
go back to reference Decombaz J, Beaumont M, Vuichoud J, Bouisset F, Stellingwerff T. Effect of slow-release beta-alanine tablets on absorption kinetics and paresthesia. Amino Acids. 2012;43:67–76.CrossRefPubMed Decombaz J, Beaumont M, Vuichoud J, Bouisset F, Stellingwerff T. Effect of slow-release beta-alanine tablets on absorption kinetics and paresthesia. Amino Acids. 2012;43:67–76.CrossRefPubMed
24.
go back to reference Stout JR, Cramer JT, Zoeller RF, Torok D, Costa P, Hoffman JR, O'Kroy J. Effects of beta-alanine supplementation on the onset of neuromuscular fatigue and ventilatory threshold in women. Amino Acids. 2007;32:381–6.CrossRefPubMed Stout JR, Cramer JT, Zoeller RF, Torok D, Costa P, Hoffman JR, O'Kroy J. Effects of beta-alanine supplementation on the onset of neuromuscular fatigue and ventilatory threshold in women. Amino Acids. 2007;32:381–6.CrossRefPubMed
25.
go back to reference Jensen AR. The stroop color-word test - a review. Curr contents/Soc. Behav Sci. 1981;39(20) Jensen AR. The stroop color-word test - a review. Curr contents/Soc. Behav Sci. 1981;39(20)
26.
go back to reference Provost SC, Woodward R. Effects of nicotine gum on repeated administration of the stroop test. Psychopharmacology. 1991;104:536–40.CrossRefPubMed Provost SC, Woodward R. Effects of nicotine gum on repeated administration of the stroop test. Psychopharmacology. 1991;104:536–40.CrossRefPubMed
27.
go back to reference Cohen J. Statistical power analysis for the behavioral sciences. Academic press. 2nd; 1988. Cohen J. Statistical power analysis for the behavioral sciences. Academic press. 2nd; 1988.
28.
go back to reference Pollow D, Williams B, Joyce D, Horvath P. Caffeine does not affect improvements in cognition during prolonged high-intensity exercise in alert well-trained individuals. J Caffeine Res. 2016;6:163–71.CrossRef Pollow D, Williams B, Joyce D, Horvath P. Caffeine does not affect improvements in cognition during prolonged high-intensity exercise in alert well-trained individuals. J Caffeine Res. 2016;6:163–71.CrossRef
29.
go back to reference Homack S, Riccio CA. A meta-analysis of the sensitivity and specificity of the stroop color and word test with children. Arch Clin Neuropsychol. 2004;19:725–43.CrossRefPubMed Homack S, Riccio CA. A meta-analysis of the sensitivity and specificity of the stroop color and word test with children. Arch Clin Neuropsychol. 2004;19:725–43.CrossRefPubMed
30.
go back to reference Saunders B, Elliot-Sale K, Artioli GG, Swinton P, Dolan E, Roschel H, Sale C, Gualano B. β-Alanine supplementation to improve exercise capacity and performance: a systematic review and meta-analysis. Br J Sports Med. 2017;51:658–69.CrossRefPubMed Saunders B, Elliot-Sale K, Artioli GG, Swinton P, Dolan E, Roschel H, Sale C, Gualano B. β-Alanine supplementation to improve exercise capacity and performance: a systematic review and meta-analysis. Br J Sports Med. 2017;51:658–69.CrossRefPubMed
Metadata
Title
β-Alanine supplementation increased physical performance and improved executive function following endurance exercise in middle aged individuals
Authors
Taylor Furst
Alyssa Massaro
Courtney Miller
Brian T. Williams
Zach M. LaMacchia
Peter J. Horvath
Publication date
01-12-2018
Publisher
BioMed Central
DOI
https://doi.org/10.1186/s12970-018-0238-7

Other articles of this Issue 1/2018

Journal of the International Society of Sports Nutrition 1/2018 Go to the issue