Skip to main content
Top
Published in: Journal of the International Society of Sports Nutrition 1/2017

Open Access 01-12-2017 | Research article

Evaluation of anti-fatigue property of the extruded product of cereal grains mixed with Cordyceps militaris on mice

Authors: Lei Zhong, Liyan Zhao, Fangmei Yang, Wenjian Yang, Yong Sun, Qiuhui Hu

Published in: Journal of the International Society of Sports Nutrition | Issue 1/2017

Login to get access

Abstract

Background

Fatigue is a biological phenomenon that involves a feeling of extreme physical or mental tiredness that could potentially cause some severe chronic diseases. Recently, diet therapy has provided a new alternative to alleviate physical fatigue. In our previous study, addition of Cordyceps militaris (C. militaris) into an extruded product was shown to provide high nutrition and unique flavors; however, little is known whether this product has some scientific evidence regarding anti-fatigue property. The purpose of this study was to evaluate the anti-fatigue effects of extruded products of cereal grains (EC) and EC mixed with C. militaris (ECC).

Methods

The mice were divided into seven groups: one group received distilled water (Control group, n = 20), and the other groups received different dosages of EC (5, 10 and 20 g/kg body weight, n = 20 per group) or of ECC (5, 10 and 20 g/kg body weight, n = 20 per group) solution in water. All of the mice were administered with distilled water, EC or ECC continuously for 30 days by gavage and the anti-fatigue activity was evaluated using a weight-loaded swimming test, along with assessments of fatigue-related indicators. The mode of fighting fatigue was investigated by determining changes in exercise endurance and biochemical markers, including exhaustive swimming time, lactate dehydrogenase (LDH), blood lactic acid (BLA), creatine kinase (CK), blood urea nitrogen (BUN), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), catalase (CAT), and hepatic and muscle glycogen levels.

Results

EC and ECC prolonged the swimming endurance time of mice compared to the control. The content of BLA at high dose of ECC group (20 g/kg) was significantly lower than that in the negative control group. CK, BUN and MDA levels were significantly reduced by treatment with EC and ECC compared to the negative control, while the low and middle dose of EC had no significant effect on MDA levels. Additionally, only the middle and high dose of EC (10, 20 g/kg) could significantly decrease the BUN level. EC and ECC treatments increased glycogen, LDH, SOD, CAT and GSH-Px levels. Low and middle dose of EC had no significant effects on muscle glycogen. Moreover, low dose of EC could increase the level of SOD but it was not statistically significant. Compared to the EC treatment groups, ECC demonstrated the efficacy of anti-fatigue potential, particularly at a high dose of ECC, the best performance in relieving fatigue.

Conclusions

These results suggest that EC and ECC could prevent exercise-induced fatigue in mice and ECC provided a better effect. In addition, C. militaris in ECC might play a crucial role in the anti-fatigue activity of ECC.
Literature
2.
go back to reference Mizuno K, Tanaka M, Nozaki S, Mizuma H, Ataka S, Tahara T, et al. Anti-fatigue effects of coenzyme Q10 during physical fatigue. Nutrition. 2008;24:293–9.CrossRefPubMed Mizuno K, Tanaka M, Nozaki S, Mizuma H, Ataka S, Tahara T, et al. Anti-fatigue effects of coenzyme Q10 during physical fatigue. Nutrition. 2008;24:293–9.CrossRefPubMed
3.
go back to reference Schwartz AL. Fatigue mediates the effects of exercise on quality of life. Qual Life Res. 1999;8:529–38.CrossRefPubMed Schwartz AL. Fatigue mediates the effects of exercise on quality of life. Qual Life Res. 1999;8:529–38.CrossRefPubMed
4.
go back to reference Jung K, Kim I-H, Han D. Effect of medicinal plant extracts on forced swimming capacity in mice. J Ethnopharmacol. 2004;93:75–81.CrossRefPubMed Jung K, Kim I-H, Han D. Effect of medicinal plant extracts on forced swimming capacity in mice. J Ethnopharmacol. 2004;93:75–81.CrossRefPubMed
5.
go back to reference Liu S, Manson JE, Stampfer MJ, Hu FB, Giovannucci E, Colditz GA, et al. A prospective study of whole-grain intake and risk of type 2 diabetes mellitus in us women. Am J Public Health. 2000;90:1409–15.CrossRefPubMedPubMedCentral Liu S, Manson JE, Stampfer MJ, Hu FB, Giovannucci E, Colditz GA, et al. A prospective study of whole-grain intake and risk of type 2 diabetes mellitus in us women. Am J Public Health. 2000;90:1409–15.CrossRefPubMedPubMedCentral
6.
go back to reference Meyer KA, Kushi LH, Jacobs DR, Slavin J, Sellers TA, Folsom AR. Carbohydrates, dietary fiber, and incident type 2 diabetes in older women. Am J Clin Nutr. 2000;71:921–30.PubMed Meyer KA, Kushi LH, Jacobs DR, Slavin J, Sellers TA, Folsom AR. Carbohydrates, dietary fiber, and incident type 2 diabetes in older women. Am J Clin Nutr. 2000;71:921–30.PubMed
7.
go back to reference Schatzkin A, Mouw T, Park Y, Subar AF, Kipnis V, Hollenbeck A, et al. Dietary fiber and whole-grain consumption in relation to colorectal cancer in the nih-aarp diet and health study. Am J Clin Nutr. 2007;85:1353–60.PubMed Schatzkin A, Mouw T, Park Y, Subar AF, Kipnis V, Hollenbeck A, et al. Dietary fiber and whole-grain consumption in relation to colorectal cancer in the nih-aarp diet and health study. Am J Clin Nutr. 2007;85:1353–60.PubMed
8.
go back to reference Fardet A, Rock E, Rémésy C. Is the in vitro antioxidant potential of whole-grain cereals and cereal products well reflected in vivo. J Cereal Sci. 2008;48:258–76.CrossRef Fardet A, Rock E, Rémésy C. Is the in vitro antioxidant potential of whole-grain cereals and cereal products well reflected in vivo. J Cereal Sci. 2008;48:258–76.CrossRef
9.
go back to reference Stark JR, Yin XS. The effect of physical damage on large and small barley starch granules. Starch-Starke. 1986;38:369–74.CrossRef Stark JR, Yin XS. The effect of physical damage on large and small barley starch granules. Starch-Starke. 1986;38:369–74.CrossRef
10.
go back to reference Ohtsubo KI, Suzuki K, Yasui Y, Kasumi T. Bio-functional components in the processed pre-germinated brown rice by a twin-screw extruder. J Food Compos Anal. 2005;18:303–16.CrossRef Ohtsubo KI, Suzuki K, Yasui Y, Kasumi T. Bio-functional components in the processed pre-germinated brown rice by a twin-screw extruder. J Food Compos Anal. 2005;18:303–16.CrossRef
11.
go back to reference Altan A, Mccarthy KL, Maskan M. Evaluation of snack foods from barley–tomato pomace blends by extrusion processing. J Food Eng. 2008;84:231–42.CrossRef Altan A, Mccarthy KL, Maskan M. Evaluation of snack foods from barley–tomato pomace blends by extrusion processing. J Food Eng. 2008;84:231–42.CrossRef
12.
go back to reference Altan A, McCarthy KL, Maskan M. Effect of screw configuration and raw material on some properties of barley extrudates. J Food Eng. 2009;92:377–82.CrossRef Altan A, McCarthy KL, Maskan M. Effect of screw configuration and raw material on some properties of barley extrudates. J Food Eng. 2009;92:377–82.CrossRef
13.
go back to reference Company CR. Critical reviews in food science and nutrition. Crit Rev Food Sci. 2009;49:741–81.CrossRef Company CR. Critical reviews in food science and nutrition. Crit Rev Food Sci. 2009;49:741–81.CrossRef
14.
go back to reference Gu Y-X, Wang Z-S, Li S-X, Yuan Q-S. Effect of multiple factors on accumulation of nucleosides and bases in cordyceps militaris. Food Chem. 2007;102:1304–9.CrossRef Gu Y-X, Wang Z-S, Li S-X, Yuan Q-S. Effect of multiple factors on accumulation of nucleosides and bases in cordyceps militaris. Food Chem. 2007;102:1304–9.CrossRef
15.
go back to reference Song CY, Yang BK, Ra KS, Kim HI. Anti-complementary activity of Endo-polymers produced from submerged mycelial culture of higher fungi with particular reference to lentinus edodes. Biotechnol Lett. 1998;20:741–4.CrossRef Song CY, Yang BK, Ra KS, Kim HI. Anti-complementary activity of Endo-polymers produced from submerged mycelial culture of higher fungi with particular reference to lentinus edodes. Biotechnol Lett. 1998;20:741–4.CrossRef
16.
go back to reference Mizuno T. Medicinal effects and utilization of cordyceps (fr.) link (ascomycetes) and isaria fr. (mitosporic fungi) Chinese caterpillar fungi, “tochukaso” (review). Int J Med Mushrooms. 1999;1:251–61.CrossRef Mizuno T. Medicinal effects and utilization of cordyceps (fr.) link (ascomycetes) and isaria fr. (mitosporic fungi) Chinese caterpillar fungi, “tochukaso” (review). Int J Med Mushrooms. 1999;1:251–61.CrossRef
17.
go back to reference Ng TB, Wang HX. Pharmacological actions of cordyceps, a prized folk medicine. J Pharm Pharmacol. 2005;57:1509–19.CrossRefPubMed Ng TB, Wang HX. Pharmacological actions of cordyceps, a prized folk medicine. J Pharm Pharmacol. 2005;57:1509–19.CrossRefPubMed
18.
go back to reference Huang S-L, Tsi SY, Lee YL, Mau JL. Nonvolatile taste components of fruit bodies and mycelia of cordyceps militaris. Food Chem. 2006;39:577–83. Huang S-L, Tsi SY, Lee YL, Mau JL. Nonvolatile taste components of fruit bodies and mycelia of cordyceps militaris. Food Chem. 2006;39:577–83.
19.
go back to reference Song J, Wang Y, Teng M, Cai G, Xu H, Guo H, et al. Studies on the anti-fatigue activities of Cordyceps militaris fruit body extract in mouse model. Evid-Based Compl Al. 2015;2015:1–15. Song J, Wang Y, Teng M, Cai G, Xu H, Guo H, et al. Studies on the anti-fatigue activities of Cordyceps militaris fruit body extract in mouse model. Evid-Based Compl Al. 2015;2015:1–15.
20.
go back to reference Hamburger M. Comment on comparison of protective effects between cultured cordyceps militaris and natural cordyceps sinensis against oxidative damage. J Agr Food Chem. 2006;54:3132–8.CrossRef Hamburger M. Comment on comparison of protective effects between cultured cordyceps militaris and natural cordyceps sinensis against oxidative damage. J Agr Food Chem. 2006;54:3132–8.CrossRef
21.
go back to reference Yue G-G, Lau C-B, Fung K-P, Leung P-C, Ko W-H. Effects of cordyceps sinensis, cordyceps militaris and their isolated compounds on ion transport in calu-3 human airway epithelial cells. J Ethnopharmacology. 2008;117:92–101.CrossRefPubMed Yue G-G, Lau C-B, Fung K-P, Leung P-C, Ko W-H. Effects of cordyceps sinensis, cordyceps militaris and their isolated compounds on ion transport in calu-3 human airway epithelial cells. J Ethnopharmacology. 2008;117:92–101.CrossRefPubMed
22.
go back to reference Zhang X-L, Ren F, Huang W, Ding R-T, Zhou Q-S, Liu X-L. Anti-fatigue activity of extracts stem bark from acanthopanax senticosus. Molecules. 2011;16:28–37.CrossRef Zhang X-L, Ren F, Huang W, Ding R-T, Zhou Q-S, Liu X-L. Anti-fatigue activity of extracts stem bark from acanthopanax senticosus. Molecules. 2011;16:28–37.CrossRef
23.
go back to reference Ding J-F, Li Y-Y, Xu J-J, Su X-R, Gao X, Yue F-P. Study on effect of jellyfish collagen hydrolysate on anti-fatigue and anti-oxidation. Food Hydrocolloid. 2011;25:1350–53.CrossRef Ding J-F, Li Y-Y, Xu J-J, Su X-R, Gao X, Yue F-P. Study on effect of jellyfish collagen hydrolysate on anti-fatigue and anti-oxidation. Food Hydrocolloid. 2011;25:1350–53.CrossRef
24.
go back to reference Glaister M. Mechanisms of fatigue and the influence of aerobic fitness. Sports Med. 2005;35:757–77.CrossRefPubMed Glaister M. Mechanisms of fatigue and the influence of aerobic fitness. Sports Med. 2005;35:757–77.CrossRefPubMed
25.
go back to reference Metzger JM, Fitts RH. Role of intracellular pH in muscle fatigue. J Appl Physiol. 1987;62:1392–7.PubMed Metzger JM, Fitts RH. Role of intracellular pH in muscle fatigue. J Appl Physiol. 1987;62:1392–7.PubMed
26.
go back to reference Kim KM, Yu KW, Kang DH, Suh HJ. Anti-stress and anti-fatigue effect of fermented rice bran. Phytother Res. 2002;16:700–2.CrossRefPubMed Kim KM, Yu KW, Kang DH, Suh HJ. Anti-stress and anti-fatigue effect of fermented rice bran. Phytother Res. 2002;16:700–2.CrossRefPubMed
27.
go back to reference Qi B, Liu L, Zhang H, Zhou GX, Wang S, Duan XZ, et al. Anti-fatigue effects of proteins isolated from panax quinquefolium. J Ethnopharmacol. 2014;153:430–4.CrossRefPubMed Qi B, Liu L, Zhang H, Zhou GX, Wang S, Duan XZ, et al. Anti-fatigue effects of proteins isolated from panax quinquefolium. J Ethnopharmacol. 2014;153:430–4.CrossRefPubMed
28.
go back to reference Uthayathas S, Karuppagounder SS, Tamer SI, Parameshwaran K, Degim T, Suppiramaniam V, et al. Evaluation of neuroprotective and anti-fatigue effects of sildenafil. Life Sci. 2007;81:988–92.CrossRefPubMed Uthayathas S, Karuppagounder SS, Tamer SI, Parameshwaran K, Degim T, Suppiramaniam V, et al. Evaluation of neuroprotective and anti-fatigue effects of sildenafil. Life Sci. 2007;81:988–92.CrossRefPubMed
29.
go back to reference Tan W, Yu KQ, Liu YY, Ouyang MZ, Yan MH, Luo R, et al. Anti-fatigue activity of polysaccharides extract from radix rehmanniae preparata. Int J Biol Macromol. 2012;50:59–62.CrossRefPubMed Tan W, Yu KQ, Liu YY, Ouyang MZ, Yan MH, Luo R, et al. Anti-fatigue activity of polysaccharides extract from radix rehmanniae preparata. Int J Biol Macromol. 2012;50:59–62.CrossRefPubMed
31.
go back to reference Lindley AA, Becker S, Gray RH, Herman AA. Effect of continuing or stopping smoking during pregnancy on infant birth weight, crown-heel length, head circumference, ponderal index, and brain:body weight ratio. Am J Epidemiol. 2000;152:219–25.CrossRefPubMed Lindley AA, Becker S, Gray RH, Herman AA. Effect of continuing or stopping smoking during pregnancy on infant birth weight, crown-heel length, head circumference, ponderal index, and brain:body weight ratio. Am J Epidemiol. 2000;152:219–25.CrossRefPubMed
32.
go back to reference Nielsen FH, Shuler TR. Studies of the interaction between boron and calcium, and its modification by magnesium and potassium, in rats. Biol Trace Elem Res. 1992;35:225–37.CrossRefPubMed Nielsen FH, Shuler TR. Studies of the interaction between boron and calcium, and its modification by magnesium and potassium, in rats. Biol Trace Elem Res. 1992;35:225–37.CrossRefPubMed
33.
go back to reference Enthoven L, de Kloet ER, Oitzl MS. Effects of maternal deprivation of CD1 mice on performance in the water maze and swim stress. Behav Brain Res. 2008;187(1):195.CrossRefPubMed Enthoven L, de Kloet ER, Oitzl MS. Effects of maternal deprivation of CD1 mice on performance in the water maze and swim stress. Behav Brain Res. 2008;187(1):195.CrossRefPubMed
34.
go back to reference Lee JS, Kim HG, Han JM, et al. Anti-fatigue effect of myelophil in a chronic forced exercise mouse model. Eur J Pharmacol. 2015;764:100–8.CrossRefPubMed Lee JS, Kim HG, Han JM, et al. Anti-fatigue effect of myelophil in a chronic forced exercise mouse model. Eur J Pharmacol. 2015;764:100–8.CrossRefPubMed
35.
go back to reference Zhang H, Liu Y, Zhou J, Wang J, Sun B. Amylopectin is the anti-fatigue ingredient in glutinous rice. Int J Biol Macromol. 2014;63:240–3.CrossRefPubMed Zhang H, Liu Y, Zhou J, Wang J, Sun B. Amylopectin is the anti-fatigue ingredient in glutinous rice. Int J Biol Macromol. 2014;63:240–3.CrossRefPubMed
36.
go back to reference Wang J, Li S, Fan Y, et al. Anti-fatigue activity of the water-soluble polysaccharides isolated from panax ginseng C. A Meyer J Ethnopharmacol. 2010;130:421–3.CrossRef Wang J, Li S, Fan Y, et al. Anti-fatigue activity of the water-soluble polysaccharides isolated from panax ginseng C. A Meyer J Ethnopharmacol. 2010;130:421–3.CrossRef
37.
go back to reference Narkhede AN, Jagtap SD, Nirmal PS, Giramkar SA, Nagarkar BE, Kulkarni OP, et al. Anti-fatigue effect of amarkand on endurance exercise capacity in rats. Bmc Complem Altern M. 2016;16:23.CrossRef Narkhede AN, Jagtap SD, Nirmal PS, Giramkar SA, Nagarkar BE, Kulkarni OP, et al. Anti-fatigue effect of amarkand on endurance exercise capacity in rats. Bmc Complem Altern M. 2016;16:23.CrossRef
38.
go back to reference Brancaccio P, Maffulli N, Limongelli FM. Creatine kinase monitoring in sport medicine. Br Med Bull. 2007;81:209–30.CrossRefPubMed Brancaccio P, Maffulli N, Limongelli FM. Creatine kinase monitoring in sport medicine. Br Med Bull. 2007;81:209–30.CrossRefPubMed
39.
go back to reference Ni W-H, Gao T-T, Wang H-L, Du Y-Z, Li J-Y, Li C, et al. Anti-fatigue activity of polysaccharides from the fruits of four Tibetan plateau indigenous medicinal plants. J Ethnopharmacol. 2013;150:529–35.CrossRefPubMed Ni W-H, Gao T-T, Wang H-L, Du Y-Z, Li J-Y, Li C, et al. Anti-fatigue activity of polysaccharides from the fruits of four Tibetan plateau indigenous medicinal plants. J Ethnopharmacol. 2013;150:529–35.CrossRefPubMed
40.
go back to reference Das SK, Masuda M, Sakurai A, Sakakibara M. Medicinal uses of the mushroom cordyceps militaris: current state and prospects. Fitoterapia. 2010;81:961–8.CrossRefPubMed Das SK, Masuda M, Sakurai A, Sakakibara M. Medicinal uses of the mushroom cordyceps militaris: current state and prospects. Fitoterapia. 2010;81:961–8.CrossRefPubMed
41.
go back to reference Wang JJ, Shieh MJ, Kuo SL, Lee CL, Pan TM. Effect of red mold rice on anti-fatigue and exercise-related changes in lipid peroxidation in endurance exercise. Appl Microbiol Biot. 2006;70:247–53.CrossRef Wang JJ, Shieh MJ, Kuo SL, Lee CL, Pan TM. Effect of red mold rice on anti-fatigue and exercise-related changes in lipid peroxidation in endurance exercise. Appl Microbiol Biot. 2006;70:247–53.CrossRef
42.
go back to reference Ivy JL, Costill DL, Fink WJ, Lower RW. Influence of caffeine and carbohydrate feedings on endurance performance. Med Sci Sport Exer. 1979;11:6–11. Ivy JL, Costill DL, Fink WJ, Lower RW. Influence of caffeine and carbohydrate feedings on endurance performance. Med Sci Sport Exer. 1979;11:6–11.
43.
go back to reference Rennie MJ, Winder WW, Holloszy JO. A sparing effect of increased plasma fatty acids on muscle and liver glycogen content in the exercising rat. Biochem J. 1976;156:647–55.CrossRefPubMedPubMedCentral Rennie MJ, Winder WW, Holloszy JO. A sparing effect of increased plasma fatty acids on muscle and liver glycogen content in the exercising rat. Biochem J. 1976;156:647–55.CrossRefPubMedPubMedCentral
44.
go back to reference Wang MY, An LG. Seeds extract on endurance exercise capacity in mice. J Med Plants Res. 2011;5:1659–63. Wang MY, An LG. Seeds extract on endurance exercise capacity in mice. J Med Plants Res. 2011;5:1659–63.
45.
go back to reference You L, Zhao M, Regenstein JM, Ren JY. In vitro antioxidant activity and in vivo anti-fatigue effect of loach (misgurnus anguillicaudatus) peptides prepared by papain digestion. Food Chem. 2011;124:188–94.CrossRef You L, Zhao M, Regenstein JM, Ren JY. In vitro antioxidant activity and in vivo anti-fatigue effect of loach (misgurnus anguillicaudatus) peptides prepared by papain digestion. Food Chem. 2011;124:188–94.CrossRef
46.
go back to reference Aberoumand A, Deokule SS. Proximate and mineral composition of wild coco (eulophia ochreata L.) tubers in Iran. As J Food Ag-Ind. 2009;2:203–9. Aberoumand A, Deokule SS. Proximate and mineral composition of wild coco (eulophia ochreata L.) tubers in Iran. As J Food Ag-Ind. 2009;2:203–9.
47.
go back to reference Hickson RC, Rennie MJ, Conlee RK, Winder WW, Holloszy JO. Effects of increased plasma fatty acids on glycogen utilization and endurance. J Appl Physiol. 1977;43:829–33.PubMed Hickson RC, Rennie MJ, Conlee RK, Winder WW, Holloszy JO. Effects of increased plasma fatty acids on glycogen utilization and endurance. J Appl Physiol. 1977;43:829–33.PubMed
48.
go back to reference Westerblad H, Bruton JD, Katz A. Skeletal muscle: energy metabolism, fiber types, fatigue and adaptability. Exp Cell Res. 2010;316:3093–9.CrossRefPubMed Westerblad H, Bruton JD, Katz A. Skeletal muscle: energy metabolism, fiber types, fatigue and adaptability. Exp Cell Res. 2010;316:3093–9.CrossRefPubMed
49.
go back to reference Kim H, Park S, Han DS, Park T. Octacosanol supplementation increases running endurance time and improves biochemical parameters after exhaustion in trained rats. J Med Food. 2003;6:345–50.CrossRefPubMed Kim H, Park S, Han DS, Park T. Octacosanol supplementation increases running endurance time and improves biochemical parameters after exhaustion in trained rats. J Med Food. 2003;6:345–50.CrossRefPubMed
50.
go back to reference Wang L, Zhang HL, Lu R, Zhou YJ, Ma R, Lv JQ, et al. The decapeptide CMS001 enhances swimming endurance in mice. Peptides. 2008;29:1176–82.CrossRefPubMed Wang L, Zhang HL, Lu R, Zhou YJ, Ma R, Lv JQ, et al. The decapeptide CMS001 enhances swimming endurance in mice. Peptides. 2008;29:1176–82.CrossRefPubMed
51.
go back to reference Hsu C-C, Ho M-C, Lin L-C, Su B, Hsu M-C. American ginseng supplementation attenuates creatine kinase level induced by submaximal exercise in human beings. World J of Gastroentero. 2005;11:5327–31.CrossRef Hsu C-C, Ho M-C, Lin L-C, Su B, Hsu M-C. American ginseng supplementation attenuates creatine kinase level induced by submaximal exercise in human beings. World J of Gastroentero. 2005;11:5327–31.CrossRef
52.
go back to reference Jia JM, Wu CF. Anti-fatigue activity of tissue culture extracts of saussurea involucrata. Pharm Biol. 2008;46:433–6.CrossRef Jia JM, Wu CF. Anti-fatigue activity of tissue culture extracts of saussurea involucrata. Pharm Biol. 2008;46:433–6.CrossRef
53.
go back to reference Liu JY, Feng CP, Li X, Chang MC, Meng JL, Xu LJ, et al. Immunomodulatory and antioxidative activity of cordyceps militaris polysaccharides in mice. Int J Biol Macromol. 2016;86:594–8.CrossRefPubMed Liu JY, Feng CP, Li X, Chang MC, Meng JL, Xu LJ, et al. Immunomodulatory and antioxidative activity of cordyceps militaris polysaccharides in mice. Int J Biol Macromol. 2016;86:594–8.CrossRefPubMed
54.
go back to reference Dong Y, Jing T, Meng Q, Liu C, Hu S, Ma Y, et al. Studies on the antidiabetic activities of cordyceps militaris extract in diet-streptozotocin-induced diabetic sprague–dawley rats. Biomed Res Int. 2014. doi:10.1155/2014/160980. Dong Y, Jing T, Meng Q, Liu C, Hu S, Ma Y, et al. Studies on the antidiabetic activities of cordyceps militaris extract in diet-streptozotocin-induced diabetic sprague–dawley rats. Biomed Res Int. 2014. doi:10.​1155/​2014/​160980.
55.
go back to reference Bafna PA, Balaraman R. Anti-ulcer and antioxidant activity of DHC-1*, a herbal formulation. J Ethnopharmacol. 2004;90:123–7.CrossRefPubMed Bafna PA, Balaraman R. Anti-ulcer and antioxidant activity of DHC-1*, a herbal formulation. J Ethnopharmacol. 2004;90:123–7.CrossRefPubMed
56.
go back to reference Chen Y, Miao Y, Huang L, Li J, Sun H, Zhao Y, et al. Anti-oxidant activities of saponins extracted from radix trichosanthis. Bmc Complem Altern M. 2013;14:1–8. Chen Y, Miao Y, Huang L, Li J, Sun H, Zhao Y, et al. Anti-oxidant activities of saponins extracted from radix trichosanthis. Bmc Complem Altern M. 2013;14:1–8.
57.
go back to reference Powers S, Lennon SL. Analysis of cellular responses to free radicals: focus on exercise and skeletal muscle. P Nutr Soc. 1999;58:1025–33.CrossRef Powers S, Lennon SL. Analysis of cellular responses to free radicals: focus on exercise and skeletal muscle. P Nutr Soc. 1999;58:1025–33.CrossRef
58.
go back to reference Chi A, Li H, Kang C, Guo H, Wang Y, Guo F, et al. Anti-fatigue activity of a novel polysaccharide conjugates from ziyang green tea. Int J Biol Macromol. 2015;80:566–72.CrossRefPubMed Chi A, Li H, Kang C, Guo H, Wang Y, Guo F, et al. Anti-fatigue activity of a novel polysaccharide conjugates from ziyang green tea. Int J Biol Macromol. 2015;80:566–72.CrossRefPubMed
Metadata
Title
Evaluation of anti-fatigue property of the extruded product of cereal grains mixed with Cordyceps militaris on mice
Authors
Lei Zhong
Liyan Zhao
Fangmei Yang
Wenjian Yang
Yong Sun
Qiuhui Hu
Publication date
01-12-2017
Publisher
BioMed Central
DOI
https://doi.org/10.1186/s12970-017-0171-1

Other articles of this Issue 1/2017

Journal of the International Society of Sports Nutrition 1/2017 Go to the issue