Skip to main content
Top
Published in: Journal of the International Society of Sports Nutrition 1/2016

Open Access 01-12-2016 | Research article

The effect of six days of dietary nitrate supplementation on performance in trained CrossFit athletes

Authors: Samuel J. Kramer, Daniel A. Baur, Maria T. Spicer, Matthew D. Vukovich, Michael J. Ormsbee

Published in: Journal of the International Society of Sports Nutrition | Issue 1/2016

Login to get access

Abstract

Background

While it is well established that dietary nitrate reduces the metabolic cost of exercise, recent evidence suggests this effect is maintained 24 h following the final nitrate dose when plasma nitrite levels have returned to baseline. In addition, acute dietary nitrate was recently reported to enhance peak power production. Our purpose was to examine whether chronic dietary nitrate supplementation enhanced peak power 24 h following the final dose and if this impacted performance in a heavily power-dependent sport.

Methods

In a double-blind, randomized, crossover design, maximal aerobic capacity, body composition, strength, maximal power (30 s Wingate), endurance (2 km rowing time trial), and CrossFit performance (Grace protocol) were assessed before and after six days of supplementation with nitrate (NO) (8 mmol·potassium nitrate·d−1) or a non-caloric placebo (PL). A 10-day washout period divided treatment conditions. Paired t-tests were utilized to assess changes over time and to compare changes between treatments.

Results

Peak Wingate power increased significantly over time with NO (889.17 ± 179.69 W to 948.08 ± 186.80 W; p = 0.01) but not PL (898.08 ± 183.24 W to 905.00 ± 157.23 W; p = 0.75). However, CrossFit performance was unchanged, and there were no changes in any other performance parameters.

Conclusion

Consuming dietary nitrate in the potassium nitrate salt form improved peak power during a Wingate test, but did not improve elements of strength or endurance in male CrossFit athletes.
Literature
1.
go back to reference Jones AM. Dietary nitrate supplementation ank fd exercise performance. Sport Med. 2014;44:35–45.CrossRef Jones AM. Dietary nitrate supplementation ank fd exercise performance. Sport Med. 2014;44:35–45.CrossRef
2.
go back to reference Lundberg JO, Gladwin MT, Ahluwalia A, Benjamin N, Bryan NS, Butler A, et al. Nitrate and nitrite in biology, nutrition and therapeutics. Nat Chem Biol. 2009;5:865–9.CrossRefPubMedPubMedCentral Lundberg JO, Gladwin MT, Ahluwalia A, Benjamin N, Bryan NS, Butler A, et al. Nitrate and nitrite in biology, nutrition and therapeutics. Nat Chem Biol. 2009;5:865–9.CrossRefPubMedPubMedCentral
3.
go back to reference Cermak NM, Gibala MJ, Van Loon LJC. Nitrate supplementation’s improvement of 10-km time-trial performance in trained cyclists. Int J Sport Nutr Exerc Metab. 2012;22:64–71.CrossRefPubMed Cermak NM, Gibala MJ, Van Loon LJC. Nitrate supplementation’s improvement of 10-km time-trial performance in trained cyclists. Int J Sport Nutr Exerc Metab. 2012;22:64–71.CrossRefPubMed
4.
go back to reference Lansley KE, Winyard PG, Bailey SJ, Vanhatalo A, Wilkerson DP, Blackwell JR, et al. Acute dietary nitrate supplementation improves cycling time trial performance. Med Sci Sport Exerc. 2011;43:1125–31.CrossRef Lansley KE, Winyard PG, Bailey SJ, Vanhatalo A, Wilkerson DP, Blackwell JR, et al. Acute dietary nitrate supplementation improves cycling time trial performance. Med Sci Sport Exerc. 2011;43:1125–31.CrossRef
5.
go back to reference Bailey SJ, Winyard P, Vanhatalo A, Blackwell JR, Dimenna FJ, Wilkerson DP, et al. Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans. J Appl Physiol. 2009;107:1144–55.CrossRefPubMed Bailey SJ, Winyard P, Vanhatalo A, Blackwell JR, Dimenna FJ, Wilkerson DP, et al. Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans. J Appl Physiol. 2009;107:1144–55.CrossRefPubMed
6.
go back to reference Bailey SJ, Fulford J, Vanhatalo A, Winyard PG, Blackwell JR, DiMenna FJ, et al. Dietary nitrate supplementation enhances muscle contractile efficiency during knee-extensor exercise in humans. J Appl Physiol. 2010;109:135–48.CrossRefPubMed Bailey SJ, Fulford J, Vanhatalo A, Winyard PG, Blackwell JR, DiMenna FJ, et al. Dietary nitrate supplementation enhances muscle contractile efficiency during knee-extensor exercise in humans. J Appl Physiol. 2010;109:135–48.CrossRefPubMed
7.
go back to reference Larsen FJ, Weitzberg E, Lundberg JO, Ekblom B. Dietary nitrate reduces maximal oxygen consumption while maintaining work performance in maximal exercise. Free Rad Bio Med. 2010;48:342–7.CrossRef Larsen FJ, Weitzberg E, Lundberg JO, Ekblom B. Dietary nitrate reduces maximal oxygen consumption while maintaining work performance in maximal exercise. Free Rad Bio Med. 2010;48:342–7.CrossRef
8.
go back to reference Kelly J, Vanhatalo A, Wilkerson DP, Wylie LJ, Jones AM. Effects of nitrate on the power-duration relationship for severe-intensity exercise. Med Sci Sport Exerc. 2013;45:1798–806.CrossRef Kelly J, Vanhatalo A, Wilkerson DP, Wylie LJ, Jones AM. Effects of nitrate on the power-duration relationship for severe-intensity exercise. Med Sci Sport Exerc. 2013;45:1798–806.CrossRef
9.
go back to reference Wylie LJ, Ortiz de Zevallos J, Isidore T, Nyman L, Vanhatalo A, Bailey SJ, et al. Dose-dependent effects of dietary nitrate on the oxygen cost of moderate-intensity exercise: Acute vs. chronic supplementation. Nitric Oxide. 2016;57:30–9.CrossRefPubMed Wylie LJ, Ortiz de Zevallos J, Isidore T, Nyman L, Vanhatalo A, Bailey SJ, et al. Dose-dependent effects of dietary nitrate on the oxygen cost of moderate-intensity exercise: Acute vs. chronic supplementation. Nitric Oxide. 2016;57:30–9.CrossRefPubMed
10.
go back to reference Coggan AR, Leibowitz JL, Kadkhodayan A, Thomas DP, Ramamurthy S, Spearie CA, et al. Effect of acute dietary nitrate intake on maximal knee extensor speed and power in healthy men and women. Nitric Oxide. 2015;48:16–21.CrossRefPubMed Coggan AR, Leibowitz JL, Kadkhodayan A, Thomas DP, Ramamurthy S, Spearie CA, et al. Effect of acute dietary nitrate intake on maximal knee extensor speed and power in healthy men and women. Nitric Oxide. 2015;48:16–21.CrossRefPubMed
11.
go back to reference Rimer EG, Peterson LR, Coggan AR, Martin JC. Acute Dietary Nitrate Supplementation Increases Maximal Cycling Power in Athletes. Int J Sport Physiol Perform. 2015;11(6):715–20.CrossRef Rimer EG, Peterson LR, Coggan AR, Martin JC. Acute Dietary Nitrate Supplementation Increases Maximal Cycling Power in Athletes. Int J Sport Physiol Perform. 2015;11(6):715–20.CrossRef
12.
go back to reference Bellar D, Hatchett A, Judge LW, Breaux ME, Marcus L. The relationship of aerobic capacity, anaerobic peak power and experience to performance in CrossFit exercise. Biol Sport. 2015;32:315–20.CrossRefPubMedPubMedCentral Bellar D, Hatchett A, Judge LW, Breaux ME, Marcus L. The relationship of aerobic capacity, anaerobic peak power and experience to performance in CrossFit exercise. Biol Sport. 2015;32:315–20.CrossRefPubMedPubMedCentral
13.
go back to reference Govoni M, Jansson EA, Weitzberg E, Lundberg JO. The increase in plasma nitrite after a dietary nitrate load is markedly attenuated by an antibacterial mouthwash. Nitric Oxide. 2008;19:333–7.CrossRefPubMed Govoni M, Jansson EA, Weitzberg E, Lundberg JO. The increase in plasma nitrite after a dietary nitrate load is markedly attenuated by an antibacterial mouthwash. Nitric Oxide. 2008;19:333–7.CrossRefPubMed
14.
go back to reference Siri WE. Body composition from fluid spaces and density: analysis of methods. In: Brozek J, Henschel A, editors. Tech. Meas. body Compos. Washington: Natl Acad Sciences/Natl Res Council; 1961. p. 223–4. Siri WE. Body composition from fluid spaces and density: analysis of methods. In: Brozek J, Henschel A, editors. Tech. Meas. body Compos. Washington: Natl Acad Sciences/Natl Res Council; 1961. p. 223–4.
15.
go back to reference Crapo RO, Morris AH, Clayton PD, Nixon CR. Lung volumes in healthy nonsmoking adults. Bull Eur Physiopath Respir. 1982;18:419–25. Crapo RO, Morris AH, Clayton PD, Nixon CR. Lung volumes in healthy nonsmoking adults. Bull Eur Physiopath Respir. 1982;18:419–25.
16.
go back to reference Outlaw JJ, Wilborn CD, Smith-Ryan AE, Hayward SE, Urbina SL, Taylor LW, et al. Effects of a pre-and post-workout protein-carbohydrate supplement in trained crossfit individuals. Springerplus. 2014;3:369.CrossRefPubMedPubMedCentral Outlaw JJ, Wilborn CD, Smith-Ryan AE, Hayward SE, Urbina SL, Taylor LW, et al. Effects of a pre-and post-workout protein-carbohydrate supplement in trained crossfit individuals. Springerplus. 2014;3:369.CrossRefPubMedPubMedCentral
17.
go back to reference Fulford J, Winyard PG, Vanhatalo A, Bailey SJ, Blackwell JR, Jones AM. Influence of dietary nitrate supplementation on human skeletal muscle metabolism and force production during maximum voluntary contractions. Pflugers Arch. 2013;465:517–28.CrossRefPubMed Fulford J, Winyard PG, Vanhatalo A, Bailey SJ, Blackwell JR, Jones AM. Influence of dietary nitrate supplementation on human skeletal muscle metabolism and force production during maximum voluntary contractions. Pflugers Arch. 2013;465:517–28.CrossRefPubMed
18.
go back to reference Vanhatalo A, Bailey SJ, Blackwell JR, DiMenna FJ, Pavey TG, Wilkerson DP, et al. Acute and chronic effects of dietary nitrate supplementation on blood pressure and the physiological responses to moderate-intensity and incremental exercise. Am J Physiol Reg Integr Comp Physiol. 2010;299:R1121–31.CrossRef Vanhatalo A, Bailey SJ, Blackwell JR, DiMenna FJ, Pavey TG, Wilkerson DP, et al. Acute and chronic effects of dietary nitrate supplementation on blood pressure and the physiological responses to moderate-intensity and incremental exercise. Am J Physiol Reg Integr Comp Physiol. 2010;299:R1121–31.CrossRef
19.
go back to reference Hernández A, Schiffer TA, Ivarsson N, Cheng AJ, Bruton JD, Lundberg JO, et al. Dietary nitrate increases tetanic [Ca2+]i and contractile force in mouse fast-twitch muscle. J Physiol. 2012;590:3575–83.CrossRefPubMedPubMedCentral Hernández A, Schiffer TA, Ivarsson N, Cheng AJ, Bruton JD, Lundberg JO, et al. Dietary nitrate increases tetanic [Ca2+]i and contractile force in mouse fast-twitch muscle. J Physiol. 2012;590:3575–83.CrossRefPubMedPubMedCentral
20.
21.
go back to reference Ferguson SK, Hirai DM, Copp SW, Holdsworth CT, Allen JD, Jones AM, et al. Impact of dietary nitrate supplementation via beetroot juice on exercising muscle vascular control in rats. J Physiol. 2013;591:547–57.CrossRefPubMed Ferguson SK, Hirai DM, Copp SW, Holdsworth CT, Allen JD, Jones AM, et al. Impact of dietary nitrate supplementation via beetroot juice on exercising muscle vascular control in rats. J Physiol. 2013;591:547–57.CrossRefPubMed
22.
go back to reference Maréchal G, Beckers-Bleukx G. Effect of nitric oxide on the maximal velocity of shortening of a mouse skeletal muscle. Pflugers Arch. 1998;436:906–13.CrossRefPubMed Maréchal G, Beckers-Bleukx G. Effect of nitric oxide on the maximal velocity of shortening of a mouse skeletal muscle. Pflugers Arch. 1998;436:906–13.CrossRefPubMed
23.
go back to reference Coyle EF, Costill DL, Lesmes GR. Leg extension power and muscle fiber composition. Med Sci Sport. 1979;11:12–5. Coyle EF, Costill DL, Lesmes GR. Leg extension power and muscle fiber composition. Med Sci Sport. 1979;11:12–5.
24.
go back to reference Hoon MW, Jones AM, Johnson NA, Blackwell JR, Broad EM, Lundy B, et al. The effect of variable doses of inorganic nitrate-rich beetroot juice on simulated 2000-m rowing performance in trained athletes. Int J Sport Physiol Per. 2014;9:615–20. Hoon MW, Jones AM, Johnson NA, Blackwell JR, Broad EM, Lundy B, et al. The effect of variable doses of inorganic nitrate-rich beetroot juice on simulated 2000-m rowing performance in trained athletes. Int J Sport Physiol Per. 2014;9:615–20.
25.
go back to reference Wylie LJ, Mohr M, Krustrup P, Jackman SR, Ermdis G, Kelly J, et al. Dietary nitrate supplementation improves team sport-specific intense intermittent exercise performance. Eur J Appl Physiol. 2013;113:1673–84.CrossRefPubMed Wylie LJ, Mohr M, Krustrup P, Jackman SR, Ermdis G, Kelly J, et al. Dietary nitrate supplementation improves team sport-specific intense intermittent exercise performance. Eur J Appl Physiol. 2013;113:1673–84.CrossRefPubMed
26.
go back to reference Bond H, Morton L, Braakhuis AJ. Dietary nitrate supplementation improves rowing performance in well-trained rowers. Int J Sport Nutr Exerc Metab. 2012;22:251–6.CrossRefPubMed Bond H, Morton L, Braakhuis AJ. Dietary nitrate supplementation improves rowing performance in well-trained rowers. Int J Sport Nutr Exerc Metab. 2012;22:251–6.CrossRefPubMed
27.
go back to reference Flueck JL, Bogdanova A, Mettler S, Perret C. Is beetroot juice more effective than sodium nitrate? The effects of equimolar nitrate dosages of nitrate-rich beetroot juice and sodium nitrate on oxygen consumption during exercise. Appl Physiol Nutr Metab. 2016;41:421–9.CrossRefPubMed Flueck JL, Bogdanova A, Mettler S, Perret C. Is beetroot juice more effective than sodium nitrate? The effects of equimolar nitrate dosages of nitrate-rich beetroot juice and sodium nitrate on oxygen consumption during exercise. Appl Physiol Nutr Metab. 2016;41:421–9.CrossRefPubMed
29.
go back to reference Dirnberger J, Wiesinger H-P, Kösters A, Müller E. Reproducibility for isometric and isokinetic maximum knee flexion and extension measurements using the IsoMed 2000-dynamometer. Isokin Ex Sci. 2012;20:149–53. IOS Press. Dirnberger J, Wiesinger H-P, Kösters A, Müller E. Reproducibility for isometric and isokinetic maximum knee flexion and extension measurements using the IsoMed 2000-dynamometer. Isokin Ex Sci. 2012;20:149–53. IOS Press.
30.
go back to reference Lund H, Søndergaard K, Zachariassen T, Christensen R, Bülow P, Henriksen M, et al. Learning effect of isokinetic measurements in healthy subjects, and reliability and comparability of Biodex and Lido dynamometers. Clin Physiol Funct Imaging. 2005;25:75–82.CrossRefPubMed Lund H, Søndergaard K, Zachariassen T, Christensen R, Bülow P, Henriksen M, et al. Learning effect of isokinetic measurements in healthy subjects, and reliability and comparability of Biodex and Lido dynamometers. Clin Physiol Funct Imaging. 2005;25:75–82.CrossRefPubMed
31.
go back to reference Sole G, Hamrén J, Milosavljevic S, Nicholson H, Sullivan SJ. Test-retest reliability of isokinetic knee extension and flexion. Arch Phys Med Rehabil. 2007;88:626–31.CrossRefPubMed Sole G, Hamrén J, Milosavljevic S, Nicholson H, Sullivan SJ. Test-retest reliability of isokinetic knee extension and flexion. Arch Phys Med Rehabil. 2007;88:626–31.CrossRefPubMed
Metadata
Title
The effect of six days of dietary nitrate supplementation on performance in trained CrossFit athletes
Authors
Samuel J. Kramer
Daniel A. Baur
Maria T. Spicer
Matthew D. Vukovich
Michael J. Ormsbee
Publication date
01-12-2016
Publisher
BioMed Central
DOI
https://doi.org/10.1186/s12970-016-0150-y

Other articles of this Issue 1/2016

Journal of the International Society of Sports Nutrition 1/2016 Go to the issue