Skip to main content
Top
Published in: Journal of the International Society of Sports Nutrition 1/2015

Open Access 01-12-2015 | Research

Combined L-citrulline and glutathione supplementation increases the concentration of markers indicative of nitric oxide synthesis

Authors: Sarah McKinley-Barnard, Tom Andre, Masahiko Morita, Darryn S. Willoughby

Published in: Journal of the International Society of Sports Nutrition | Issue 1/2015

Login to get access

Abstract

Background

Nitric oxide (NO) is endogenously synthesized from L-arginine and L-citrulline. Due to its effects on nitric oxide synthase (NOS), reduced glutathione (GSH) may protect against the oxidative reduction of NO. The present study determined the effectiveness of L-citrulline and/or GSH on markers indicative of NO synthesis in in vivo conditions with rodents and humans and also in an in vitro condition.

Methods

In phase one, human umbilical vein endothelial cells (HUVECs) were treated with either 0.3 mM L-citrulline, 1 mM GSH (Setria®) or a combination of each at 0.3 mM. In phase two, Sprague–Dawley rats (8 weeks old) were randomly assigned to 3 groups and received either purified water, L-citrulline (500 mg/kg/day), or a combination of L-citrulline (500 mg/kg/day) and GSH (50 mg/kg/day) by oral gavage for 3 days. Blood samples were collected and plasma NOx (nitrite + nitrate) assessed. In phase three, resistance-trained males were randomly assigned to orally ingest either cellulose placebo (2.52 g/day), L-citrulline (2 g/day), GSH (1 g/day), or L-citrulline (2 g/day) + GSH (200 mg/day) for 7 days, and then perform a resistance exercise session involving 3 sets of 10-RM involving the elbow flexors. Venous blood was obtained and used to assess plasma cGMP, nitrite, and NOx.

Results

In phase one, nitrite levels in cells treated with L-citrulline and GSH were significantly greater than control (p < 0.05). In phase two, plasma NOx with L-citrulline + GSH was significantly greater than control and L-citrulline (p < 0.05). In phase three, plasma cGMP was increased, but not significantly (p > 0.05). However, nitrite and NOx for L-citrulline + GSH were significantly greater at 30 min post-exercise when compared to placebo (p < 0.05).

Conclusions

Combining L-citrulline with GSH augments increases in nitrite and NOx levels during in vitro and in vivo conditions.
Literature
1.
go back to reference Boger R, Bode-Boger S. The clinical pharmacology of L-arginine. Annu Rev Pharmacol Toxicol. 2001;41:79–99.PubMedCrossRef Boger R, Bode-Boger S. The clinical pharmacology of L-arginine. Annu Rev Pharmacol Toxicol. 2001;41:79–99.PubMedCrossRef
3.
go back to reference Bode-Boger S, Boger R, Galland A, Tsikas D, Frolich J. L-arginine-induced vasodilation in health humans: pharmokinetic-pharmacodynamic relationship. Br J Clin Pharmacol. 1998;46:489–97.PubMedCentralPubMedCrossRef Bode-Boger S, Boger R, Galland A, Tsikas D, Frolich J. L-arginine-induced vasodilation in health humans: pharmokinetic-pharmacodynamic relationship. Br J Clin Pharmacol. 1998;46:489–97.PubMedCentralPubMedCrossRef
4.
go back to reference Romero MJ, Yao L, Sridhar S, Bhatta A, Dou H, Ramesh G, et al. L-citrulline protects from kidney damage in type 1 diabetic mice. Front Immunol. 2013;4:480.PubMedCentralPubMedCrossRef Romero MJ, Yao L, Sridhar S, Bhatta A, Dou H, Ramesh G, et al. L-citrulline protects from kidney damage in type 1 diabetic mice. Front Immunol. 2013;4:480.PubMedCentralPubMedCrossRef
5.
go back to reference Willoughby DS, Boucher T, Reid J, Skelton G, Clark M. Effects of 7 days of arginine-alpha-ketoglutarate supplementation on blod flow, plama L-arginine, nitric oxide metabolites, and asymmetric dimethyl arginine after resistance exercise. Int J Sports Nutr Exerc Metab. 2011;21:291–9. Willoughby DS, Boucher T, Reid J, Skelton G, Clark M. Effects of 7 days of arginine-alpha-ketoglutarate supplementation on blod flow, plama L-arginine, nitric oxide metabolites, and asymmetric dimethyl arginine after resistance exercise. Int J Sports Nutr Exerc Metab. 2011;21:291–9.
6.
go back to reference Sureda A, Pons A. Arginine and citrulline supplementation in sports and exercise: ergogenic nutrients? Med Sport Sci. 2012;59:18–28.PubMed Sureda A, Pons A. Arginine and citrulline supplementation in sports and exercise: ergogenic nutrients? Med Sport Sci. 2012;59:18–28.PubMed
7.
go back to reference Cutrufello PT, Gadomski SJ, Zavorsky GS. The effect of l-citrulline and watermelon juice supplementation on anaerobic and aerobic exercise performance. J Sports Sci. 2014;17:1–8.CrossRef Cutrufello PT, Gadomski SJ, Zavorsky GS. The effect of l-citrulline and watermelon juice supplementation on anaerobic and aerobic exercise performance. J Sports Sci. 2014;17:1–8.CrossRef
8.
go back to reference Wax B, Kavazis AN, Weldon K, Sperlak J. Effects of supplemental citrulline malate ingestion during repeated bouts of lower-body exercise in advanced weight lifters. J Strength Cond Res. 2015;29:786–92.PubMedCrossRef Wax B, Kavazis AN, Weldon K, Sperlak J. Effects of supplemental citrulline malate ingestion during repeated bouts of lower-body exercise in advanced weight lifters. J Strength Cond Res. 2015;29:786–92.PubMedCrossRef
9.
go back to reference Schwedhelm E, Maas R, Freese R, Jung D, Lukacs Z, Jambrecine A, et al. Pharmacokinetic and pharmacodynamics properties or oral L-citrulline and L-arginine: impact on nitric oxide metabolism. Br J Clin Pharmacol. 2007;65:51–9.PubMedCentralPubMedCrossRef Schwedhelm E, Maas R, Freese R, Jung D, Lukacs Z, Jambrecine A, et al. Pharmacokinetic and pharmacodynamics properties or oral L-citrulline and L-arginine: impact on nitric oxide metabolism. Br J Clin Pharmacol. 2007;65:51–9.PubMedCentralPubMedCrossRef
10.
go back to reference Ghigo D, Geromin D, Franchino C, Todde R, Priotto C, Costamagna C, et al. Correlation between nitric oxide synthase activity and reduced glutathione level in human and murine endothelial cells. Amino Acids. 1996;10:277–81.PubMedCrossRef Ghigo D, Geromin D, Franchino C, Todde R, Priotto C, Costamagna C, et al. Correlation between nitric oxide synthase activity and reduced glutathione level in human and murine endothelial cells. Amino Acids. 1996;10:277–81.PubMedCrossRef
11.
go back to reference Hoffman H, Schmidt HH. Thiol dedepndence of nitric oxide synthase. Biochemistry. 1995;34:13443–52.CrossRef Hoffman H, Schmidt HH. Thiol dedepndence of nitric oxide synthase. Biochemistry. 1995;34:13443–52.CrossRef
12.
go back to reference Mochizuki S, Toyota E, Hiramatsu O, Kajita T, Shigeto F, Takemoto M, et al. Effect of dietary control on plasma nitrate level and estimation of basal systemic nitric oxide production rate in humans. Heart Vessels. 2000;15:274–9.PubMedCrossRef Mochizuki S, Toyota E, Hiramatsu O, Kajita T, Shigeto F, Takemoto M, et al. Effect of dietary control on plasma nitrate level and estimation of basal systemic nitric oxide production rate in humans. Heart Vessels. 2000;15:274–9.PubMedCrossRef
13.
go back to reference Curis E, Nicolis I, Moinard C, Osowska S, Zerrouk N, Bénazeth S, et al. Almost all about citrulline in mammals. Amino Acids. 2005;29:177–205.PubMedCrossRef Curis E, Nicolis I, Moinard C, Osowska S, Zerrouk N, Bénazeth S, et al. Almost all about citrulline in mammals. Amino Acids. 2005;29:177–205.PubMedCrossRef
14.
go back to reference Schneider R, Raff U, Vornberger N, Schmidt M, Freund R, Reber M, et al. L-Arginine counteracts nitric oxide deficiency and improves the recovery phase of ischemic acute renal failure in rats. Kidney Int. 2003;64:216–25.PubMedCrossRef Schneider R, Raff U, Vornberger N, Schmidt M, Freund R, Reber M, et al. L-Arginine counteracts nitric oxide deficiency and improves the recovery phase of ischemic acute renal failure in rats. Kidney Int. 2003;64:216–25.PubMedCrossRef
15.
go back to reference Solomonson LP, Flam BR, Pendleton LC, Goodwin BL, Eichler DC. The caveolar nitric oxide synthase/arginine regeneration system for NO production in endothelial cells. J Exp Biol. 2003;206:2083–7.PubMedCrossRef Solomonson LP, Flam BR, Pendleton LC, Goodwin BL, Eichler DC. The caveolar nitric oxide synthase/arginine regeneration system for NO production in endothelial cells. J Exp Biol. 2003;206:2083–7.PubMedCrossRef
16.
go back to reference Fu X, Li S, Jia G, Gou L, Tian X, Sun L, et al. Protective effect of the nitric oxide pathway in L-citrulline renal ischaemia-reperfusion injury in rats. Folia Biol (Praha). 2013;59:225–32. Fu X, Li S, Jia G, Gou L, Tian X, Sun L, et al. Protective effect of the nitric oxide pathway in L-citrulline renal ischaemia-reperfusion injury in rats. Folia Biol (Praha). 2013;59:225–32.
17.
go back to reference Mori M, Gotoh T. Regulation of nitric oxide production by arginine metabolic enzymes. Biochem Biophys Res Commun. 2000;275:715–9.PubMedCrossRef Mori M, Gotoh T. Regulation of nitric oxide production by arginine metabolic enzymes. Biochem Biophys Res Commun. 2000;275:715–9.PubMedCrossRef
18.
go back to reference van Wijck K, Wijnands KA, Meesters DM, Boonen B, van Loon LJ, Buurman WA, et al. L-citrulline improves splanchnic perfusion and reduces gut injury during exercise. Med Sci Sports Exerc. 2014;46:2039–46.PubMedCrossRef van Wijck K, Wijnands KA, Meesters DM, Boonen B, van Loon LJ, Buurman WA, et al. L-citrulline improves splanchnic perfusion and reduces gut injury during exercise. Med Sci Sports Exerc. 2014;46:2039–46.PubMedCrossRef
19.
go back to reference Shuttleworth CW, Conlon SB, Sanders KM. Regulation of citrulline recycling in nitric oxide-dependent neurotransmission in the murine proximal colon. Br J Pharmacol. 1997;120:707–13.PubMedCentralPubMedCrossRef Shuttleworth CW, Conlon SB, Sanders KM. Regulation of citrulline recycling in nitric oxide-dependent neurotransmission in the murine proximal colon. Br J Pharmacol. 1997;120:707–13.PubMedCentralPubMedCrossRef
20.
go back to reference Walker M, Kinter M, Roberts R, Spitz D. Nitric oxide induced cytotoxicity: involvment of cellular resistance to oxidative stress and the role of glutathione in protection. Pediatr Res. 1995;37:41–9.PubMedCrossRef Walker M, Kinter M, Roberts R, Spitz D. Nitric oxide induced cytotoxicity: involvment of cellular resistance to oxidative stress and the role of glutathione in protection. Pediatr Res. 1995;37:41–9.PubMedCrossRef
21.
go back to reference Ghigo D, Alessio P, Foco A, Bussolino F, Costamagna C, Heller R, et al. Nitric oxide synthesis is impaired in glutathione-depleted human umbilical vein endothelial cells. Am J Physiol. 1993;265:C728–32.PubMed Ghigo D, Alessio P, Foco A, Bussolino F, Costamagna C, Heller R, et al. Nitric oxide synthesis is impaired in glutathione-depleted human umbilical vein endothelial cells. Am J Physiol. 1993;265:C728–32.PubMed
22.
go back to reference Wakulich C, Tepperman B. Role of glutathione in nitric oxide-mediated injury to rat gastric mucosal cells. Eur J Pharmacol. 1997;319:333–41.PubMedCrossRef Wakulich C, Tepperman B. Role of glutathione in nitric oxide-mediated injury to rat gastric mucosal cells. Eur J Pharmacol. 1997;319:333–41.PubMedCrossRef
23.
go back to reference Liu Y, Fu X, Gou L, Li S, Lan N, Zheng Y, et al. L-citrulline protects against glycerol-induced acute renal failure in rats. Ren Fail. 2013;35:367–73.PubMedCrossRef Liu Y, Fu X, Gou L, Li S, Lan N, Zheng Y, et al. L-citrulline protects against glycerol-induced acute renal failure in rats. Ren Fail. 2013;35:367–73.PubMedCrossRef
24.
go back to reference Castillo L, Chapman TE, Yu YM, Ajami A, Burke JF, Young VR. Dietary arginine uptake by the splanchnic region in adult humans. Am J Physiol. 1993;265:E532–9.PubMed Castillo L, Chapman TE, Yu YM, Ajami A, Burke JF, Young VR. Dietary arginine uptake by the splanchnic region in adult humans. Am J Physiol. 1993;265:E532–9.PubMed
25.
go back to reference Oyadomari S, Gotoh T, Aoyagi K, Araki E, Shichiri M, Mori M. Coinduction of endothelial nitric oxide synthase and arginine recycling enzymes in aorta of diabetic rats. Nitric Oxide. 2001;5:252–60.PubMedCrossRef Oyadomari S, Gotoh T, Aoyagi K, Araki E, Shichiri M, Mori M. Coinduction of endothelial nitric oxide synthase and arginine recycling enzymes in aorta of diabetic rats. Nitric Oxide. 2001;5:252–60.PubMedCrossRef
26.
go back to reference Drenning JA, Lira VA, Soltow QA, Canon CN, Valera LM, Brown DL, et al. Endothelial nitric oxide synthase is involved in calcium-induced Akt signaling in mouse skeletal muscle. Nitric Oxide. 2009;21:192–200.PubMedCrossRef Drenning JA, Lira VA, Soltow QA, Canon CN, Valera LM, Brown DL, et al. Endothelial nitric oxide synthase is involved in calcium-induced Akt signaling in mouse skeletal muscle. Nitric Oxide. 2009;21:192–200.PubMedCrossRef
27.
go back to reference Totzeck M, Schicho A, Stock P, Kelm M, Rassaf T, Hendgen-Cotta U. Nitrite circumvents canonical cGMP signaling to enhance proliferation of myocyte precursor cells. Mol Cell Biochem. 2015;401:175–83.PubMedCrossRef Totzeck M, Schicho A, Stock P, Kelm M, Rassaf T, Hendgen-Cotta U. Nitrite circumvents canonical cGMP signaling to enhance proliferation of myocyte precursor cells. Mol Cell Biochem. 2015;401:175–83.PubMedCrossRef
28.
go back to reference Sheffield-Moore M, Wiktorowicz JE, Soman KV, Danesi CP, Kinsky MP, Dillon EL, et al. Sildenafil increases muscle protein synthesis and reduces muscle fatigue. Clin Transl Sci. 2013;6:463–8.PubMedCentralPubMedCrossRef Sheffield-Moore M, Wiktorowicz JE, Soman KV, Danesi CP, Kinsky MP, Dillon EL, et al. Sildenafil increases muscle protein synthesis and reduces muscle fatigue. Clin Transl Sci. 2013;6:463–8.PubMedCentralPubMedCrossRef
Metadata
Title
Combined L-citrulline and glutathione supplementation increases the concentration of markers indicative of nitric oxide synthesis
Authors
Sarah McKinley-Barnard
Tom Andre
Masahiko Morita
Darryn S. Willoughby
Publication date
01-12-2015
Publisher
BioMed Central
DOI
https://doi.org/10.1186/s12970-015-0086-7

Other articles of this Issue 1/2015

Journal of the International Society of Sports Nutrition 1/2015 Go to the issue