Skip to main content
Top
Published in: Journal of the International Society of Sports Nutrition 1/2015

Open Access 01-12-2015 | Research article

Glutathione supplementation suppresses muscle fatigue induced by prolonged exercise via improved aerobic metabolism

Authors: Wataru Aoi, Yumi Ogaya, Maki Takami, Toru Konishi, Yusuke Sauchi, Eun Young Park, Sayori Wada, Kenji Sato, Akane Higashi

Published in: Journal of the International Society of Sports Nutrition | Issue 1/2015

Login to get access

Abstract

Backgrounds

Glutathione is an endogenous redox couple in animal cells and plays important roles in antioxidant defense and detoxification, although it is unknown if oral glutathione supplementation affects exercise-induced physiological changes. The present study investigated the effect of glutathione intake on exercise-induced muscle metabolism and fatigue in mice and humans.

Methods

ICR mice were divided into 4 groups: sedentary control, sedentary supplemented with glutathione (2.0%, 5 μL/g body weight), exercise control, and exercise supplemented with glutathione. After 2 weeks, the exercise groups ran on a treadmill at 25 m/min for 30 min. Immediately post-exercise, intermuscular pH was measured, and hind limb muscle and blood samples were collected to measure biochemical parameters. In a double-blind, cross-over study, 8 healthy men (35.9 ± 2.0 y) were administered either glutathione (1 g/d) or placebo for 2 weeks. Then, they exercised on a cycle ergometer at 40% maximal heart rate for 60 min. Psychological state and blood biochemical parameters were examined after exercise.

Results

In the mouse experiment, post-exercise plasma non-esterified fatty acids were significantly lower in the exercise supplemented with glutathione group (820 ± 44 mEq/L) compared with the exercise control group (1152 ± 61 mEq/L). Intermuscular pH decreased with exercise (7.17 ± 0.01); however, this reduction was prevented by glutathione supplementation (7.23 ± 0.02). The peroxisome proliferator-activated receptor-γ coactivator-1α protein and mitochondrial DNA levels were significantly higher in the sedentary supplemented with glutathione group compared with the sedentary control group (25% and 53% higher, respectively). In the human study, the elevation of blood lactate was suppressed by glutathione intake (placebo, 3.4 ± 1.1 mM; glutathione, 2.9 ± 0.6 mM). Fatigue-related psychological factors were significantly decreased in the glutathione trial compared with the placebo trial.

Conclusions

These results suggest that glutathione supplementation improved lipid metabolism and acidification in skeletal muscles during exercise, leading to less muscle fatigue.
Appendix
Available only for authorised users
Literature
1.
go back to reference Meister A. Glutathione-ascorbic acid antioxidant system in animals. J Biol Chem. 1994;269:9397–400.PubMed Meister A. Glutathione-ascorbic acid antioxidant system in animals. J Biol Chem. 1994;269:9397–400.PubMed
2.
go back to reference Tedeschi M, Bohm S, Di Re F, Oriana S, Spatti GB, Tognella S, et al. Glutathione and detoxification. Cancer Treat Rev. 1990;17:203–8.CrossRefPubMed Tedeschi M, Bohm S, Di Re F, Oriana S, Spatti GB, Tognella S, et al. Glutathione and detoxification. Cancer Treat Rev. 1990;17:203–8.CrossRefPubMed
3.
go back to reference Gambelunghe C, Rossi R, Micheletti A, Mariucci G, Rufini S. Physical exercise intensity can be related to plasma glutathione levels. J Physiol Biochem. 2001;57:9–14.CrossRef Gambelunghe C, Rossi R, Micheletti A, Mariucci G, Rufini S. Physical exercise intensity can be related to plasma glutathione levels. J Physiol Biochem. 2001;57:9–14.CrossRef
4.
go back to reference Ji LL, Fu R. Responses of glutathione system and antioxidant enzymes to exhaustive exercise and hydroperoxide. J Appl Physiol (1985). 1992;72:549–54. Ji LL, Fu R. Responses of glutathione system and antioxidant enzymes to exhaustive exercise and hydroperoxide. J Appl Physiol (1985). 1992;72:549–54.
5.
go back to reference Pyke S, Lew H, Quintanilha A. Severe depletion in liver glutathione during physical exercise. Biochem Biophys Res Commun. 1986;139:926–31.CrossRefPubMed Pyke S, Lew H, Quintanilha A. Severe depletion in liver glutathione during physical exercise. Biochem Biophys Res Commun. 1986;139:926–31.CrossRefPubMed
6.
go back to reference Lew H, Pyke S, Quintanilha A. Changes in the glutathione status of plasma, liver and muscle following exhaustive exercise in rats. FEBS Lett. 1985;185:262–6.CrossRefPubMed Lew H, Pyke S, Quintanilha A. Changes in the glutathione status of plasma, liver and muscle following exhaustive exercise in rats. FEBS Lett. 1985;185:262–6.CrossRefPubMed
7.
go back to reference Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 1999;98:115–24.CrossRefPubMed Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 1999;98:115–24.CrossRefPubMed
8.
go back to reference Olesen J, Kiilerich K, Pilegaard H. PGC-1-alpha-mediated adaptations in skeletal muscle. Pflugers Arch. 2010;460:153–62.CrossRefPubMed Olesen J, Kiilerich K, Pilegaard H. PGC-1-alpha-mediated adaptations in skeletal muscle. Pflugers Arch. 2010;460:153–62.CrossRefPubMed
10.
go back to reference Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S, et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci USA. 2003;100:8466–71.CrossRefPubMedCentralPubMed Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S, et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci USA. 2003;100:8466–71.CrossRefPubMedCentralPubMed
11.
go back to reference Wenz T, Rossi SG, Rotundo RL, Spiegelman BM, Moraes CT. Increased muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during aging. Proc Natl Acad Sci USA. 2009;106:20405–10.CrossRefPubMedCentralPubMed Wenz T, Rossi SG, Rotundo RL, Spiegelman BM, Moraes CT. Increased muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during aging. Proc Natl Acad Sci USA. 2009;106:20405–10.CrossRefPubMedCentralPubMed
12.
go back to reference Kovacs-Nolan J, Rupa P, Matsui T, Tanaka M, Konishi T, et al. In vitro and ex vivo uptake of GSH across the intestinal epithelium, and fate of oral GSH after in vivo supplementation. J Agric Food Chem. in press Kovacs-Nolan J, Rupa P, Matsui T, Tanaka M, Konishi T, et al. In vitro and ex vivo uptake of GSH across the intestinal epithelium, and fate of oral GSH after in vivo supplementation. J Agric Food Chem. in press
13.
go back to reference Park EY, Shimura N, Konishi T, Sauchi Y, Wada S, Aoi W, et al. Increase in the protein-bound form of glutathione in human blood after oral administration of glutathione. J Agric Food Chem. 2014;62:6183–9.CrossRefPubMed Park EY, Shimura N, Konishi T, Sauchi Y, Wada S, Aoi W, et al. Increase in the protein-bound form of glutathione in human blood after oral administration of glutathione. J Agric Food Chem. 2014;62:6183–9.CrossRefPubMed
14.
15.
go back to reference Franco R, Schoneveld OJ, Pappa A, Panayiotidis MI. The central role of glutathione in the pathophysiology of human diseases. Arch Physiol Biochem. 2007;113:234–58.CrossRefPubMed Franco R, Schoneveld OJ, Pappa A, Panayiotidis MI. The central role of glutathione in the pathophysiology of human diseases. Arch Physiol Biochem. 2007;113:234–58.CrossRefPubMed
16.
go back to reference Mainwood GW, Renaud JM. The effect of acid–base balance on fatigue of skeletal muscle. Can J Physiol Pharmacol. 1985;63:403–16.CrossRefPubMed Mainwood GW, Renaud JM. The effect of acid–base balance on fatigue of skeletal muscle. Can J Physiol Pharmacol. 1985;63:403–16.CrossRefPubMed
17.
go back to reference Fogh-Andersen N, Altura BM, Altura BT, Siggaard-Andersen O. Composition of interstitial fluid. Clin Chem. 1995;41:1522–5.PubMed Fogh-Andersen N, Altura BM, Altura BT, Siggaard-Andersen O. Composition of interstitial fluid. Clin Chem. 1995;41:1522–5.PubMed
18.
go back to reference Aukland K, Fadnes HO. Protein concentration of interstitial fluid collected from rat skin by a wick method. Acta Physiol Scand. 1973;88:350–8.CrossRefPubMed Aukland K, Fadnes HO. Protein concentration of interstitial fluid collected from rat skin by a wick method. Acta Physiol Scand. 1973;88:350–8.CrossRefPubMed
19.
go back to reference Brooks GA. The lactate shuttle during exercise and recovery. Med Sci Sports Exerc. 1986;18:360–8.CrossRefPubMed Brooks GA. The lactate shuttle during exercise and recovery. Med Sci Sports Exerc. 1986;18:360–8.CrossRefPubMed
20.
go back to reference Bangsbo J, Aagaard T, Olsen M, Kiens B, Turcotte LP, Richter EA. Lactate and H+ uptake in inactive muscles during intense exercise in man. J Physiol. 1995;488:219–29.CrossRefPubMedCentralPubMed Bangsbo J, Aagaard T, Olsen M, Kiens B, Turcotte LP, Richter EA. Lactate and H+ uptake in inactive muscles during intense exercise in man. J Physiol. 1995;488:219–29.CrossRefPubMedCentralPubMed
21.
22.
go back to reference Wahrenberg H, Bolinder J, Arner P. Adrenergic regulation of lipolysis in human fat cells during exercise. Eur J Clin Invest. 1991;21:534–41.CrossRefPubMed Wahrenberg H, Bolinder J, Arner P. Adrenergic regulation of lipolysis in human fat cells during exercise. Eur J Clin Invest. 1991;21:534–41.CrossRefPubMed
23.
go back to reference Sahlin K, Harris RC. Control of lipid oxidation during exercise: role of energy state and mitochondrial factors. Acta Physiol (Oxf). 2008;194:283–91.CrossRef Sahlin K, Harris RC. Control of lipid oxidation during exercise: role of energy state and mitochondrial factors. Acta Physiol (Oxf). 2008;194:283–91.CrossRef
24.
go back to reference Calvo JA, Daniels TG, Wang X, Paul A, Lin J, Spiegelman BM, et al. Muscle-specific expression of PPAR-gamma coactivator-1alpha improves exercise performance and increases peak oxygen uptake. J Appl Physiol (1985). 2008;104:1304–12.CrossRef Calvo JA, Daniels TG, Wang X, Paul A, Lin J, Spiegelman BM, et al. Muscle-specific expression of PPAR-gamma coactivator-1alpha improves exercise performance and increases peak oxygen uptake. J Appl Physiol (1985). 2008;104:1304–12.CrossRef
25.
go back to reference Tadaishi M, Miura S, Kai Y, Kano Y, Oishi Y, Ezaki O. Skeletal muscle-specific expression of PGC-1α-b, an exercise-responsive isoform, increases exercise capacity and peak oxygen uptake. PLoS One. 2011;6:e28290.CrossRefPubMedCentralPubMed Tadaishi M, Miura S, Kai Y, Kano Y, Oishi Y, Ezaki O. Skeletal muscle-specific expression of PGC-1α-b, an exercise-responsive isoform, increases exercise capacity and peak oxygen uptake. PLoS One. 2011;6:e28290.CrossRefPubMedCentralPubMed
26.
go back to reference Zechner C, Lai L, Zechner JF, Geng T, Yan Z, Rumsey JW, et al. Total skeletal muscle PGC-1 deficiency uncouples mitochondrial derangements from fiber type determination and insulin sensitivity. Cell Metab. 2010;12:633–42.CrossRefPubMedCentralPubMed Zechner C, Lai L, Zechner JF, Geng T, Yan Z, Rumsey JW, et al. Total skeletal muscle PGC-1 deficiency uncouples mitochondrial derangements from fiber type determination and insulin sensitivity. Cell Metab. 2010;12:633–42.CrossRefPubMedCentralPubMed
27.
go back to reference Lee WJ, Kim M, Park HS, Kim HS, Jeon MJ, Oh KS, et al. AMPK activation increases fatty acid oxidation in skeletal muscle by activating PPARalpha and PGC-1. Biochem Biophys Res Commun. 2006;340:291–5.CrossRefPubMed Lee WJ, Kim M, Park HS, Kim HS, Jeon MJ, Oh KS, et al. AMPK activation increases fatty acid oxidation in skeletal muscle by activating PPARalpha and PGC-1. Biochem Biophys Res Commun. 2006;340:291–5.CrossRefPubMed
28.
go back to reference Terada S, Goto M, Kato M, Kawanaka K, Shimokawa T, Tabata I. Effects of low-intensity prolonged exercise on PGC-1 mRNA expression in rat epitrochlearis muscle. Biochem Biophys Res Commun. 2002;296:350–4.CrossRefPubMed Terada S, Goto M, Kato M, Kawanaka K, Shimokawa T, Tabata I. Effects of low-intensity prolonged exercise on PGC-1 mRNA expression in rat epitrochlearis muscle. Biochem Biophys Res Commun. 2002;296:350–4.CrossRefPubMed
29.
go back to reference Ristow M, Zarse K, Oberbach A, Klöting N, Birringer M, Kiehntopf M, et al. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci USA. 2009;106:8665–70.CrossRefPubMedCentralPubMed Ristow M, Zarse K, Oberbach A, Klöting N, Birringer M, Kiehntopf M, et al. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci USA. 2009;106:8665–70.CrossRefPubMedCentralPubMed
30.
go back to reference Gomez-Cabrera MC, Domenech E, Romagnoli M, Arduini A, Borras C, Pallardo FV, et al. Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. Am J Clin Nutr. 2008;87:142–9.PubMed Gomez-Cabrera MC, Domenech E, Romagnoli M, Arduini A, Borras C, Pallardo FV, et al. Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. Am J Clin Nutr. 2008;87:142–9.PubMed
Metadata
Title
Glutathione supplementation suppresses muscle fatigue induced by prolonged exercise via improved aerobic metabolism
Authors
Wataru Aoi
Yumi Ogaya
Maki Takami
Toru Konishi
Yusuke Sauchi
Eun Young Park
Sayori Wada
Kenji Sato
Akane Higashi
Publication date
01-12-2015
Publisher
BioMed Central
DOI
https://doi.org/10.1186/s12970-015-0067-x

Other articles of this Issue 1/2015

Journal of the International Society of Sports Nutrition 1/2015 Go to the issue