Skip to main content
Top
Published in: Pediatric Rheumatology 1/2020

01-12-2020 | Artificial Intelligence | Research article

Artificial intelligence for interpretation of segments of whole body MRI in CNO: pilot study comparing radiologists versus machine learning algorithm

Authors: Chandrika S. Bhat, Mark Chopra, Savvas Andronikou, Suvadip Paul, Zach Wener-Fligner, Anna Merkoulovitch, Izidora Holjar-Erlic, Flavia Menegotto, Ewan Simpson, David Grier, Athimalaipet V. Ramanan

Published in: Pediatric Rheumatology | Issue 1/2020

Login to get access

Abstract

Background

To initiate the development of a machine learning algorithm capable of comparing segments of pre and post pamidronate whole body MRI scans to assess treatment response and to compare the results of this algorithm with the analysis of a panel of paediatric radiologists.

Methods

Whole body MRI of patients under the age of 16 diagnosed with CNO and treated with pamidronate at a tertiary referral paediatric hospital in United Kingdom between 2005 and 2017 were reviewed. Pre and post pamidronate images of the commonest sites of involvement (distal femur and proximal tibia) were manually selected (n = 45). A machine learning algorithm was developed and tested to assess treatment effectiveness by comparing pre and post pamidronate scans. The results of this algorithm were compared with the results of a panel of radiologists (ground truth).

Results

When tested initially the machine algorithm predicted 4/7 (57.1%) examples correctly in the multi class model, and 5/7 (71.4%) correctly in the binary group. However when compared to the ground truth, the machine model was able to classify only 33.3% of the samples correctly but had a sensitivity of 100% in detecting improvement or worsening of disease.

Conclusion

The machine learning could detect new lesions or resolution of a lesion with good sensitivity but failed to classify stable disease accurately. However, further validation on larger datasets are required to improve the specificity and accuracy of the machine model.
Literature
1.
go back to reference Wipff J, Costantino F, Lemelle I, Pajot C, Duquesne A, Lorrot M, et al. A large national cohort of French patients with chronic recurrent multifocal osteitis. Arthritis Rheumatol. 2015;67(4):1128–37.CrossRef Wipff J, Costantino F, Lemelle I, Pajot C, Duquesne A, Lorrot M, et al. A large national cohort of French patients with chronic recurrent multifocal osteitis. Arthritis Rheumatol. 2015;67(4):1128–37.CrossRef
2.
go back to reference Bhat CS, Anderson C, Harbinson A, McCann LJ, Roderick M, Finn A, et al. Chronic non bacterial osteitis- a multicentre study. Pediatr Rheumatol Online J. 2018;16(1):74.CrossRef Bhat CS, Anderson C, Harbinson A, McCann LJ, Roderick M, Finn A, et al. Chronic non bacterial osteitis- a multicentre study. Pediatr Rheumatol Online J. 2018;16(1):74.CrossRef
3.
go back to reference Roderick MR, Ramanan AV. Chronic recurrent multifocal osteomyelitis. Adv Exp Med Biol. 2013;764:99–107.CrossRef Roderick MR, Ramanan AV. Chronic recurrent multifocal osteomyelitis. Adv Exp Med Biol. 2013;764:99–107.CrossRef
4.
go back to reference Falip C, Alison M, Boutry N, Job-Deslandre C, Cotten A, Azoulay R, et al. Chronic recurrent multifocal osteomyelitis (CRMO): a longitudinal case series review. Pediatr Radiol. 2013;43(3):355–75.CrossRef Falip C, Alison M, Boutry N, Job-Deslandre C, Cotten A, Azoulay R, et al. Chronic recurrent multifocal osteomyelitis (CRMO): a longitudinal case series review. Pediatr Radiol. 2013;43(3):355–75.CrossRef
5.
go back to reference Ording Müller LS, Avenarius D, Olsen OE. High signal in bone marrow at diffusion-weighted imaging with body background suppression (DWIBS) in healthy children. Pediatr Radiol. 2011;41(2):221–6.CrossRef Ording Müller LS, Avenarius D, Olsen OE. High signal in bone marrow at diffusion-weighted imaging with body background suppression (DWIBS) in healthy children. Pediatr Radiol. 2011;41(2):221–6.CrossRef
6.
go back to reference Bien N, Rajpurkar P, Ball RL, Irvin J, Park A, Jones E, et al. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of MRNet. PLoS Med. 2018;15(11):e1002699.CrossRef Bien N, Rajpurkar P, Ball RL, Irvin J, Park A, Jones E, et al. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of MRNet. PLoS Med. 2018;15(11):e1002699.CrossRef
7.
go back to reference Zech JR, Badgeley MA, Liu M, Costa AB, Titano JJ, Oermann EK. Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study. PLoS Med. 2018;15(11):e1002683.CrossRef Zech JR, Badgeley MA, Liu M, Costa AB, Titano JJ, Oermann EK. Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study. PLoS Med. 2018;15(11):e1002683.CrossRef
8.
go back to reference Taylor AG, Mielke C, Mongan J. Automated detection of moderate and large pneumothorax on frontal chest X-rays using deep convolutional neural networks: a retrospective study. PLoS Med. 2018;15(11):e1002697.CrossRef Taylor AG, Mielke C, Mongan J. Automated detection of moderate and large pneumothorax on frontal chest X-rays using deep convolutional neural networks: a retrospective study. PLoS Med. 2018;15(11):e1002697.CrossRef
9.
go back to reference Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL. Artificial intelligence in radiology. Nat Rev Cancer. 2018;18(8):500–10.CrossRef Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL. Artificial intelligence in radiology. Nat Rev Cancer. 2018;18(8):500–10.CrossRef
10.
go back to reference Pal CR, Tasker AD, Ostlere SJ, Watson MS. Heterogeneous signal in bone marrow on MRI of children's feet: a normal finding? Skeletal Radiol. 1999;28(5):274–8.CrossRef Pal CR, Tasker AD, Ostlere SJ, Watson MS. Heterogeneous signal in bone marrow on MRI of children's feet: a normal finding? Skeletal Radiol. 1999;28(5):274–8.CrossRef
11.
go back to reference Avenarius DFM, Ording Müller LS, Rosendahl K. Joint fluid, bone marrow Edemalike changes, and ganglion cysts in the pediatric wrist: features that may mimic pathologic abnormalities-follow-up of a healthy cohort. AJR Am J Roentgenol. 2017;208(6):1352–7.CrossRef Avenarius DFM, Ording Müller LS, Rosendahl K. Joint fluid, bone marrow Edemalike changes, and ganglion cysts in the pediatric wrist: features that may mimic pathologic abnormalities-follow-up of a healthy cohort. AJR Am J Roentgenol. 2017;208(6):1352–7.CrossRef
Metadata
Title
Artificial intelligence for interpretation of segments of whole body MRI in CNO: pilot study comparing radiologists versus machine learning algorithm
Authors
Chandrika S. Bhat
Mark Chopra
Savvas Andronikou
Suvadip Paul
Zach Wener-Fligner
Anna Merkoulovitch
Izidora Holjar-Erlic
Flavia Menegotto
Ewan Simpson
David Grier
Athimalaipet V. Ramanan
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Pediatric Rheumatology / Issue 1/2020
Electronic ISSN: 1546-0096
DOI
https://doi.org/10.1186/s12969-020-00442-9

Other articles of this Issue 1/2020

Pediatric Rheumatology 1/2020 Go to the issue