Skip to main content
Top
Published in: Pediatric Rheumatology 1/2019

Open Access 01-12-2019 | Juvenile Rheumatoid Arthritis | Research article

TNF blockade contributes to restore lipid oxidation during exercise in children with juvenile idiopathic arthritis

Authors: Emmanuelle Rochette, Pierre Bourdier, Bruno Pereira, Eric Doré, Anthony Birat, Sébastien Ratel, Stéphane Echaubard, Pascale Duché, Etienne Merlin

Published in: Pediatric Rheumatology | Issue 1/2019

Login to get access

Abstract

Background

Children with juvenile idiopathic arthritis (JIA) have impaired physical abilities. TNF-α plays a crucial role in this pathogenesis, but it is also involved in the use of lipids and muscle health. Objective of this study was to explore substrate oxidation and impact of TNF blockade on energy metabolism in children with JIA as compared to healthy children.

Methods

Fifteen non-TNF-blockaded and 15 TNF-blockaded children with JIA and 15 healthy controls were matched by sex, age, and Tanner stage. Participants completed a submaximal incremental exercise test on ergocycle to determine fat and carbohydrate oxidation rates by indirect calorimetry.

Results

The maximal fat oxidation rate during exercise was lower in JIA children untreated by TNF blockade (134.3 ± 45.2 mg.min− 1) when compared to the controls (225.3 ± 92.9 mg.min− 1, p = 0.007); but was higher in JIA children under TNF blockade (163.2 ± 59.0 mg.min− 1, p = 0.31) when compared to JIA children untreated by TNF blockade. At the same relative exercise intensities, there was no difference in carbohydrate oxidation rate between three groups.

Conclusions

Lipid metabolism during exercise was found to be impaired in children with JIA. However, TNF treatment seems to improve the fat oxidation rate in this population.

Trial registration

In ClinicalTrials.gov, reference number NCT02977416, registered on 30 November 2016.
Literature
1.
go back to reference Lelieveld OTHM, van Brussel M, Takken T, van Weert E, van Leeuwen MA, Armbrust W. Aerobic and anaerobic exercise capacity in adolescents with juvenile idiopathic arthritis. Arthritis Rheum. 2007;57:898–904.CrossRef Lelieveld OTHM, van Brussel M, Takken T, van Weert E, van Leeuwen MA, Armbrust W. Aerobic and anaerobic exercise capacity in adolescents with juvenile idiopathic arthritis. Arthritis Rheum. 2007;57:898–904.CrossRef
2.
go back to reference Perandini LA, de Sá-Pinto AL, Roschel H, Benatti FB, Lima FR, Bonfá E, et al. Exercise as a therapeutic tool to counteract inflammation and clinical symptoms in autoimmune rheumatic diseases. Autoimmun Rev. 2012;12:218–24.CrossRef Perandini LA, de Sá-Pinto AL, Roschel H, Benatti FB, Lima FR, Bonfá E, et al. Exercise as a therapeutic tool to counteract inflammation and clinical symptoms in autoimmune rheumatic diseases. Autoimmun Rev. 2012;12:218–24.CrossRef
3.
go back to reference Cavallo S, April KT, Grandpierre V, Majnemer A, Feldman DE. Leisure in children and adolescents with juvenile idiopathic arthritis: a systematic review. PLoS One. 2014;9:e104642.CrossRef Cavallo S, April KT, Grandpierre V, Majnemer A, Feldman DE. Leisure in children and adolescents with juvenile idiopathic arthritis: a systematic review. PLoS One. 2014;9:e104642.CrossRef
4.
go back to reference Limenis E, Grosbein HA, Feldman BM. The relationship between physical activity levels and pain in children with juvenile idiopathic arthritis. J Rheumatol. 2014;41:345–51.CrossRef Limenis E, Grosbein HA, Feldman BM. The relationship between physical activity levels and pain in children with juvenile idiopathic arthritis. J Rheumatol. 2014;41:345–51.CrossRef
5.
go back to reference Brabnikova Maresova K, Jarosova K, Pavelka K, Stepan JJ. The association between lean mass and bone mineral content in the high disease activity group of adult patients with juvenile idiopathic arthritis. BMC Musculoskelet Disord. 2014;15:51.CrossRef Brabnikova Maresova K, Jarosova K, Pavelka K, Stepan JJ. The association between lean mass and bone mineral content in the high disease activity group of adult patients with juvenile idiopathic arthritis. BMC Musculoskelet Disord. 2014;15:51.CrossRef
6.
go back to reference Bechtold S, Roth J. Natural history of growth and body composition in juvenile idiopathic arthritis. Horm Res. 2009;72(Suppl 1):13–9.CrossRef Bechtold S, Roth J. Natural history of growth and body composition in juvenile idiopathic arthritis. Horm Res. 2009;72(Suppl 1):13–9.CrossRef
7.
go back to reference Gualano B, Bonfa E, Pereira RMR, Silva CA. Physical activity for paediatric rheumatic diseases: standing up against old paradigms. Nat Rev Rheumatol. 2017;13:368–79.CrossRef Gualano B, Bonfa E, Pereira RMR, Silva CA. Physical activity for paediatric rheumatic diseases: standing up against old paradigms. Nat Rev Rheumatol. 2017;13:368–79.CrossRef
8.
go back to reference Bruce CR, Dyck DJ. Cytokine regulation of skeletal muscle fatty acid metabolism: effect of interleukin-6 and tumor necrosis factor-alpha. Am J Physiol Endocrinol Metab. 2004;287:E616–21.CrossRef Bruce CR, Dyck DJ. Cytokine regulation of skeletal muscle fatty acid metabolism: effect of interleukin-6 and tumor necrosis factor-alpha. Am J Physiol Endocrinol Metab. 2004;287:E616–21.CrossRef
9.
go back to reference da Silva BSP, Bonfá E, de Moraes JCB, Saad CGS, de Medeiros Ribeiro AC, Gonçalves CR, et al. Effects of anti-TNF therapy on glucose metabolism in patients with ankylosing spondylitis, psoriatic arthritis or juvenile idiopathic arthritis. Biologicals. 2010;38:567–9.CrossRef da Silva BSP, Bonfá E, de Moraes JCB, Saad CGS, de Medeiros Ribeiro AC, Gonçalves CR, et al. Effects of anti-TNF therapy on glucose metabolism in patients with ankylosing spondylitis, psoriatic arthritis or juvenile idiopathic arthritis. Biologicals. 2010;38:567–9.CrossRef
10.
go back to reference Chen X, Xun K, Chen L, Wang Y. TNF-alpha, a potent lipid metabolism regulator. Cell Biochem Funct. 2009;27:407–16.CrossRef Chen X, Xun K, Chen L, Wang Y. TNF-alpha, a potent lipid metabolism regulator. Cell Biochem Funct. 2009;27:407–16.CrossRef
11.
go back to reference Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Endert E, et al. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Phys. 1993;265:E380–91. Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Endert E, et al. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Phys. 1993;265:E380–91.
12.
go back to reference Riddell MC, Bar-Or O, Wilk B, Parolin ML, Heigenhauser GJ. Substrate utilization during exercise with glucose and glucose plus fructose ingestion in boys ages 10--14 yr. J Appl Physiol (1985). 2001;90(3):903-11.CrossRef Riddell MC, Bar-Or O, Wilk B, Parolin ML, Heigenhauser GJ. Substrate utilization during exercise with glucose and glucose plus fructose ingestion in boys ages 10--14 yr. J Appl Physiol (1985). 2001;90(3):903-11.CrossRef
13.
go back to reference Achten J, Venables MC, Jeukendrup AE. Fat oxidation rates are higher during running compared with cycling over a wide range of intensities. Metab Clin Exp. 2003;52:747–52.CrossRef Achten J, Venables MC, Jeukendrup AE. Fat oxidation rates are higher during running compared with cycling over a wide range of intensities. Metab Clin Exp. 2003;52:747–52.CrossRef
14.
go back to reference Tarnopolsky LJ, MacDougall JD, Atkinson SA, Tarnopolsky MA, Sutton JR. Gender differences in substrate for endurance exercise. J Appl Physiol. 1990;68:302–8.CrossRef Tarnopolsky LJ, MacDougall JD, Atkinson SA, Tarnopolsky MA, Sutton JR. Gender differences in substrate for endurance exercise. J Appl Physiol. 1990;68:302–8.CrossRef
15.
go back to reference Riddell MC, Bar-Or O, Wilk B, Parolin ML, Heigenhauser GJ. Substrate utilization during exercise with glucose and glucose plus fructose ingestion in boys ages 10--14 yr. J Appl Physiol. 2001;90:903–11.CrossRef Riddell MC, Bar-Or O, Wilk B, Parolin ML, Heigenhauser GJ. Substrate utilization during exercise with glucose and glucose plus fructose ingestion in boys ages 10--14 yr. J Appl Physiol. 2001;90:903–11.CrossRef
16.
go back to reference Venables MC, Achten J, Jeukendrup AE. Determinants of fat oxidation during exercise in healthy men and women: a cross-sectional study. J Appl Physiol. 2005;98:160–7.CrossRef Venables MC, Achten J, Jeukendrup AE. Determinants of fat oxidation during exercise in healthy men and women: a cross-sectional study. J Appl Physiol. 2005;98:160–7.CrossRef
17.
go back to reference Goodpaster BH, Wolfe RR, Kelley DE. Effects of obesity on substrate utilization during exercise. Obes Res. 2002;10:575–84.CrossRef Goodpaster BH, Wolfe RR, Kelley DE. Effects of obesity on substrate utilization during exercise. Obes Res. 2002;10:575–84.CrossRef
18.
go back to reference Stephens BR, Cole AS, Mahon AD. The influence of biological maturation on fat and carbohydrate metabolism during exercise in males. Int J Sport Nutr Exerc Metab. 2006;16:166–79.CrossRef Stephens BR, Cole AS, Mahon AD. The influence of biological maturation on fat and carbohydrate metabolism during exercise in males. Int J Sport Nutr Exerc Metab. 2006;16:166–79.CrossRef
19.
go back to reference Timmons BW, Bar-Or O, Riddell MC. Influence of age and pubertal status on substrate utilization during exercise with and without carbohydrate intake in healthy boys. Appl Physiol Nutr Metab. 2007;32:416–25.CrossRef Timmons BW, Bar-Or O, Riddell MC. Influence of age and pubertal status on substrate utilization during exercise with and without carbohydrate intake in healthy boys. Appl Physiol Nutr Metab. 2007;32:416–25.CrossRef
20.
go back to reference Brun J-F, Romain A-J, Mercier J. Maximal lipid oxidation during exercise (Lipoxmax): from physiological measurements to clinical applications. Facts Uncertainties Sci Sports. 2011;26:57–71.CrossRef Brun J-F, Romain A-J, Mercier J. Maximal lipid oxidation during exercise (Lipoxmax): from physiological measurements to clinical applications. Facts Uncertainties Sci Sports. 2011;26:57–71.CrossRef
21.
go back to reference Nguyen T, Ploeger HE, Obeid J, Issenman RM, Baker JM, Takken T, et al. Reduced fat oxidation rates during submaximal exercise in adolescents with Crohn’s disease. Inflamm Bowel Dis. 2013;19:2659–65.CrossRef Nguyen T, Ploeger HE, Obeid J, Issenman RM, Baker JM, Takken T, et al. Reduced fat oxidation rates during submaximal exercise in adolescents with Crohn’s disease. Inflamm Bowel Dis. 2013;19:2659–65.CrossRef
22.
go back to reference Wallace CA, Giannini EH, Huang B, Itert L, Ruperto N, Childhood arthritis rheumatology research Alliance, et al. American College of Rheumatology provisional criteria for defining clinical inactive disease in select categories of juvenile idiopathic arthritis. Arthritis Care Res (Hoboken). 2011;63:929–36.CrossRef Wallace CA, Giannini EH, Huang B, Itert L, Ruperto N, Childhood arthritis rheumatology research Alliance, et al. American College of Rheumatology provisional criteria for defining clinical inactive disease in select categories of juvenile idiopathic arthritis. Arthritis Care Res (Hoboken). 2011;63:929–36.CrossRef
23.
go back to reference Riddell MC, Jamnik VK, Iscoe KE, Timmons BW, Gledhill N. Fat oxidation rate and the exercise intensity that elicits maximal fat oxidation decreases with pubertal status in young male subjects. J Appl Physiol. 2008;105:742–8.CrossRef Riddell MC, Jamnik VK, Iscoe KE, Timmons BW, Gledhill N. Fat oxidation rate and the exercise intensity that elicits maximal fat oxidation decreases with pubertal status in young male subjects. J Appl Physiol. 2008;105:742–8.CrossRef
24.
go back to reference Frayn KN. Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol Respir Environ Exerc Physiol. 1983;55:628–34.PubMed Frayn KN. Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol Respir Environ Exerc Physiol. 1983;55:628–34.PubMed
25.
go back to reference Achten J, Gleeson M, Jeukendrup AE. Determination of the exercise intensity that elicits maximal fat oxidation. Med Sci Sports Exerc. 2002;34:92–7.CrossRef Achten J, Gleeson M, Jeukendrup AE. Determination of the exercise intensity that elicits maximal fat oxidation. Med Sci Sports Exerc. 2002;34:92–7.CrossRef
26.
go back to reference Péronnet F, Massicotte D. Table of nonprotein respiratory quotient: an update. Can J Sport Sci. 1991;16:23–9.PubMed Péronnet F, Massicotte D. Table of nonprotein respiratory quotient: an update. Can J Sport Sci. 1991;16:23–9.PubMed
27.
go back to reference Rochette E, Bourdier P, Pereira B, Echaubard S, Borderon C, Caron N, et al. Impaired muscular fat metabolism in juvenile idiopathic arthritis in inactive disease. Front Physiol. 2019;10:528.CrossRef Rochette E, Bourdier P, Pereira B, Echaubard S, Borderon C, Caron N, et al. Impaired muscular fat metabolism in juvenile idiopathic arthritis in inactive disease. Front Physiol. 2019;10:528.CrossRef
28.
go back to reference Smith RL, Soeters MR, Wüst RCI, Houtkooper RH. Metabolic flexibility as an adaptation to energy resources and requirements in health and disease. Endocr Rev. 2018;39(4):489–517.CrossRef Smith RL, Soeters MR, Wüst RCI, Houtkooper RH. Metabolic flexibility as an adaptation to energy resources and requirements in health and disease. Endocr Rev. 2018;39(4):489–517.CrossRef
29.
go back to reference Ranallo RF, Rhodes EC. Lipid metabolism during exercise. Sports Med. 1998;26:29–42.CrossRef Ranallo RF, Rhodes EC. Lipid metabolism during exercise. Sports Med. 1998;26:29–42.CrossRef
30.
go back to reference Yeh K-W, Lee C-M, Chang C-J, Lin Y-J, Huang J-L. Lipid profiles alter from pro-atherogenic into less atherogenic and proinflammatory in juvenile idiopathic arthritis patients responding to anti TNF-α treatment. PLoS One. 2014;9:e90757.CrossRef Yeh K-W, Lee C-M, Chang C-J, Lin Y-J, Huang J-L. Lipid profiles alter from pro-atherogenic into less atherogenic and proinflammatory in juvenile idiopathic arthritis patients responding to anti TNF-α treatment. PLoS One. 2014;9:e90757.CrossRef
31.
go back to reference Li YP, Reid MB. Effect of tumor necrosis factor-alpha on skeletal muscle metabolism. Curr Opin Rheumatol. 2001;13:483–7.CrossRef Li YP, Reid MB. Effect of tumor necrosis factor-alpha on skeletal muscle metabolism. Curr Opin Rheumatol. 2001;13:483–7.CrossRef
32.
go back to reference Carnagarin R, Dharmarajan AM, Dass CR. Molecular aspects of glucose homeostasis in skeletal muscle--a focus on the molecular mechanisms of insulin resistance. Mol Cell Endocrinol. 2015;417:52–62.CrossRef Carnagarin R, Dharmarajan AM, Dass CR. Molecular aspects of glucose homeostasis in skeletal muscle--a focus on the molecular mechanisms of insulin resistance. Mol Cell Endocrinol. 2015;417:52–62.CrossRef
33.
go back to reference Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest. 2005;115:1111–9.CrossRef Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest. 2005;115:1111–9.CrossRef
34.
go back to reference Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science. 1996;271:665–8.CrossRef Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science. 1996;271:665–8.CrossRef
35.
go back to reference Capeau J. Insulin signaling: mechanisms altered in insulin resistance. Med Sci (Paris). 2003;19:834–9.CrossRef Capeau J. Insulin signaling: mechanisms altered in insulin resistance. Med Sci (Paris). 2003;19:834–9.CrossRef
36.
go back to reference Burska AN, Sakthiswary R, Sattar N. Effects of tumour necrosis factor antagonists on insulin sensitivity/resistance in rheumatoid arthritis: a systematic review and meta-analysis. PLoS One. 2015;10:e0128889.CrossRef Burska AN, Sakthiswary R, Sattar N. Effects of tumour necrosis factor antagonists on insulin sensitivity/resistance in rheumatoid arthritis: a systematic review and meta-analysis. PLoS One. 2015;10:e0128889.CrossRef
37.
go back to reference Tse MCL, Herlea-Pana O, Brobst D, Yang X, Wood J, Hu X, et al. Tumor necrosis factor-α promotes phosphoinositide 3-kinase enhancer a and AMP-activated protein kinase interaction to suppress lipid oxidation in skeletal muscle. Diabetes. 2017;66:1858–70.CrossRef Tse MCL, Herlea-Pana O, Brobst D, Yang X, Wood J, Hu X, et al. Tumor necrosis factor-α promotes phosphoinositide 3-kinase enhancer a and AMP-activated protein kinase interaction to suppress lipid oxidation in skeletal muscle. Diabetes. 2017;66:1858–70.CrossRef
38.
go back to reference Goodpaster BH, Katsiaras A, Kelley DE. Enhanced fat oxidation through physical activity is associated with improvements in insulin sensitivity in obesity. Diabetes. 2003;52:2191–7.CrossRef Goodpaster BH, Katsiaras A, Kelley DE. Enhanced fat oxidation through physical activity is associated with improvements in insulin sensitivity in obesity. Diabetes. 2003;52:2191–7.CrossRef
39.
go back to reference Bohr A-H, Nielsen S, Müller K, Karup Pedersen F, Andersen LB. Reduced physical activity in children and adolescents with juvenile idiopathic arthritis despite satisfactory control of inflammation. Pediatr Rheumatol Online J. 2015;13:57.CrossRef Bohr A-H, Nielsen S, Müller K, Karup Pedersen F, Andersen LB. Reduced physical activity in children and adolescents with juvenile idiopathic arthritis despite satisfactory control of inflammation. Pediatr Rheumatol Online J. 2015;13:57.CrossRef
41.
go back to reference Dyck DJ. Adipokines as regulators of muscle metabolism and insulin sensitivity. Appl Physiol Nutr Metab. 2009;34:396–402.CrossRef Dyck DJ. Adipokines as regulators of muscle metabolism and insulin sensitivity. Appl Physiol Nutr Metab. 2009;34:396–402.CrossRef
42.
go back to reference Markula-Patjas KP, Ivaska KK, Pekkinen M, Andersson S, Moilanen E, Viljakainen HT, et al. High adiposity and serum leptin accompanied by altered bone turnover markers in severe juvenile idiopathic arthritis. J Rheumatol. 2014;41:2474–81.CrossRef Markula-Patjas KP, Ivaska KK, Pekkinen M, Andersson S, Moilanen E, Viljakainen HT, et al. High adiposity and serum leptin accompanied by altered bone turnover markers in severe juvenile idiopathic arthritis. J Rheumatol. 2014;41:2474–81.CrossRef
43.
go back to reference Venables MC, Jeukendrup AE. Endurance training and obesity: effect on substrate metabolism and insulin sensitivity. Med Sci Sports Exerc. 2008;40:495–502.CrossRef Venables MC, Jeukendrup AE. Endurance training and obesity: effect on substrate metabolism and insulin sensitivity. Med Sci Sports Exerc. 2008;40:495–502.CrossRef
Metadata
Title
TNF blockade contributes to restore lipid oxidation during exercise in children with juvenile idiopathic arthritis
Authors
Emmanuelle Rochette
Pierre Bourdier
Bruno Pereira
Eric Doré
Anthony Birat
Sébastien Ratel
Stéphane Echaubard
Pascale Duché
Etienne Merlin
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Pediatric Rheumatology / Issue 1/2019
Electronic ISSN: 1546-0096
DOI
https://doi.org/10.1186/s12969-019-0354-1

Other articles of this Issue 1/2019

Pediatric Rheumatology 1/2019 Go to the issue