Skip to main content
Top
Published in: Pediatric Rheumatology 1/2017

Open Access 01-12-2017 | Short Report

Endothelial progenitor cell number is not decreased in 34 children with Juvenile Dermatomyositis: a pilot study

Authors: Dong Xu, Akadia Kacha-Ochana, Gabrielle A. Morgan, Chiang-Ching Huang, Lauren M. Pachman

Published in: Pediatric Rheumatology | Issue 1/2017

Login to get access

Abstract

Objective

A pilot study to determine endothelial progenitor cells (EPC) number in children with Juvenile Dermatomyositis (JDM).

Methods

After obtaining informed consent, the EPC number from 34 fasting children with definite/probable JDM at various stages of therapy—initially untreated, active disease on medication and clinically inactive, off medication—was compared with 13 healthy fasting pediatric controls. The EPC number was determined by fluorescence activated cell sorting (FACS), CD34+/VEGFR2+/CD45dim, and assessed in conjunction with clinical variables: disease activity scores (DAS), duration of untreated disease (DUD), TNF-α allelic polymorphism (A/G) at the promoter region of −308, number of nailfold capillary end row loop (ERL) and von Willebrand factor antigen (vWF:Ag). Correlations of the EPC numbers with the clinical and demographic variables, including DAS Skin (DAS SK), DAS Weakness (DAS WK), DAS Total Score, DUD, Cholesterol, triglycerides, High-Density Lipoprotein (HDL) and Low-Density Lipoprotein (LDL), and ERL were calculated using the Pearson correlation coefficient. Tests of associations of EPC with gender (boy vs girl), TNF-α-308A allele (GA/AA vs GG), vWF:Ag (categorized by specific ABO type) as normal/abnormal were performed, using two-sample T- tests.

Results

The EPC number for JDM was not significantly different from the healthy controls and was not associated with any of the clinical or cardiovascular risk factors tested.

Conclusion

The EPC for JDM were in the normal range, similar to adults with DM. These data support the concept that the normal EPC numbers in DM/JDM, irrespective of age, differs from adult PM, where they are decreased, perhaps reflecting a different pathophysiology.
Literature
1.
go back to reference Banker B, Victor M. Dermatomyositis (systemic angiopathy) of childhood. Medicine (Baltimore). 1966;45(4):261–89.CrossRef Banker B, Victor M. Dermatomyositis (systemic angiopathy) of childhood. Medicine (Baltimore). 1966;45(4):261–89.CrossRef
2.
go back to reference Bohan A, Peter JB. Polymyositis and dermatomyositis (first of two parts). N Engl J Med. 1975;292:344–7.CrossRefPubMed Bohan A, Peter JB. Polymyositis and dermatomyositis (first of two parts). N Engl J Med. 1975;292:344–7.CrossRefPubMed
3.
go back to reference Bode RK, Klein-Gitelman MS, Miller ML, Lechman TS, Pachman LM. Disease activity score for children with juvenile dermatomyositis: reliability and validity evidence. Arthritis Rheum. 2003;49:7–15.CrossRefPubMed Bode RK, Klein-Gitelman MS, Miller ML, Lechman TS, Pachman LM. Disease activity score for children with juvenile dermatomyositis: reliability and validity evidence. Arthritis Rheum. 2003;49:7–15.CrossRefPubMed
4.
go back to reference Christen-Zaech S, Seshadri R, Sundberg J, Paller AS, Pachman LM. Persistent association of nailfold capillaroscopy changes and skin involvement over thirty-six months with duration of untreated disease in patients with juvenile Dermatomyositis. Arthritis Rheum. 2008;58:571–6.CrossRefPubMedPubMedCentral Christen-Zaech S, Seshadri R, Sundberg J, Paller AS, Pachman LM. Persistent association of nailfold capillaroscopy changes and skin involvement over thirty-six months with duration of untreated disease in patients with juvenile Dermatomyositis. Arthritis Rheum. 2008;58:571–6.CrossRefPubMedPubMedCentral
5.
go back to reference Greenberg SA, Pinkus JL, Pinkus GS, Burleson T, Sanoudou D, Amato AA, et al. Interferon-alpha/beta-mediated innate immune mechanisms in dermatomyositis. Ann Neurol. 2005;57(5):664–78.CrossRefPubMed Greenberg SA, Pinkus JL, Pinkus GS, Burleson T, Sanoudou D, Amato AA, et al. Interferon-alpha/beta-mediated innate immune mechanisms in dermatomyositis. Ann Neurol. 2005;57(5):664–78.CrossRefPubMed
6.
go back to reference Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Isner JM, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275(5302):964–7.CrossRefPubMed Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Isner JM, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275(5302):964–7.CrossRefPubMed
7.
go back to reference Grisar JC, Haddad F, Gomari FA, Wu JC. Endothelial progenitor cells in cardiovascular disease and chronic inflammation: from biomarker to therapeutic agent. Biomark Med. 2011;5(6):731–44.CrossRefPubMedPubMedCentral Grisar JC, Haddad F, Gomari FA, Wu JC. Endothelial progenitor cells in cardiovascular disease and chronic inflammation: from biomarker to therapeutic agent. Biomark Med. 2011;5(6):731–44.CrossRefPubMedPubMedCentral
8.
go back to reference Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood. 2000;95:952–8.PubMed Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood. 2000;95:952–8.PubMed
9.
go back to reference Ekholm L, Kahlenberg JM, Barbasso Helmers S, Tjärnlund A, Yalavarthi S, Kaplan MJ, et al. Dysfunction of endothelial progenitor cells is associated with the type I IFN pathway in patients with polymyositis and dermatomyositis. Rheumatology (Oxford). 2016;55:1987–92.CrossRef Ekholm L, Kahlenberg JM, Barbasso Helmers S, Tjärnlund A, Yalavarthi S, Kaplan MJ, et al. Dysfunction of endothelial progenitor cells is associated with the type I IFN pathway in patients with polymyositis and dermatomyositis. Rheumatology (Oxford). 2016;55:1987–92.CrossRef
10.
go back to reference Ebner P, Picard F, Richter J, Darrelmann E, Schneider M, Strauer BE, et al. Accumulation of VEGFR-2+/CD133+ cells and decreased number and impaired functionality of CD34+/VEGFR-2+ cells in patients with SLE. Rheumatology (Oxford). 2010;49:63–72.CrossRef Ebner P, Picard F, Richter J, Darrelmann E, Schneider M, Strauer BE, et al. Accumulation of VEGFR-2+/CD133+ cells and decreased number and impaired functionality of CD34+/VEGFR-2+ cells in patients with SLE. Rheumatology (Oxford). 2010;49:63–72.CrossRef
11.
go back to reference Herbrig K, Haensel S, Oelschlaegel U, Pistrosch F, Foerster S, Passauer J. Endothelial dysfunction in patients with rheumatoid arthritis is associated with a reduced number and impaired function of endothelial progenitor cells. Ann Rheum Dis. 2005;65:157–63.CrossRefPubMedPubMedCentral Herbrig K, Haensel S, Oelschlaegel U, Pistrosch F, Foerster S, Passauer J. Endothelial dysfunction in patients with rheumatoid arthritis is associated with a reduced number and impaired function of endothelial progenitor cells. Ann Rheum Dis. 2005;65:157–63.CrossRefPubMedPubMedCentral
12.
go back to reference Niewold TB, Kariuki SN, Morgan GA, Shrestha S, Pachman LM. Elevated serum interferon-alpha activity in juvenile Dermatomyositis: associations with disease activity at diagnosis and after thirty-six months of therapy. Arthritis Rheum. 2009;60:1815–24.CrossRefPubMedPubMedCentral Niewold TB, Kariuki SN, Morgan GA, Shrestha S, Pachman LM. Elevated serum interferon-alpha activity in juvenile Dermatomyositis: associations with disease activity at diagnosis and after thirty-six months of therapy. Arthritis Rheum. 2009;60:1815–24.CrossRefPubMedPubMedCentral
13.
go back to reference Xu D, Kachaochana A, Morgan GA, Vanin EF, Huang CC, Pachman LM, et al. MicroRNA-10a regulation of Proinflammatory mediators: an important component of untreated juvenile Dermatomyositis. J Rheumatol. 2016;43:161–8.CrossRefPubMed Xu D, Kachaochana A, Morgan GA, Vanin EF, Huang CC, Pachman LM, et al. MicroRNA-10a regulation of Proinflammatory mediators: an important component of untreated juvenile Dermatomyositis. J Rheumatol. 2016;43:161–8.CrossRefPubMed
14.
go back to reference Khan SS, Solomon MA, Philip McCoy J Jr. Detection of circulating endothelial cells and endothelial progenitor cells by flow cytometry. Cytometry B Clin Cytom. 2005;64B:1–8.CrossRef Khan SS, Solomon MA, Philip McCoy J Jr. Detection of circulating endothelial cells and endothelial progenitor cells by flow cytometry. Cytometry B Clin Cytom. 2005;64B:1–8.CrossRef
15.
go back to reference Colombo E, Marconi C, Taddeo A, Cappelletti M, Villa ML, Marzorati M, et al. Fast reduction of peripheral blood endothelial progenitor cells in healthy humans exposed to acute systemic hypoxia. J Physiol. 2012;590:519–32.CrossRefPubMed Colombo E, Marconi C, Taddeo A, Cappelletti M, Villa ML, Marzorati M, et al. Fast reduction of peripheral blood endothelial progenitor cells in healthy humans exposed to acute systemic hypoxia. J Physiol. 2012;590:519–32.CrossRefPubMed
16.
go back to reference Bui KC, Weems M, Biniwale M, George AA, Zielinska E, Azen CG, et al. Circulating hematopoietic and endothelial progenitor cells in newborn infants: effects of gestational age, postnatal age and clinical stress in the first 3 weeks of life. Early Hum Dev. 2013;89:411–8.CrossRefPubMedPubMedCentral Bui KC, Weems M, Biniwale M, George AA, Zielinska E, Azen CG, et al. Circulating hematopoietic and endothelial progenitor cells in newborn infants: effects of gestational age, postnatal age and clinical stress in the first 3 weeks of life. Early Hum Dev. 2013;89:411–8.CrossRefPubMedPubMedCentral
17.
go back to reference Obeid J, Nguyen T, Cellucci T, Larche M, Timmons BW. Effects of acute exercise on circulating endothelial and progenitor cells in children and adolescents with juvenile idiopathic arthritis and healthy controls: a pilot study. Pediatric Rheumatol. 2015;13:41.CrossRef Obeid J, Nguyen T, Cellucci T, Larche M, Timmons BW. Effects of acute exercise on circulating endothelial and progenitor cells in children and adolescents with juvenile idiopathic arthritis and healthy controls: a pilot study. Pediatric Rheumatol. 2015;13:41.CrossRef
19.
go back to reference López De Padilla CM, Crowson CS, Hein MS, Pendegraft RS, Strausbauch MA, Reed AM, et al. Gene expression profiling in blood and affected muscle tissues reveals differential activation pathways in patients with new-onset juvenile and adult dermatomyositis. J Rheumatol. 2017;44:117–24.CrossRefPubMed López De Padilla CM, Crowson CS, Hein MS, Pendegraft RS, Strausbauch MA, Reed AM, et al. Gene expression profiling in blood and affected muscle tissues reveals differential activation pathways in patients with new-onset juvenile and adult dermatomyositis. J Rheumatol. 2017;44:117–24.CrossRefPubMed
Metadata
Title
Endothelial progenitor cell number is not decreased in 34 children with Juvenile Dermatomyositis: a pilot study
Authors
Dong Xu
Akadia Kacha-Ochana
Gabrielle A. Morgan
Chiang-Ching Huang
Lauren M. Pachman
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Pediatric Rheumatology / Issue 1/2017
Electronic ISSN: 1546-0096
DOI
https://doi.org/10.1186/s12969-017-0171-3

Other articles of this Issue 1/2017

Pediatric Rheumatology 1/2017 Go to the issue