Skip to main content
Top
Published in: Pediatric Rheumatology 1/2016

Open Access 01-12-2016 | Review

Network analysis and juvenile idiopathic arthritis (JIA): a new horizon for the understanding of disease pathogenesis and therapeutic target identification

Authors: Rachelle Donn, Chiara De Leonibus, Stefan Meyer, Adam Stevens

Published in: Pediatric Rheumatology | Issue 1/2016

Login to get access

Abstract

Juvenile idiopathic arthritis (JIA) is a clinically diverse and genetically complex autoimmune disease. Currently, there is very limited understanding of the potential underlying mechanisms that result in the range of phenotypes which constitute JIA.
The elucidation of the functional relevance of genetic associations with phenotypic traits is a fundamental problem that hampers the translation of genetic observations to plausible medical interventions. Genome wide association studies, and subsequent fine-mapping studies in JIA patients, have identified many genetic variants associated with disease. Such approaches rely on ‘tag’ single nucleotide polymorphisms (SNPs). The associated SNPs are rarely functional variants, so the extrapolation of genetic association data to the identification of biologically meaningful findings can be a protracted undertaking. Integrative genomics aims to bridge the gap between genotype and phenotype.
Systems biology, principally through network analysis, is emerging as a valuable way to identify biological pathways of relevance to complex genetic diseases. This review aims to highlight recent findings in systems biology related to JIA in an attempt to assist in the understanding of JIA pathogenesis and therapeutic target identification.
Glossary
Systems Biology
Integration of complex data in biological systems from diverse experimental sources using interdisciplinary tools.
Network Biology
Biology related to interactions between multiple genes and/or proteins.
Network Analysis
Studies the relationship between the structural properties of a network and biological function.
Interactome
Biological network representing a whole set of direct or indirect interactions related to a specific biological function.
Cluster Modularity
Distinct grouping of protein-protein or protein-gene interactions within a network.
Node
A protein or gene positioned within a network.
Hub
A highly connected node within a network.
Node Centrality
Measures the centrality of nodes, with the identification of which nodes are more “central” than others. Degree centrality of a node refers to the number of edges attached to the node.
Network Robustness
It is a mathematical description of how the integrity of a network responds to the random removal of single nodes.
Network Motifs
Recurrent and statistically significant sub-graphs or patterns within a network.
Network Alignment and Comparison
Used to describe similarities between independent networks.
Literature
1.
go back to reference Pujol A, Mosca R, Farres J, Aloy P. Unveiling the role of network and systems biology in drug discovery. Trends Pharmacol Sci. 2010;31(3):115–23.CrossRefPubMed Pujol A, Mosca R, Farres J, Aloy P. Unveiling the role of network and systems biology in drug discovery. Trends Pharmacol Sci. 2010;31(3):115–23.CrossRefPubMed
2.
3.
go back to reference Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature. 2005;437(7062):1173–8.CrossRefPubMed Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature. 2005;437(7062):1173–8.CrossRefPubMed
4.
go back to reference Parkinson H, Kapushesky M, Shojatalab M, Abeygunawardena N, Coulson R, Farne A, et al. ArrayExpress--a public database of microarray experiments and gene expression profiles. Nucleic Acids Res. 2007;35(Database issue):D747–50.CrossRefPubMed Parkinson H, Kapushesky M, Shojatalab M, Abeygunawardena N, Coulson R, Farne A, et al. ArrayExpress--a public database of microarray experiments and gene expression profiles. Nucleic Acids Res. 2007;35(Database issue):D747–50.CrossRefPubMed
5.
go back to reference Arrell DK, Terzic A. Interpreting Networks in Systems Biology. Clin Pharmacol Ther. 2013;11:10. Arrell DK, Terzic A. Interpreting Networks in Systems Biology. Clin Pharmacol Ther. 2013;11:10.
6.
go back to reference Needham CJ, Bradford JR, Bulpitt AJ, Westhead DR. A primer on learning in Bayesian networks for computational biology. PLoS Comput Biol. 2007;3(8):e129.CrossRefPubMedPubMedCentral Needham CJ, Bradford JR, Bulpitt AJ, Westhead DR. A primer on learning in Bayesian networks for computational biology. PLoS Comput Biol. 2007;3(8):e129.CrossRefPubMedPubMedCentral
7.
go back to reference Stark C, Breitkreutz BJ, Chatr-Aryamontri A, Boucher L, Oughtred R, Livstone MS, et al. The BioGRID Interaction Database: 2011 update. Nucleic Acids Res. 2011;39(Database issue):D698–704.CrossRefPubMed Stark C, Breitkreutz BJ, Chatr-Aryamontri A, Boucher L, Oughtred R, Livstone MS, et al. The BioGRID Interaction Database: 2011 update. Nucleic Acids Res. 2011;39(Database issue):D698–704.CrossRefPubMed
8.
go back to reference Choi H, Pavelka N. When one and one gives more than two: challenges and opportunities of integrative omics. Front Genet. 2011;2:105.CrossRefPubMed Choi H, Pavelka N. When one and one gives more than two: challenges and opportunities of integrative omics. Front Genet. 2011;2:105.CrossRefPubMed
9.
go back to reference Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: a Practical and Powerful Approach to Multiple Testing. J Royal Stat Soc. Series B J Royal Stat Soc. Series B (Methodol). 1995;57(1):289–300. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: a Practical and Powerful Approach to Multiple Testing. J Royal Stat Soc. Series B J Royal Stat Soc. Series B (Methodol). 1995;57(1):289–300.
10.
go back to reference D'Eustachio P. Reactome knowledgebase of human biological pathways and processes. Methods Mol Biol. 2011;694:49–61.CrossRefPubMed D'Eustachio P. Reactome knowledgebase of human biological pathways and processes. Methods Mol Biol. 2011;694:49–61.CrossRefPubMed
11.
go back to reference Szalay-Beko M, Palotai R, Szappanos B, Kovacs IA, Papp B, Csermely P. ModuLand plug-in for Cytoscape: determination of hierarchical layers of overlapping network modules and community centrality. Bioinformatics. 2012;28(16):2202–4.CrossRefPubMed Szalay-Beko M, Palotai R, Szappanos B, Kovacs IA, Papp B, Csermely P. ModuLand plug-in for Cytoscape: determination of hierarchical layers of overlapping network modules and community centrality. Bioinformatics. 2012;28(16):2202–4.CrossRefPubMed
12.
go back to reference Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U. Network motifs: simple building blocks of complex networks. Science. 2002;298(5594):824–7.CrossRefPubMed Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U. Network motifs: simple building blocks of complex networks. Science. 2002;298(5594):824–7.CrossRefPubMed
13.
go back to reference Albert R, Jeong H, Barabasi AL. Error and attack tolerance of complex networks. Nature. 2000;406(6794):378–82.CrossRefPubMed Albert R, Jeong H, Barabasi AL. Error and attack tolerance of complex networks. Nature. 2000;406(6794):378–82.CrossRefPubMed
14.
go back to reference Medan D, Luanpitpong S, Azad N, Wang L, Jiang BH, Davis ME, et al. Multifunctional role of Bcl-2 in malignant transformation and tumorigenesis of Cr(VI)-transformed lung cells. PLoS One. 2012;7(5):e37045.CrossRefPubMedPubMedCentral Medan D, Luanpitpong S, Azad N, Wang L, Jiang BH, Davis ME, et al. Multifunctional role of Bcl-2 in malignant transformation and tumorigenesis of Cr(VI)-transformed lung cells. PLoS One. 2012;7(5):e37045.CrossRefPubMedPubMedCentral
15.
go back to reference Villa-Vialaneix N, Liaubet L, Laurent T, Cherel P, Gamot A, Sancristobal M. The Structure of a Gene Co-Expression Network Reveals Biological Functions Underlying eQTLs. PLoS One. 2013;8(4):e60045.CrossRefPubMedPubMedCentral Villa-Vialaneix N, Liaubet L, Laurent T, Cherel P, Gamot A, Sancristobal M. The Structure of a Gene Co-Expression Network Reveals Biological Functions Underlying eQTLs. PLoS One. 2013;8(4):e60045.CrossRefPubMedPubMedCentral
16.
go back to reference Punaro M. Use of microarrays in the clinical practice of pediatric rheumatology: the future is now? Curr Opin Rheumatol. 2014;26(5):585–91.CrossRefPubMed Punaro M. Use of microarrays in the clinical practice of pediatric rheumatology: the future is now? Curr Opin Rheumatol. 2014;26(5):585–91.CrossRefPubMed
18.
go back to reference Adjari RA, Sendina-Nadal I, Papo D, Zanin M, Buldu JM, del Pozo F, et al. Topological measure locating the effective crossover between segregation and integration in a modular network. Phys Rev Lett. 2012;108(22):228701.CrossRef Adjari RA, Sendina-Nadal I, Papo D, Zanin M, Buldu JM, del Pozo F, et al. Topological measure locating the effective crossover between segregation and integration in a modular network. Phys Rev Lett. 2012;108(22):228701.CrossRef
19.
go back to reference Barzel B, Biham O. Quantifying the connectivity of a network: the network correlation function method. Phys Rev E Stat Nonlin Soft Matter Phys. 2009;80(4 Pt 2):046104.CrossRefPubMed Barzel B, Biham O. Quantifying the connectivity of a network: the network correlation function method. Phys Rev E Stat Nonlin Soft Matter Phys. 2009;80(4 Pt 2):046104.CrossRefPubMed
21.
go back to reference Rossin EJ, Lage K, Raychaudhuri S, Xavier RJ, Tatar D, Benita Y, et al. Proteins encoded in genomic regions associated with immune-mediated disease physically interact and suggest underlying biology. PLoS Genet. 2011;7(1):e1001273.CrossRefPubMedPubMedCentral Rossin EJ, Lage K, Raychaudhuri S, Xavier RJ, Tatar D, Benita Y, et al. Proteins encoded in genomic regions associated with immune-mediated disease physically interact and suggest underlying biology. PLoS Genet. 2011;7(1):e1001273.CrossRefPubMedPubMedCentral
22.
go back to reference Haw R, Hermjakob H, D'Eustachio P, Stein L. Reactome pathway analysis to enrich biological discovery in proteomics data sets. Proteomics. 2011;11(18):3598-613. doi:10.1002/pmic.201100066. Haw R, Hermjakob H, D'Eustachio P, Stein L. Reactome pathway analysis to enrich biological discovery in proteomics data sets. Proteomics. 2011;11(18):3598-613. doi:10.​1002/​pmic.​201100066.
23.
go back to reference Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2011;27(3):431–2.CrossRefPubMed Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2011;27(3):431–2.CrossRefPubMed
24.
go back to reference Calvano SE, Xiao W, Richards DR, Felciano RM, Baker HV, Cho RJ, et al. A network-based analysis of systemic inflammation in humans. Nature. 2005;437(7061):1032–7.CrossRefPubMed Calvano SE, Xiao W, Richards DR, Felciano RM, Baker HV, Cho RJ, et al. A network-based analysis of systemic inflammation in humans. Nature. 2005;437(7061):1032–7.CrossRefPubMed
25.
go back to reference Sun J, Zhao Z. A comparative study of cancer proteins in the human protein-protein interaction network. BMC Genomics. 2010;11 Suppl 3:S5.CrossRef Sun J, Zhao Z. A comparative study of cancer proteins in the human protein-protein interaction network. BMC Genomics. 2010;11 Suppl 3:S5.CrossRef
26.
go back to reference Stevens A, Clayton P, Tato L, Yoo HW, Rodriguez-Arnao MD, Skorodok J, et al. Pharmacogenomics of insulin-like growth factor-I generation during GH treatment in children with GH deficiency or Turner syndrome. Pharmacogenomics J. 2013;10. Stevens A, Clayton P, Tato L, Yoo HW, Rodriguez-Arnao MD, Skorodok J, et al. Pharmacogenomics of insulin-like growth factor-I generation during GH treatment in children with GH deficiency or Turner syndrome. Pharmacogenomics J. 2013;10.
27.
go back to reference Stevens A, Cosgrove KE, Padidela R, Skae MS, Clayton PE, Banerjee I, et al. Can network biology unravel the aetiology of congenital hyperinsulinism? Orphanet J Rare Dis. 2013;8(1):21–8.CrossRefPubMedPubMedCentral Stevens A, Cosgrove KE, Padidela R, Skae MS, Clayton PE, Banerjee I, et al. Can network biology unravel the aetiology of congenital hyperinsulinism? Orphanet J Rare Dis. 2013;8(1):21–8.CrossRefPubMedPubMedCentral
30.
go back to reference Goh KI, Choi IG. Exploring the human diseasome: the human disease network. Brief Funct Genomics. 2012;11(6):533–42.CrossRefPubMed Goh KI, Choi IG. Exploring the human diseasome: the human disease network. Brief Funct Genomics. 2012;11(6):533–42.CrossRefPubMed
31.
go back to reference Janjic V, Przulj N. Biological function through network topology: a survey of the human diseasome. Brief Funct Genomics. 2012;11(6):522–32.CrossRefPubMed Janjic V, Przulj N. Biological function through network topology: a survey of the human diseasome. Brief Funct Genomics. 2012;11(6):522–32.CrossRefPubMed
32.
go back to reference Gene Ontology Consortium. Gene Ontology annotations and resources. Nucleic Acids Res. 2013;41(Database issue):D530–5.CrossRef Gene Ontology Consortium. Gene Ontology annotations and resources. Nucleic Acids Res. 2013;41(Database issue):D530–5.CrossRef
33.
go back to reference Jarvis JN, Petty HR, Tang Y, Frank MB, Tessier PA, Dozmorov I, et al. Evidence for chronic, peripheral activation of neutrophils in polyarticular juvenile rheumatoid arthritis. Arthritis Res Ther. 2006;8(5):R154.CrossRefPubMedPubMedCentral Jarvis JN, Petty HR, Tang Y, Frank MB, Tessier PA, Dozmorov I, et al. Evidence for chronic, peripheral activation of neutrophils in polyarticular juvenile rheumatoid arthritis. Arthritis Res Ther. 2006;8(5):R154.CrossRefPubMedPubMedCentral
35.
go back to reference Frank MB, Wang S, Aggarwal A, Knowlton N, Jiang K, Chen Y, et al. Disease-associated pathophysiologic structures in pediatric rheumatic diseases show characteristics of scale-free networks seen in physiologic systems: implications for pathogenesis and treatment. BMC Med Genomics. 2009;2:9. doi:10.1186/1755-8794-2-9.:9-2.CrossRefPubMedPubMedCentral Frank MB, Wang S, Aggarwal A, Knowlton N, Jiang K, Chen Y, et al. Disease-associated pathophysiologic structures in pediatric rheumatic diseases show characteristics of scale-free networks seen in physiologic systems: implications for pathogenesis and treatment. BMC Med Genomics. 2009;2:9. doi:10.​1186/​1755-8794-2-9.​:​9-2.CrossRefPubMedPubMedCentral
36.
go back to reference Stevens A, Hanson D, Whatmore A, Destenaves B, Chatelain P, Clayton P. Human growth is associated with distinct patterns of gene expression in evolutionarily conserved networks. BMC Genomics. 2013;14(1):547.CrossRefPubMedPubMedCentral Stevens A, Hanson D, Whatmore A, Destenaves B, Chatelain P, Clayton P. Human growth is associated with distinct patterns of gene expression in evolutionarily conserved networks. BMC Genomics. 2013;14(1):547.CrossRefPubMedPubMedCentral
37.
go back to reference Knowlton N, Jiang K, Frank MB, Aggarwal A, Wallace C, McKee R, et al. The meaning of clinical remission in polyarticular juvenile idiopathic arthritis: gene expression profiling in peripheral blood mononuclear cells identifies distinct disease states. Arthritis Rheum. 2009;60(3):892–900.CrossRefPubMedPubMedCentral Knowlton N, Jiang K, Frank MB, Aggarwal A, Wallace C, McKee R, et al. The meaning of clinical remission in polyarticular juvenile idiopathic arthritis: gene expression profiling in peripheral blood mononuclear cells identifies distinct disease states. Arthritis Rheum. 2009;60(3):892–900.CrossRefPubMedPubMedCentral
38.
go back to reference Du N, Jiang K, Sawle AD, Frank MB, Wallace CA, Zhang A, et al. Dynamic tracking of functional gene modules in treated juvenile idiopathic arthritis. Genome Med. 2015;7(1):109–0227.CrossRefPubMedPubMedCentral Du N, Jiang K, Sawle AD, Frank MB, Wallace CA, Zhang A, et al. Dynamic tracking of functional gene modules in treated juvenile idiopathic arthritis. Genome Med. 2015;7(1):109–0227.CrossRefPubMedPubMedCentral
39.
go back to reference Barnes MG, Grom AA, Thompson SD, Griffin TA, Pavlidis P, Itert L, et al. Subtype-specific peripheral blood gene expression profiles in recent-onset juvenile idiopathic arthritis. Arthritis Rheum. 2009;60(7):2102–12.CrossRefPubMedPubMedCentral Barnes MG, Grom AA, Thompson SD, Griffin TA, Pavlidis P, Itert L, et al. Subtype-specific peripheral blood gene expression profiles in recent-onset juvenile idiopathic arthritis. Arthritis Rheum. 2009;60(7):2102–12.CrossRefPubMedPubMedCentral
40.
go back to reference Tuller T, Atar S, Ruppin E, Gurevich M, Achiron A. Common and specific signatures of gene expression and protein-protein interactions in autoimmune diseases. Genes Immun. 2013;14(2):67–82.CrossRefPubMed Tuller T, Atar S, Ruppin E, Gurevich M, Achiron A. Common and specific signatures of gene expression and protein-protein interactions in autoimmune diseases. Genes Immun. 2013;14(2):67–82.CrossRefPubMed
41.
go back to reference Barnes MG, Grom AA, Thompson SD, Griffin TA, Luyrink LK, Colbert RA, et al. Biologic similarities based on age at onset in oligoarticular and polyarticular subtypes of juvenile idiopathic arthritis. Arthritis Rheum. 2010;62(11):3249–58.CrossRefPubMedPubMedCentral Barnes MG, Grom AA, Thompson SD, Griffin TA, Luyrink LK, Colbert RA, et al. Biologic similarities based on age at onset in oligoarticular and polyarticular subtypes of juvenile idiopathic arthritis. Arthritis Rheum. 2010;62(11):3249–58.CrossRefPubMedPubMedCentral
42.
go back to reference Hollenbach JA, Thompson SD, Bugawan TL, Ryan M, Sudman M, Marion M, et al. Juvenile idiopathic arthritis and HLA class I and class II interactions and age-at-onset effects. Arthritis Rheum. 2010;62(6):1781–91.CrossRefPubMedPubMedCentral Hollenbach JA, Thompson SD, Bugawan TL, Ryan M, Sudman M, Marion M, et al. Juvenile idiopathic arthritis and HLA class I and class II interactions and age-at-onset effects. Arthritis Rheum. 2010;62(6):1781–91.CrossRefPubMedPubMedCentral
Metadata
Title
Network analysis and juvenile idiopathic arthritis (JIA): a new horizon for the understanding of disease pathogenesis and therapeutic target identification
Authors
Rachelle Donn
Chiara De Leonibus
Stefan Meyer
Adam Stevens
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Pediatric Rheumatology / Issue 1/2016
Electronic ISSN: 1546-0096
DOI
https://doi.org/10.1186/s12969-016-0078-4

Other articles of this Issue 1/2016

Pediatric Rheumatology 1/2016 Go to the issue