Skip to main content
Top
Published in: Journal of Cardiovascular Magnetic Resonance 1/2018

Open Access 01-12-2018 | Research

Non-contrast assessment of microvascular integrity using arterial spin labeled cardiovascular magnetic resonance in a porcine model of acute myocardial infarction

Authors: Hung P. Do, Venkat Ramanan, Xiuling Qi, Jennifer Barry, Graham A. Wright, Nilesh R. Ghugre, Krishna S. Nayak

Published in: Journal of Cardiovascular Magnetic Resonance | Issue 1/2018

Login to get access

Abstract

Background

Following acute myocardial infarction (AMI), microvascular integrity and function may be compromised as a result of microvascular obstruction (MVO) and vasodilator dysfunction. It has been observed that both infarcted and remote myocardial territories may exhibit impaired myocardial blood flow (MBF) patterns associated with an abnormal vasodilator response. Arterial spin labeled (ASL) CMR is a novel non-contrast technique that can quantitatively measure MBF. This study investigates the feasibility of ASL-CMR to assess MVO and vasodilator response in swine.

Methods

Thirty-one swine were included in this study. Resting ASL-CMR was performed on 24 healthy swine (baseline group). A subset of 13 swine from the baseline group underwent stress ASL-CMR to assess vasodilator response. Fifteen swine were subjected to a 90-min left anterior descending (LAD) coronary artery occlusion followed by reperfusion. Resting ASL-CMR was performed post-AMI at 1–2 days (N = 9, of which 6 were from the baseline group), 1–2 weeks (N = 8, of which 4 were from the day 1–2 group), and 4 weeks (N = 4, of which 2 were from the week 1–2 group). Resting first-pass CMR and late gadolinium enhancement (LGE) were performed post-AMI for reference.

Results

At rest, regional MBF and physiological noise measured from ASL-CMR were 1.08 ± 0.62 and 0.15 ± 0.10 ml/g/min, respectively. Regional MBF increased to 1.47 ± 0.62 ml/g/min with dipyridamole vasodilation (P < 0.001). Significant reduction in MBF was found in the infarcted region 1–2 days, 1–2 weeks, and 4 weeks post-AMI compared to baseline (P < 0.03). This was consistent with perfusion deficit seen on first-pass CMR and with MVO seen on LGE. There were no significant differences between measured MBF in the remote regions pre and post-AMI (P > 0.60).

Conclusions

ASL-CMR can assess vasodilator response in healthy swine and detect significant reduction in regional MBF at rest following AMI. ASL-CMR is an alternative to gadolinium-based techniques for assessment of MVO and microvascular integrity within infarcted, as well as salvageable and remote myocardium. This has the potential to provide early indications of adverse remodeling processes post-ischemia.
Literature
3.
go back to reference Niccoli G, Burzotta F, Galiuto L, Crea F. Myocardial no-reflow in humans. J Am Coll Cardiol. 2009;54:281–92.CrossRefPubMed Niccoli G, Burzotta F, Galiuto L, Crea F. Myocardial no-reflow in humans. J Am Coll Cardiol. 2009;54:281–92.CrossRefPubMed
4.
go back to reference Ito H, Tomooka T, Sakai N, Yu H, Higashino Y, Fujii K, et al. Lack of myocardial perfusion immediately after successful thrombolysis. A predictor of poor recovery of left ventricular function in anterior myocardial infarction. Circulation. 1992;85:1699–705.CrossRefPubMed Ito H, Tomooka T, Sakai N, Yu H, Higashino Y, Fujii K, et al. Lack of myocardial perfusion immediately after successful thrombolysis. A predictor of poor recovery of left ventricular function in anterior myocardial infarction. Circulation. 1992;85:1699–705.CrossRefPubMed
5.
go back to reference Wu KC, Zerhouni EA, Judd RM, Lugo-Olivieri CH, Barouch LA, Schulman SP, et al. Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation. 1998;97:765–72.CrossRefPubMed Wu KC, Zerhouni EA, Judd RM, Lugo-Olivieri CH, Barouch LA, Schulman SP, et al. Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation. 1998;97:765–72.CrossRefPubMed
6.
go back to reference Hombach V, Grebe O, Merkle N, Waldenmaier S, Höher M, Kochs M, et al. Sequelae of acute myocardial infarction regarding cardiac structure and function and their prognostic significance as assessed by magnetic resonance imaging. Eur Heart J. 2005;26:549–57.CrossRefPubMed Hombach V, Grebe O, Merkle N, Waldenmaier S, Höher M, Kochs M, et al. Sequelae of acute myocardial infarction regarding cardiac structure and function and their prognostic significance as assessed by magnetic resonance imaging. Eur Heart J. 2005;26:549–57.CrossRefPubMed
7.
go back to reference Uren NG, Crake T, Lefroy DC, De Silva R, Davies GJ, Maseri A. Reduced coronary vasodilator function in infarcted and normal myocardium after myocardial infarction. N Engl J Med. 1994;331:222–7.CrossRefPubMed Uren NG, Crake T, Lefroy DC, De Silva R, Davies GJ, Maseri A. Reduced coronary vasodilator function in infarcted and normal myocardium after myocardial infarction. N Engl J Med. 1994;331:222–7.CrossRefPubMed
8.
go back to reference Salerno M, Beller GA. Noninvasive assessment of myocardial perfusion. Circ Cardiovasc Imaging. 2009;2:412–24.CrossRefPubMed Salerno M, Beller GA. Noninvasive assessment of myocardial perfusion. Circ Cardiovasc Imaging. 2009;2:412–24.CrossRefPubMed
9.
go back to reference Glenny RW, Bernard S. Validation of fluorescent-labeled microspheres for measurement of regional organ perfusion. J Appl Physiol. 1993;74(5):2585–97.CrossRefPubMed Glenny RW, Bernard S. Validation of fluorescent-labeled microspheres for measurement of regional organ perfusion. J Appl Physiol. 1993;74(5):2585–97.CrossRefPubMed
11.
go back to reference Belle V, Kahler E, Waller C, Rommel E, Voll S, Karl-Heinz H, et al. In vivo quantitative mapping of cardiac perfusion in rats using a noninvasive MR spin-labeling method. J Magn Reson Imaging. 1998;8:1240–5.CrossRefPubMed Belle V, Kahler E, Waller C, Rommel E, Voll S, Karl-Heinz H, et al. In vivo quantitative mapping of cardiac perfusion in rats using a noninvasive MR spin-labeling method. J Magn Reson Imaging. 1998;8:1240–5.CrossRefPubMed
12.
go back to reference Waller C, Kahler E, Hiller KH, Hu K, Nahrendorf M, Voll S, et al. Myocardial perfusion and intracapillary blood volume in rats at rest and with coronary dilatation: MR imaging in vivo with use of a spin-labeling technique. Radiology. 2000;215:189–97.CrossRefPubMed Waller C, Kahler E, Hiller KH, Hu K, Nahrendorf M, Voll S, et al. Myocardial perfusion and intracapillary blood volume in rats at rest and with coronary dilatation: MR imaging in vivo with use of a spin-labeling technique. Radiology. 2000;215:189–97.CrossRefPubMed
13.
go back to reference Vandsburger MH, Janiczek RL, Xu Y, French BA, Meyer CH, Kramer CM, et al. Improved arterial spin labeling after myocardial infarction in mice using cardiac and respiratory gated look-locker imaging with fuzzy C-means clustering. Magn Reson Med. 2010;63:648–57.CrossRefPubMedPubMedCentral Vandsburger MH, Janiczek RL, Xu Y, French BA, Meyer CH, Kramer CM, et al. Improved arterial spin labeling after myocardial infarction in mice using cardiac and respiratory gated look-locker imaging with fuzzy C-means clustering. Magn Reson Med. 2010;63:648–57.CrossRefPubMedPubMedCentral
14.
go back to reference Campbell-Washburn AE, Zhang H, Siow BM, Price AN, Lythgoe MF, Ordidge RJ, et al. Multislice cardiac arterial spin labeling using improved myocardial perfusion quantification with simultaneously measured blood pool input function. Magn Reson Med. 2013;70:1125–36.CrossRefPubMed Campbell-Washburn AE, Zhang H, Siow BM, Price AN, Lythgoe MF, Ordidge RJ, et al. Multislice cardiac arterial spin labeling using improved myocardial perfusion quantification with simultaneously measured blood pool input function. Magn Reson Med. 2013;70:1125–36.CrossRefPubMed
15.
go back to reference Kober F, Iltis I, Izquierdo M, Desrois M, Ibarrola D, Cozzone PJ, et al. High-resolution myocardial perfusion mapping in small animals in vivo by spin-labeling gradient-echo imaging. Magn Reson Med. 2004;51:62–7.CrossRefPubMed Kober F, Iltis I, Izquierdo M, Desrois M, Ibarrola D, Cozzone PJ, et al. High-resolution myocardial perfusion mapping in small animals in vivo by spin-labeling gradient-echo imaging. Magn Reson Med. 2004;51:62–7.CrossRefPubMed
16.
go back to reference Poncelet BP, Koelling TM, Schmidt CJ, Kwong KK, Reese TG, Ledden P, et al. Measurement of human myocardial perfusion by double-gated flow alternating inversion recovery EPI. Magn Reson Med. 1999;41:510–9.CrossRefPubMed Poncelet BP, Koelling TM, Schmidt CJ, Kwong KK, Reese TG, Ledden P, et al. Measurement of human myocardial perfusion by double-gated flow alternating inversion recovery EPI. Magn Reson Med. 1999;41:510–9.CrossRefPubMed
17.
go back to reference Zhang H, Shea SM, Park V, Li D, Woodard PK, Gropler RJ, et al. Accurate myocardial T1 measurements: toward quantification of myocardial blood flow with arterial spin labeling. Magn Reson Med. 2005;53:1135–42.CrossRefPubMed Zhang H, Shea SM, Park V, Li D, Woodard PK, Gropler RJ, et al. Accurate myocardial T1 measurements: toward quantification of myocardial blood flow with arterial spin labeling. Magn Reson Med. 2005;53:1135–42.CrossRefPubMed
18.
go back to reference Zun Z, Wong EC, Nayak KS. Assessment of myocardial blood flow (MBF) in humans using arterial spin labeling (ASL): feasibility and noise analysis. Magn Reson Med. 2009;62:975–83.CrossRefPubMed Zun Z, Wong EC, Nayak KS. Assessment of myocardial blood flow (MBF) in humans using arterial spin labeling (ASL): feasibility and noise analysis. Magn Reson Med. 2009;62:975–83.CrossRefPubMed
19.
go back to reference Wang DJJJ, Bi X, Avants BB, Meng T, Zuehlsdorff S, Detre JA. Estimation of perfusion and arterial transit time in myocardium using free-breathing myocardial arterial spin labeling with navigator-echo. Magn Reson Med. 2010;64:1289–95.CrossRefPubMedPubMedCentral Wang DJJJ, Bi X, Avants BB, Meng T, Zuehlsdorff S, Detre JA. Estimation of perfusion and arterial transit time in myocardium using free-breathing myocardial arterial spin labeling with navigator-echo. Magn Reson Med. 2010;64:1289–95.CrossRefPubMedPubMedCentral
20.
21.
go back to reference Wacker CM, Fidler F, Dueren C, Hirn S, Jakob PM, Ertl G, et al. Quantitative assessment of myocardial perfusion with a spin-labeling technique: preliminary results in patients with coronary artery disease. J Magn Reson Imaging. 2003;18:555–60.CrossRefPubMed Wacker CM, Fidler F, Dueren C, Hirn S, Jakob PM, Ertl G, et al. Quantitative assessment of myocardial perfusion with a spin-labeling technique: preliminary results in patients with coronary artery disease. J Magn Reson Imaging. 2003;18:555–60.CrossRefPubMed
22.
go back to reference Zun Z, Varadarajan P, Pai RG, Wong EC, Nayak KS. Arterial spin labeled CMR detects clinically relevant increase in myocardial blood flow with vasodilation. JACC Cardiovasc Imaging. 2011;4:1253–61.CrossRefPubMed Zun Z, Varadarajan P, Pai RG, Wong EC, Nayak KS. Arterial spin labeled CMR detects clinically relevant increase in myocardial blood flow with vasodilation. JACC Cardiovasc Imaging. 2011;4:1253–61.CrossRefPubMed
23.
go back to reference Do HP, Javed A, Jao TR, Kim H, Yoon AJ, Nayak KS. Arterial spin labeling CMR perfusion imaging is capable of continuously monitoring myocardial blood flow during stress. J Cardiovasc Magn Reson. 2015;17:1–2.CrossRef Do HP, Javed A, Jao TR, Kim H, Yoon AJ, Nayak KS. Arterial spin labeling CMR perfusion imaging is capable of continuously monitoring myocardial blood flow during stress. J Cardiovasc Magn Reson. 2015;17:1–2.CrossRef
24.
go back to reference Javed A, Do HP YAJ, Nayak KS, Garg PK. Coronary Endothelial Function Testing using Continuous Cardiac ASL-CMR, Proc. SCMR/ISMRM Work. C. Ischemic Hear. Dis; 2018. p. WP02. Javed A, Do HP YAJ, Nayak KS, Garg PK. Coronary Endothelial Function Testing using Continuous Cardiac ASL-CMR, Proc. SCMR/ISMRM Work. C. Ischemic Hear. Dis; 2018. p. WP02.
25.
go back to reference Kim S-G. Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med. 1995;34:293–301. Wiley Subscription sServices, Inc., A Wiley CompanyCrossRefPubMed Kim S-G. Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med. 1995;34:293–301. Wiley Subscription sServices, Inc., A Wiley CompanyCrossRefPubMed
26.
go back to reference Kwong KK, Chesler DA, Weisskoff RM, Donahue KM, Davis TL, Ostergaard L, et al. MR perfusion studies with T1-weighted echo planar imaging. Magn Reson Med. 1995;34:878–87.CrossRefPubMed Kwong KK, Chesler DA, Weisskoff RM, Donahue KM, Davis TL, Ostergaard L, et al. MR perfusion studies with T1-weighted echo planar imaging. Magn Reson Med. 1995;34:878–87.CrossRefPubMed
27.
go back to reference Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med. 1999;42(5):952–62.CrossRefPubMed Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med. 1999;42(5):952–62.CrossRefPubMed
28.
29.
go back to reference Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. Circulation. 2002;105:539–42.CrossRefPubMed Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. Circulation. 2002;105:539–42.CrossRefPubMed
30.
go back to reference Jao T, Zun Z, Varadarajan P, Pai RG, Nayak KS. Mapping of myocardial ASL perfusion and perfusion reserve data. Ismrm. 2011;19:2011. Jao T, Zun Z, Varadarajan P, Pai RG, Nayak KS. Mapping of myocardial ASL perfusion and perfusion reserve data. Ismrm. 2011;19:2011.
31.
go back to reference Buxton RB, Frank LR, Wong EC, Siewert B, Warach S, Edelman RR. A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med. 1998;40:383–96.CrossRefPubMed Buxton RB, Frank LR, Wong EC, Siewert B, Warach S, Edelman RR. A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med. 1998;40:383–96.CrossRefPubMed
32.
go back to reference Lu H, Clingman C, Golay X, Van Zijl PCM. Determining the longitudinal relaxation time (T1) of blood at 3.0 tesla. Magn Reson Med. 2004;52:679–82.CrossRefPubMed Lu H, Clingman C, Golay X, Van Zijl PCM. Determining the longitudinal relaxation time (T1) of blood at 3.0 tesla. Magn Reson Med. 2004;52:679–82.CrossRefPubMed
33.
go back to reference Schmitt M, Horstick G, Petersen SE, Karg A, Hoffmann N, Gumbrich T, et al. Quantification of resting myocardial blood flow in a pig model of acute ischemia based on first-pass MRI. Magn Reson Med. 2005;53:1223–7.CrossRefPubMed Schmitt M, Horstick G, Petersen SE, Karg A, Hoffmann N, Gumbrich T, et al. Quantification of resting myocardial blood flow in a pig model of acute ischemia based on first-pass MRI. Magn Reson Med. 2005;53:1223–7.CrossRefPubMed
34.
go back to reference Mahnken AH, Klotz E, Pietsch H, Schmidt B, Allmendinger T, Haberland U, et al. Quantitative whole heart stress perfusion CT imaging as noninvasive assessment of hemodynamics in coronary artery stenosis: preliminary animal experience. Investig Radiol. 2010;45:298–305. Mahnken AH, Klotz E, Pietsch H, Schmidt B, Allmendinger T, Haberland U, et al. Quantitative whole heart stress perfusion CT imaging as noninvasive assessment of hemodynamics in coronary artery stenosis: preliminary animal experience. Investig Radiol. 2010;45:298–305.
35.
go back to reference Chareonthaitawee P, Kaufmann P a, Rimoldi O, Camici PG, Panithaya Chareonthaitawee Ornella Rimoldi, Paolo G, PAK C, Chareonthaitawee P, et al. Heterogeneity of resting and hyperemic myocardial blood ow in healthy humans. Cardiovasc Res. 2001;50:151–61.CrossRefPubMed Chareonthaitawee P, Kaufmann P a, Rimoldi O, Camici PG, Panithaya Chareonthaitawee Ornella Rimoldi, Paolo G, PAK C, Chareonthaitawee P, et al. Heterogeneity of resting and hyperemic myocardial blood ow in healthy humans. Cardiovasc Res. 2001;50:151–61.CrossRefPubMed
36.
go back to reference Schwinn DA, McIntyre RW, Reves JG. Isoflurane-Induced Vasodilation: role of the [alpha]-adrenergic nervous system. Anesth Analg. 1990;71:451–9.CrossRefPubMed Schwinn DA, McIntyre RW, Reves JG. Isoflurane-Induced Vasodilation: role of the [alpha]-adrenergic nervous system. Anesth Analg. 1990;71:451–9.CrossRefPubMed
37.
go back to reference Larach DR, Schuler HG. Direct vasodilation by sevoflurane, isoflurane, and halothane alters coronary flow reserve in the isolated rat heart. Anesthesiology. 1991;75:268–78.CrossRefPubMed Larach DR, Schuler HG. Direct vasodilation by sevoflurane, isoflurane, and halothane alters coronary flow reserve in the isolated rat heart. Anesthesiology. 1991;75:268–78.CrossRefPubMed
38.
go back to reference Crystal GJ, Czinn EA, Silver JM, Salem RM. Coronary vasodilation by isoflurane abrupt versus gradual administration. J Am Soc Anesthesiol. 1995;82:542–9.CrossRef Crystal GJ, Czinn EA, Silver JM, Salem RM. Coronary vasodilation by isoflurane abrupt versus gradual administration. J Am Soc Anesthesiol. 1995;82:542–9.CrossRef
39.
go back to reference Crystal PDGJ, Salem MDMR. Isoflurane causes vasodilation in the coronary circulation. Anesthesiology. 2003;98:1030.CrossRefPubMed Crystal PDGJ, Salem MDMR. Isoflurane causes vasodilation in the coronary circulation. Anesthesiology. 2003;98:1030.CrossRefPubMed
40.
go back to reference Gamperl PDAK, Hein PDTW, Kuo PDL, Cason MDBA. Isoflurane-induced dilation of porcine coronary microvessels is endothelium dependent and inhibited by glibenclamide. Anesthesiology. 2002;96:1465–71.CrossRefPubMed Gamperl PDAK, Hein PDTW, Kuo PDL, Cason MDBA. Isoflurane-induced dilation of porcine coronary microvessels is endothelium dependent and inhibited by glibenclamide. Anesthesiology. 2002;96:1465–71.CrossRefPubMed
41.
go back to reference Jaffe R, Charron T, Puley G, Dick A, Strauss BH. Microvascular obstruction and the no-reflow phenomenon after percutaneous coronary intervention. Circulation. 2008;117:3152–6.CrossRefPubMed Jaffe R, Charron T, Puley G, Dick A, Strauss BH. Microvascular obstruction and the no-reflow phenomenon after percutaneous coronary intervention. Circulation. 2008;117:3152–6.CrossRefPubMed
42.
go back to reference Ghugre NR, Ramanan V, Pop M, Yang Y, Barry J, Qiang B, et al. Quantitative tracking of edema, hemorrhage, and microvascular obstruction in subacute myocardial infarction in a porcine model by MRI. Magn Reson Med. 2011;66:1129–41.CrossRefPubMed Ghugre NR, Ramanan V, Pop M, Yang Y, Barry J, Qiang B, et al. Quantitative tracking of edema, hemorrhage, and microvascular obstruction in subacute myocardial infarction in a porcine model by MRI. Magn Reson Med. 2011;66:1129–41.CrossRefPubMed
43.
go back to reference Ghugre NR, Pop M, Barry J, Connelly KA, Wright GA. Quantitative magnetic resonance imaging can distinguish remodeling mechanisms after acute myocardial infarction based on the severity of ischemic insult. Magn Reson Med. 2013;70:1095–105.CrossRefPubMed Ghugre NR, Pop M, Barry J, Connelly KA, Wright GA. Quantitative magnetic resonance imaging can distinguish remodeling mechanisms after acute myocardial infarction based on the severity of ischemic insult. Magn Reson Med. 2013;70:1095–105.CrossRefPubMed
44.
go back to reference Zia MI, Ghugre NR, Connelly KA, Strauss BH, Sparkes JD, Dick AJ, et al. Characterizing myocardial edema and hemorrhage using quantitative T2 and T2* mapping at multiple time intervals post ST-segment elevation myocardial infarction clinical perspective. Circ Cardiovasc Imaging. 2012;5:566–72.CrossRefPubMed Zia MI, Ghugre NR, Connelly KA, Strauss BH, Sparkes JD, Dick AJ, et al. Characterizing myocardial edema and hemorrhage using quantitative T2 and T2* mapping at multiple time intervals post ST-segment elevation myocardial infarction clinical perspective. Circ Cardiovasc Imaging. 2012;5:566–72.CrossRefPubMed
45.
go back to reference Do HP, Yoon AJ, Fong MW, Saremi F, Barr ML, Nayak KS. Double-gated myocardial ASL perfusion imaging is robust to heart rate variation. Magn Reson Med. 2017;77:1975–80.CrossRefPubMed Do HP, Yoon AJ, Fong MW, Saremi F, Barr ML, Nayak KS. Double-gated myocardial ASL perfusion imaging is robust to heart rate variation. Magn Reson Med. 2017;77:1975–80.CrossRefPubMed
46.
go back to reference Yoon AJ, Do HP, Cen S, Fong MW, Saremi F, Barr ML, et al. Assessment of segmental myocardial blood flow and myocardial perfusion reserve by adenosine-stress myocardial arterial spin labeling perfusion imaging. J Magn Reson Imaging. 2017;46:413–20.CrossRefPubMed Yoon AJ, Do HP, Cen S, Fong MW, Saremi F, Barr ML, et al. Assessment of segmental myocardial blood flow and myocardial perfusion reserve by adenosine-stress myocardial arterial spin labeling perfusion imaging. J Magn Reson Imaging. 2017;46:413–20.CrossRefPubMed
47.
go back to reference Ghugre NR, Ramanan V, Pop M, Yang Y, Barry J, Qiang B, et al. Myocardial BOLD imaging at 3 T using quantitative T2: application in a myocardial infarct model. Magn Reson Med. 2011;66:1739–47.CrossRefPubMed Ghugre NR, Ramanan V, Pop M, Yang Y, Barry J, Qiang B, et al. Myocardial BOLD imaging at 3 T using quantitative T2: application in a myocardial infarct model. Magn Reson Med. 2011;66:1739–47.CrossRefPubMed
Metadata
Title
Non-contrast assessment of microvascular integrity using arterial spin labeled cardiovascular magnetic resonance in a porcine model of acute myocardial infarction
Authors
Hung P. Do
Venkat Ramanan
Xiuling Qi
Jennifer Barry
Graham A. Wright
Nilesh R. Ghugre
Krishna S. Nayak
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Cardiovascular Magnetic Resonance / Issue 1/2018
Electronic ISSN: 1532-429X
DOI
https://doi.org/10.1186/s12968-018-0468-5

Other articles of this Issue 1/2018

Journal of Cardiovascular Magnetic Resonance 1/2018 Go to the issue