Skip to main content
Top
Published in: Journal of Cardiovascular Magnetic Resonance 1/2017

Open Access 01-12-2017 | Research

Fractal analysis of left ventricular trabeculations is associated with impaired myocardial deformation in healthy Chinese

Authors: Jiashen Cai, Jennifer Ann Bryant, Thu-Thao Le, Boyang Su, Antonio de Marvao, Declan P. O’Regan, Stuart A. Cook, Calvin Woon-Loong Chin

Published in: Journal of Cardiovascular Magnetic Resonance | Issue 1/2017

Login to get access

Abstract

Background

Left ventricular (LV) non-compaction (LVNC) is defined by extreme LV trabeculation, but is measured variably. Here we examined the relationship between quantitative measurement in LV trabeculation and myocardial deformation in health and disease and determined the clinical utility of semi-automated assessment of LV trabeculations.

Methods

Cardiovascular magnetic resonance (CMR) was performed in 180 healthy Singaporean Chinese (age 20–69 years; males, n = 91), using balanced steady state free precession cine imaging at 3T. The degree of LV trabeculation was assessed by fractal dimension (FD) as a robust measure of trabeculation complexity using a semi-automated technique. FD measures were determined in healthy men and women to derive normal reference ranges. Myocardial deformation was evaluated using feature tracking. We tested the utility of this algorithm and the normal ranges in 10 individuals with confirmed LVNC (non-compacted/compacted; NC/C ratio > 2.3 and ≥1 risk factor for LVNC) and 13 individuals with suspected disease (NC/C ratio > 2.3).

Results

Fractal analysis is a reproducible means of assessing LV trabeculation extent (intra-class correlation coefficient: intra-observer, 0.924, 95% CI [0.761–0.973]; inter-observer, 0.925, 95% CI [0.821–0.970]). The overall extent of LV trabeculation (global FD: 1.205 ± 0.031) was independently associated with increased indexed LV end-diastolic volume and mass (sβ = 0.35; p < 0.001 and sβ = 0.13; p < 0.01, respectively) after adjusting for age, sex and body mass index. Increased LV trabeculation was independently associated with reduced global circumferential strain (sβ = 0.17, p = 0.013) and global diastolic circumferential and radial strain rates (sβ = 0.25, p < 0.001 and sβ = −0.15, p = 0.049, respectively). Abnormally high FD was observed in all patients with a confirmed diagnosis of LVNC. Five out of 13 individuals with suspected LVNC had normal FD, despite NC/C > 2.3.

Conclusion

This study defines the normal range of LV trabeculation in healthy Chinese that can be used to make or refute a diagnosis of LVNC using the fractal analysis tool, which we make freely available. We also show that increased myocardial trabeculation is associated with higher LV volumes, mass and reduced myocardial strain.
Appendix
Available only for authorised users
Literature
1.
go back to reference Maron BJ, Towbin JA, Thiene G, Antzelevitch C, Corrado D, Arnett D, Moss AJ, Seidman CE, Young JB. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association scientific statement from the council on clinical cardiology, heart failure and transplantation committee; quality of care and outcomes research and functional genomics and translational biology interdisciplinary working groups; and council on epidemiology and prevention. Circulation. 2006;113:1807–16.CrossRefPubMed Maron BJ, Towbin JA, Thiene G, Antzelevitch C, Corrado D, Arnett D, Moss AJ, Seidman CE, Young JB. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association scientific statement from the council on clinical cardiology, heart failure and transplantation committee; quality of care and outcomes research and functional genomics and translational biology interdisciplinary working groups; and council on epidemiology and prevention. Circulation. 2006;113:1807–16.CrossRefPubMed
2.
go back to reference Elliott P, Andersson B, Arbustini E, Bilinska Z, Cecchi F, Charron P, Dubourg O, Kuhl U, Maisch B, McKenna WJ, et al. Classification of the cardiomyopathies: a position statement from the European Society of Cardiology working group on myocardial and pericardial diseases. Eur Heart J. 2008;29:270–6.CrossRefPubMed Elliott P, Andersson B, Arbustini E, Bilinska Z, Cecchi F, Charron P, Dubourg O, Kuhl U, Maisch B, McKenna WJ, et al. Classification of the cardiomyopathies: a position statement from the European Society of Cardiology working group on myocardial and pericardial diseases. Eur Heart J. 2008;29:270–6.CrossRefPubMed
3.
go back to reference Gati S, Rajani R, Carr-White GS, Chambers JB. Adult left ventricular noncompaction: reappraisal of current diagnostic imaging modalities. J Am Coll Cardiol Img. 2014;7:1266–75.CrossRef Gati S, Rajani R, Carr-White GS, Chambers JB. Adult left ventricular noncompaction: reappraisal of current diagnostic imaging modalities. J Am Coll Cardiol Img. 2014;7:1266–75.CrossRef
4.
go back to reference Towbin JA, Lorts A, Jefferies JL. Left ventricular non-compaction cardiomyopathy. Lancet (London, England). 2015;386:813–25.CrossRef Towbin JA, Lorts A, Jefferies JL. Left ventricular non-compaction cardiomyopathy. Lancet (London, England). 2015;386:813–25.CrossRef
5.
go back to reference Petersen SE. Left ventricular noncompaction: a clinically useful diagnostic label? J Am Coll Cardiol Img. 2015;8:947–8.CrossRef Petersen SE. Left ventricular noncompaction: a clinically useful diagnostic label? J Am Coll Cardiol Img. 2015;8:947–8.CrossRef
6.
go back to reference Arbustini E, Favalli V, Narula N, Serio A, Grasso M. Left ventricular noncompaction. J Am Coll Cardiol. 2016;68:949–66.CrossRefPubMed Arbustini E, Favalli V, Narula N, Serio A, Grasso M. Left ventricular noncompaction. J Am Coll Cardiol. 2016;68:949–66.CrossRefPubMed
7.
go back to reference Biagini E, Ragni L, Ferlito M, Pasquale F, Lofiego C, Leone O, Rocchi G, Perugini E, Zagnoni S, Branzi A, et al. Different types of cardiomyopathy associated with isolated ventricular noncompaction. Am J Cardiol. 2006;98:821–4.CrossRefPubMed Biagini E, Ragni L, Ferlito M, Pasquale F, Lofiego C, Leone O, Rocchi G, Perugini E, Zagnoni S, Branzi A, et al. Different types of cardiomyopathy associated with isolated ventricular noncompaction. Am J Cardiol. 2006;98:821–4.CrossRefPubMed
8.
go back to reference Captur G, Nihoyannopoulos P. Left ventricular non-compaction: genetic heterogeneity, diagnosis and clinical course. Int J Cardiol. 2010;140:145–53.CrossRefPubMed Captur G, Nihoyannopoulos P. Left ventricular non-compaction: genetic heterogeneity, diagnosis and clinical course. Int J Cardiol. 2010;140:145–53.CrossRefPubMed
9.
go back to reference Captur G, Lopes LR, Patel V, Li C, Bassett P, Syrris P, Sado DM, Maestrini V, Mohun TJ, McKenna WJ, et al. Abnormal cardiac formation in hypertrophic cardiomyopathy: fractal analysis of trabeculae and preclinical gene expression. Circ Cardiovasc Genet. 2014;7:241–8.CrossRefPubMed Captur G, Lopes LR, Patel V, Li C, Bassett P, Syrris P, Sado DM, Maestrini V, Mohun TJ, McKenna WJ, et al. Abnormal cardiac formation in hypertrophic cardiomyopathy: fractal analysis of trabeculae and preclinical gene expression. Circ Cardiovasc Genet. 2014;7:241–8.CrossRefPubMed
10.
go back to reference Stahli BE, Gebhard C, Biaggi P, Klaassen S, Valsangiacomo Buechel E, Attenhofer Jost CH, Jenni R, Tanner FC, Greutmann M. Left ventricular non-compaction: prevalence in congenital heart disease. Int J Cardiol. 2013;167:2477–81.CrossRefPubMed Stahli BE, Gebhard C, Biaggi P, Klaassen S, Valsangiacomo Buechel E, Attenhofer Jost CH, Jenni R, Tanner FC, Greutmann M. Left ventricular non-compaction: prevalence in congenital heart disease. Int J Cardiol. 2013;167:2477–81.CrossRefPubMed
11.
go back to reference Gati S, Chandra N, Bennett RL, Reed M, Kervio G, Panoulas VF, Ghani S, Sheikh N, Zaidi A, Wilson M, et al. Increased left ventricular trabeculation in highly trained athletes: do we need more stringent criteria for the diagnosis of left ventricular non-compaction in athletes? Heart. 2013;99:401–8.CrossRefPubMed Gati S, Chandra N, Bennett RL, Reed M, Kervio G, Panoulas VF, Ghani S, Sheikh N, Zaidi A, Wilson M, et al. Increased left ventricular trabeculation in highly trained athletes: do we need more stringent criteria for the diagnosis of left ventricular non-compaction in athletes? Heart. 2013;99:401–8.CrossRefPubMed
12.
go back to reference Gati S, Papadakis M, Papamichael ND, Zaidi A, Sheikh N, Reed M, Sharma R, Thilaganathan B, Sharma S. Reversible de novo left ventricular trabeculations in pregnant women: implications for the diagnosis of left ventricular noncompaction in low-risk populations. Circulation. 2014;130:475–83.CrossRefPubMed Gati S, Papadakis M, Papamichael ND, Zaidi A, Sheikh N, Reed M, Sharma R, Thilaganathan B, Sharma S. Reversible de novo left ventricular trabeculations in pregnant women: implications for the diagnosis of left ventricular noncompaction in low-risk populations. Circulation. 2014;130:475–83.CrossRefPubMed
13.
go back to reference Weir-McCall JR, Yeap PM, Papagiorcopulo C, Fitzgerald K, Gandy SJ, Lambert M, Belch JJF, Cavin I, Littleford R, Macfarlane JA, et al. Left ventricular noncompaction. J Am Coll Cardiol. 2016;68:2157–65.CrossRefPubMedPubMedCentral Weir-McCall JR, Yeap PM, Papagiorcopulo C, Fitzgerald K, Gandy SJ, Lambert M, Belch JJF, Cavin I, Littleford R, Macfarlane JA, et al. Left ventricular noncompaction. J Am Coll Cardiol. 2016;68:2157–65.CrossRefPubMedPubMedCentral
14.
go back to reference Oechslin EN, Attenhofer Jost CH, Rojas JR, Kaufmann PA, Jenni R. Long-term follow-up of 34 adults with isolated left ventricular noncompaction: a distinct cardiomyopathy with poor prognosis. J Am Coll Cardiol. 2000;36:493–500.CrossRefPubMed Oechslin EN, Attenhofer Jost CH, Rojas JR, Kaufmann PA, Jenni R. Long-term follow-up of 34 adults with isolated left ventricular noncompaction: a distinct cardiomyopathy with poor prognosis. J Am Coll Cardiol. 2000;36:493–500.CrossRefPubMed
15.
go back to reference Kohli SK, Pantazis AA, Shah JS, Adeyemi B, Jackson G, McKenna WJ, Sharma S, Elliott PM. Diagnosis of left-ventricular non-compaction in patients with left-ventricular systolic dysfunction: time for a reappraisal of diagnostic criteria? Eur Heart J. 2008;29:89–95.CrossRefPubMed Kohli SK, Pantazis AA, Shah JS, Adeyemi B, Jackson G, McKenna WJ, Sharma S, Elliott PM. Diagnosis of left-ventricular non-compaction in patients with left-ventricular systolic dysfunction: time for a reappraisal of diagnostic criteria? Eur Heart J. 2008;29:89–95.CrossRefPubMed
16.
go back to reference Gotte MJ, Germans T, Russel IK, Zwanenburg JJ, Marcus JT, van Rossum AC, van Veldhuisen DJ. Myocardial strain and torsion quantified by cardiovascular magnetic resonance tissue tagging: studies in normal and impaired left ventricular function. J Am Coll Cardiol. 2006;48:2002–11.CrossRefPubMed Gotte MJ, Germans T, Russel IK, Zwanenburg JJ, Marcus JT, van Rossum AC, van Veldhuisen DJ. Myocardial strain and torsion quantified by cardiovascular magnetic resonance tissue tagging: studies in normal and impaired left ventricular function. J Am Coll Cardiol. 2006;48:2002–11.CrossRefPubMed
17.
go back to reference Motwani M, Kidambi A, Greenwood JP, Plein S. Advances in cardiovascular magnetic resonance in ischaemic heart disease and non-ischaemic cardiomyopathies. Heart. 2014;100:1722–33.CrossRefPubMed Motwani M, Kidambi A, Greenwood JP, Plein S. Advances in cardiovascular magnetic resonance in ischaemic heart disease and non-ischaemic cardiomyopathies. Heart. 2014;100:1722–33.CrossRefPubMed
18.
go back to reference Petersen SE, Selvanayagam JB, Wiesmann F, Robson MD, Francis JM, Anderson RH, Watkins H, Neubauer S. Left ventricular non-compaction: insights from cardiovascular magnetic resonance imaging. J Am Coll Cardiol. 2005;46:101–5.CrossRefPubMed Petersen SE, Selvanayagam JB, Wiesmann F, Robson MD, Francis JM, Anderson RH, Watkins H, Neubauer S. Left ventricular non-compaction: insights from cardiovascular magnetic resonance imaging. J Am Coll Cardiol. 2005;46:101–5.CrossRefPubMed
19.
go back to reference Stacey RB, Andersen MM, St Clair M, Hundley WG, Thohan V. Comparison of systolic and diastolic criteria for isolated LV noncompaction in CMR. J Am Coll Cardiol Img. 2013;6:931–40.CrossRef Stacey RB, Andersen MM, St Clair M, Hundley WG, Thohan V. Comparison of systolic and diastolic criteria for isolated LV noncompaction in CMR. J Am Coll Cardiol Img. 2013;6:931–40.CrossRef
20.
go back to reference Jacquier A, Thuny F, Jop B, Giorgi R, Cohen F, Gaubert JY, Vidal V, Bartoli JM, Habib G, Moulin G. Measurement of trabeculated left ventricular mass using cardiac magnetic resonance imaging in the diagnosis of left ventricular non-compaction. Eur Heart J. 2010;31:1098–104.CrossRefPubMed Jacquier A, Thuny F, Jop B, Giorgi R, Cohen F, Gaubert JY, Vidal V, Bartoli JM, Habib G, Moulin G. Measurement of trabeculated left ventricular mass using cardiac magnetic resonance imaging in the diagnosis of left ventricular non-compaction. Eur Heart J. 2010;31:1098–104.CrossRefPubMed
21.
go back to reference Choi Y, Kim SM, Lee SC, Chang SA, Jang SY, Choe YH. Quantification of left ventricular trabeculae using cardiovascular magnetic resonance for the diagnosis of left ventricular non-compaction: evaluation of trabecular volume and refined semi-quantitative criteria. J Cardiovasc Magn Reson. 2016;18:24.CrossRefPubMedPubMedCentral Choi Y, Kim SM, Lee SC, Chang SA, Jang SY, Choe YH. Quantification of left ventricular trabeculae using cardiovascular magnetic resonance for the diagnosis of left ventricular non-compaction: evaluation of trabecular volume and refined semi-quantitative criteria. J Cardiovasc Magn Reson. 2016;18:24.CrossRefPubMedPubMedCentral
22.
go back to reference Captur G, Muthurangu V, Cook C, Flett AS, Wilson R, Barison A, Sado DM, Anderson S, McKenna WJ, Mohun TJ, et al. Quantification of left ventricular trabeculae using fractal analysis. J Cardiovasc Magn Reson. 2013;15:36.CrossRefPubMedPubMedCentral Captur G, Muthurangu V, Cook C, Flett AS, Wilson R, Barison A, Sado DM, Anderson S, McKenna WJ, Mohun TJ, et al. Quantification of left ventricular trabeculae using fractal analysis. J Cardiovasc Magn Reson. 2013;15:36.CrossRefPubMedPubMedCentral
23.
go back to reference Captur G, Radenkovic D, Li C, Liu Y, Aung N, Zemrak F, Tobon-Gomez C, Gao X, Elliott PM, Petersen SE, et al. Community delivery of semiautomated fractal analysis tool in cardiac mr for trabecular phenotyping. J Magn Reson Imaging. 2017;46:101.CrossRef Captur G, Radenkovic D, Li C, Liu Y, Aung N, Zemrak F, Tobon-Gomez C, Gao X, Elliott PM, Petersen SE, et al. Community delivery of semiautomated fractal analysis tool in cardiac mr for trabecular phenotyping. J Magn Reson Imaging. 2017;46:101.CrossRef
24.
go back to reference Freedom RM, Yoo SJ, Perrin D, Taylor G, Petersen S, Anderson RH. The morphological spectrum of ventricular noncompaction. Cardiol Young. 2005;15:345–64.CrossRefPubMed Freedom RM, Yoo SJ, Perrin D, Taylor G, Petersen S, Anderson RH. The morphological spectrum of ventricular noncompaction. Cardiol Young. 2005;15:345–64.CrossRefPubMed
25.
go back to reference Kawel N, Nacif M, Arai AE, Gomes AS, Hundley WG, Johnson WC, Prince MR, Stacey RB, Lima JA, Bluemke DA. Trabeculated (noncompacted) and compact myocardium in adults: the multi-ethnic study of atherosclerosis. Circ Cardiovasc Imaging. 2012;5:357–66.CrossRefPubMedPubMedCentral Kawel N, Nacif M, Arai AE, Gomes AS, Hundley WG, Johnson WC, Prince MR, Stacey RB, Lima JA, Bluemke DA. Trabeculated (noncompacted) and compact myocardium in adults: the multi-ethnic study of atherosclerosis. Circ Cardiovasc Imaging. 2012;5:357–66.CrossRefPubMedPubMedCentral
26.
go back to reference Zemrak F, Ahlman MA, Captur G, Mohiddin SA, Kawel-Boehm N, Prince MR, Moon JC, Hundley WG, Lima JA, Bluemke DA, Petersen SE. The relationship of left ventricular trabeculation to ventricular function and structure over a 9.5-year follow-up: the MESA study. J Am Coll Cardiol. 2014;64:1971–80.CrossRefPubMedPubMedCentral Zemrak F, Ahlman MA, Captur G, Mohiddin SA, Kawel-Boehm N, Prince MR, Moon JC, Hundley WG, Lima JA, Bluemke DA, Petersen SE. The relationship of left ventricular trabeculation to ventricular function and structure over a 9.5-year follow-up: the MESA study. J Am Coll Cardiol. 2014;64:1971–80.CrossRefPubMedPubMedCentral
27.
go back to reference Captur G, Zemrak F, Muthurangu V, Petersen SE, Li C, Bassett P, Kawel-Boehm N, McKenna WJ, Elliott PM, Lima JAC, et al. Fractal analysis of myocardial trabeculations in 2547 study participants: multi-ethnic study of atherosclerosis. Radiology. 2015;277:707–15.CrossRefPubMedPubMedCentral Captur G, Zemrak F, Muthurangu V, Petersen SE, Li C, Bassett P, Kawel-Boehm N, McKenna WJ, Elliott PM, Lima JAC, et al. Fractal analysis of myocardial trabeculations in 2547 study participants: multi-ethnic study of atherosclerosis. Radiology. 2015;277:707–15.CrossRefPubMedPubMedCentral
28.
go back to reference Cikes M, Solomon SD. Beyond ejection fraction: an integrative approach for assessment of cardiac structure and function in heart failure. Eur Heart J. 2016;37:1642–50.CrossRefPubMed Cikes M, Solomon SD. Beyond ejection fraction: an integrative approach for assessment of cardiac structure and function in heart failure. Eur Heart J. 2016;37:1642–50.CrossRefPubMed
29.
go back to reference Smiseth OA, Torp H, Opdahl A, Haugaa KH, Urheim S. Myocardial strain imaging: how useful is it in clinical decision making? Eur Heart J. 2016;37:1196–207.CrossRefPubMed Smiseth OA, Torp H, Opdahl A, Haugaa KH, Urheim S. Myocardial strain imaging: how useful is it in clinical decision making? Eur Heart J. 2016;37:1196–207.CrossRefPubMed
30.
go back to reference Claus P, Omar AM, Pedrizzetti G, Sengupta PP, Nagel E. Tissue tracking Technology for Assessing Cardiac Mechanics: principles, normal values, and clinical applications. J Am Coll Cardiol Img. 2015;8:1444–60.CrossRef Claus P, Omar AM, Pedrizzetti G, Sengupta PP, Nagel E. Tissue tracking Technology for Assessing Cardiac Mechanics: principles, normal values, and clinical applications. J Am Coll Cardiol Img. 2015;8:1444–60.CrossRef
31.
go back to reference Le TT, Tan RS, De Deyn M, Goh EP, Han Y, Leong BR, Cook SA, Chin CW. Cardiovascular magnetic resonance reference ranges for the heart and aorta in Chinese at 3T. J Cardiovasc Magn Reson. 2016;18:21.CrossRefPubMedPubMedCentral Le TT, Tan RS, De Deyn M, Goh EP, Han Y, Leong BR, Cook SA, Chin CW. Cardiovascular magnetic resonance reference ranges for the heart and aorta in Chinese at 3T. J Cardiovasc Magn Reson. 2016;18:21.CrossRefPubMedPubMedCentral
32.
go back to reference Captur G, Muthurangu V, Finocchiaro G, Zemrak F, Ferreira VM, Liu S, Li C, Petersen SE, McKenna WJ, Mohun TJ, et al. CMR trabecular fractal analysis - technical development of a measurement system. J Cardiovasc Magn Reson. 2014;16:P51.CrossRefPubMedCentral Captur G, Muthurangu V, Finocchiaro G, Zemrak F, Ferreira VM, Liu S, Li C, Petersen SE, McKenna WJ, Mohun TJ, et al. CMR trabecular fractal analysis - technical development of a measurement system. J Cardiovasc Magn Reson. 2014;16:P51.CrossRefPubMedCentral
33.
go back to reference Li C, Huang R, Ding Z, Gatenby JC, Metaxas DN, Gore JC. A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans Image Process. 2011;20:2007–16.CrossRefPubMed Li C, Huang R, Ding Z, Gatenby JC, Metaxas DN, Gore JC. A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans Image Process. 2011;20:2007–16.CrossRefPubMed
34.
go back to reference Liebovitch LS, Toth T. A fast algorithm to determine fractal dimensions by box counting. Phys Lett A. 1989;141:386-90. Liebovitch LS, Toth T. A fast algorithm to determine fractal dimensions by box counting. Phys Lett A. 1989;141:386-90.
35.
go back to reference Solberg HE. The theory of reference values part 5. Statistical treatment of collected reference values. Determination of reference limits. J Clin Chem Clin Biochem. 1983;21:749–60.PubMed Solberg HE. The theory of reference values part 5. Statistical treatment of collected reference values. Determination of reference limits. J Clin Chem Clin Biochem. 1983;21:749–60.PubMed
36.
go back to reference Bellavia D, Michelena HI, Martinez M, Pellikka PA, Bruce CJ, Connolly HM, Villarraga HR, Veress G, Oh JK, Miller FA. Speckle myocardial imaging modalities for early detection of myocardial impairment in isolated left ventricular non-compaction. Heart. 2010;96:440–7.CrossRefPubMed Bellavia D, Michelena HI, Martinez M, Pellikka PA, Bruce CJ, Connolly HM, Villarraga HR, Veress G, Oh JK, Miller FA. Speckle myocardial imaging modalities for early detection of myocardial impairment in isolated left ventricular non-compaction. Heart. 2010;96:440–7.CrossRefPubMed
37.
go back to reference Peters F, Khandheria BK, Libhaber E, Maharaj N, Dos Santos C, Matioda H, Essop MR. Left ventricular twist in left ventricular noncompaction. Eur Heart J Cardiovasc Imaging. 2014;15:48–55.CrossRefPubMed Peters F, Khandheria BK, Libhaber E, Maharaj N, Dos Santos C, Matioda H, Essop MR. Left ventricular twist in left ventricular noncompaction. Eur Heart J Cardiovasc Imaging. 2014;15:48–55.CrossRefPubMed
38.
go back to reference Ari ME. Cetin, II, Kocabas a, Ekici F, Ceylan O, Surucu M: decreased deformation in asymptomatic children with isolated left ventricular non-compaction and normal ejection fraction. Pediatr Cardiol. 2016;37:201–7.CrossRefPubMed Ari ME. Cetin, II, Kocabas a, Ekici F, Ceylan O, Surucu M: decreased deformation in asymptomatic children with isolated left ventricular non-compaction and normal ejection fraction. Pediatr Cardiol. 2016;37:201–7.CrossRefPubMed
39.
go back to reference Kawel-Boehm N, McClelland RL, Zemrak F, Captur G, Hundley WG, Liu CY, Moon JC, Petersen SE, Ambale-Venkatesh B, Lima JAC, Bluemke DA. Hypertrabeculated left ventricular myocardium in relationship to myocardial function and fibrosis: the multi-ethnic study of atherosclerosis. Radiology. 2017;284:667–75.CrossRefPubMed Kawel-Boehm N, McClelland RL, Zemrak F, Captur G, Hundley WG, Liu CY, Moon JC, Petersen SE, Ambale-Venkatesh B, Lima JAC, Bluemke DA. Hypertrabeculated left ventricular myocardium in relationship to myocardial function and fibrosis: the multi-ethnic study of atherosclerosis. Radiology. 2017;284:667–75.CrossRefPubMed
40.
go back to reference Moore B, Dasi LP. Quantifying left ventricular trabeculae function - application of image-based fractal analysis. Physiol Rep. 2013;1:e00068 Moore B, Dasi LP. Quantifying left ventricular trabeculae function - application of image-based fractal analysis. Physiol Rep. 2013;1:e00068
41.
go back to reference Reimold SC. Reversible left ventricular trabeculations in pregnancy: is this sufficient to make the diagnosis of left ventricular noncompaction? Circulation. 2014;130:453–4.CrossRefPubMed Reimold SC. Reversible left ventricular trabeculations in pregnancy: is this sufficient to make the diagnosis of left ventricular noncompaction? Circulation. 2014;130:453–4.CrossRefPubMed
42.
go back to reference Hung CL, Verma A, Uno H, Shin SH, Bourgoun M, Hassanein AH, McMurray JJ, Velazquez EJ, Kober L, Pfeffer MA, et al. Longitudinal and circumferential strain rate, left ventricular remodeling, and prognosis after myocardial infarction. J Am Coll Cardiol. 2010;56:1812–22.CrossRefPubMed Hung CL, Verma A, Uno H, Shin SH, Bourgoun M, Hassanein AH, McMurray JJ, Velazquez EJ, Kober L, Pfeffer MA, et al. Longitudinal and circumferential strain rate, left ventricular remodeling, and prognosis after myocardial infarction. J Am Coll Cardiol. 2010;56:1812–22.CrossRefPubMed
43.
go back to reference Agmon Y, Connolly HM, Olson LJ, Khandheria BK, Seward JB. Noncompaction of the ventricular myocardium. J Am Soc Echocardiogr. 1999;12:859–63.CrossRefPubMed Agmon Y, Connolly HM, Olson LJ, Khandheria BK, Seward JB. Noncompaction of the ventricular myocardium. J Am Soc Echocardiogr. 1999;12:859–63.CrossRefPubMed
44.
go back to reference McMahon CJ, Pignatelli RH, Nagueh SF, Lee V-V, Vaughn W, Valdes SO, Kovalchin JP, Jefferies JL, Dreyer WJ, Denfield SW, et al. Left ventricular non-compaction cardiomyopathy in children: characterisation of clinical status using tissue Doppler-derived indices of left ventricular diastolic relaxation. Heart. 2007;93:676–81.CrossRefPubMed McMahon CJ, Pignatelli RH, Nagueh SF, Lee V-V, Vaughn W, Valdes SO, Kovalchin JP, Jefferies JL, Dreyer WJ, Denfield SW, et al. Left ventricular non-compaction cardiomyopathy in children: characterisation of clinical status using tissue Doppler-derived indices of left ventricular diastolic relaxation. Heart. 2007;93:676–81.CrossRefPubMed
45.
go back to reference Gebhard C, Stahli BE, Greutmann M, Biaggi P, Jenni R, Tanner FC. Reduced left ventricular compacta thickness: a novel echocardiographic criterion for non-compaction cardiomyopathy. J Am Soc Echocardiogr. 2012;25:1050–7.CrossRefPubMed Gebhard C, Stahli BE, Greutmann M, Biaggi P, Jenni R, Tanner FC. Reduced left ventricular compacta thickness: a novel echocardiographic criterion for non-compaction cardiomyopathy. J Am Soc Echocardiogr. 2012;25:1050–7.CrossRefPubMed
Metadata
Title
Fractal analysis of left ventricular trabeculations is associated with impaired myocardial deformation in healthy Chinese
Authors
Jiashen Cai
Jennifer Ann Bryant
Thu-Thao Le
Boyang Su
Antonio de Marvao
Declan P. O’Regan
Stuart A. Cook
Calvin Woon-Loong Chin
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of Cardiovascular Magnetic Resonance / Issue 1/2017
Electronic ISSN: 1532-429X
DOI
https://doi.org/10.1186/s12968-017-0413-z

Other articles of this Issue 1/2017

Journal of Cardiovascular Magnetic Resonance 1/2017 Go to the issue