Skip to main content
Top
Published in: Journal of Cardiovascular Magnetic Resonance 1/2017

Open Access 01-12-2016 | Research

Evaluation of an automated method for arterial input function detection for first-pass myocardial perfusion cardiovascular magnetic resonance

Authors: Matthew Jacobs, Mitchel Benovoy, Lin-Ching Chang, Andrew E. Arai, Li-Yueh Hsu

Published in: Journal of Cardiovascular Magnetic Resonance | Issue 1/2017

Login to get access

Abstract

Background

Quantitative assessment of myocardial blood flow (MBF) with first-pass perfusion cardiovascular magnetic resonance (CMR) requires a measurement of the arterial input function (AIF). This study presents an automated method to improve the objectivity and reduce processing time for measuring the AIF from first-pass perfusion CMR images. This automated method is used to compare the impact of different AIF measurements on MBF quantification.

Methods

Gadolinium-enhanced perfusion CMR was performed on a 1.5 T scanner using a saturation recovery dual-sequence technique. Rest and stress perfusion series from 270 clinical studies were analyzed. Automated image processing steps included motion correction, intensity correction, detection of the left ventricle (LV), independent component analysis, and LV pixel thresholding to calculate the AIF signal. The results were compared with manual reference measurements using several quality metrics based on the contrast enhancement and timing characteristics of the AIF. The median and 95 % confidence interval (CI) of the median were reported. Finally, MBF was calculated and compared in a subset of 21 clinical studies using the automated and manual AIF measurements.

Results

Two clinical studies were excluded from the comparison due to a congenital heart defect present in one and a contrast administration issue in the other. The proposed method successfully processed 99.63 % of the remaining image series. Manual and automatic AIF time-signal intensity curves were strongly correlated with median correlation coefficient of 0.999 (95 % CI [0.999, 0.999]). The automated method effectively selected bright LV pixels, excluded papillary muscles, and required less processing time than the manual approach. There was no significant difference in MBF estimates between manually and automatically measured AIFs (p = NS). However, different sizes of regions of interest selection in the LV cavity could change the AIF measurement and affect MBF calculation (p = NS to p = 0.03).

Conclusion

The proposed automatic method produced AIFs similar to the reference manual method but required less processing time and was more objective. The automated algorithm may improve AIF measurement from the first-pass perfusion CMR images and make quantitative myocardial perfusion analysis more robust and readily available.
Literature
1.
2.
go back to reference Schwitter J, Nanz D, Kneifel S, Bertschinger K, Buchi M, Knusel PR, et al. Assessment of myocardial perfusion in coronary artery disease by magnetic resonance: a comparison with positron emission tomography and coronary angiography. Circulation. 2001;103(18):2230–5. doi:10.1161/01.cir.103.18.2230.CrossRefPubMed Schwitter J, Nanz D, Kneifel S, Bertschinger K, Buchi M, Knusel PR, et al. Assessment of myocardial perfusion in coronary artery disease by magnetic resonance: a comparison with positron emission tomography and coronary angiography. Circulation. 2001;103(18):2230–5. doi:10.​1161/​01.​cir.​103.​18.​2230.CrossRefPubMed
3.
go back to reference Wilke NM, Jerosch-Herold M, Zenovich A, Stillman AE. Magnetic resonance first-pass myocardial perfusion imaging: clinical validation and future applications. J Magn Reson Imaging. 1999;10(5):676–85.CrossRefPubMed Wilke NM, Jerosch-Herold M, Zenovich A, Stillman AE. Magnetic resonance first-pass myocardial perfusion imaging: clinical validation and future applications. J Magn Reson Imaging. 1999;10(5):676–85.CrossRefPubMed
4.
go back to reference Ishida N, Sukuma H, Motoyasu M, Okinaka T, Isaka N, Nakano T, et al. Noninfarcted myocardium: correlation between dynamic first-pass contrast-enhanced myocardial MR imaging and quantitative coronary angiography. Radiology. 2003;229(1):209–16. doi:10.1148/radiol.2291021118.CrossRefPubMed Ishida N, Sukuma H, Motoyasu M, Okinaka T, Isaka N, Nakano T, et al. Noninfarcted myocardium: correlation between dynamic first-pass contrast-enhanced myocardial MR imaging and quantitative coronary angiography. Radiology. 2003;229(1):209–16. doi:10.​1148/​radiol.​2291021118.CrossRefPubMed
7.
go back to reference Morton G, Chiribiri A, Ishida M, Hussain ST, Schuster A, Indermuehle A, et al. Quantification of absolute myocardial perfusion in patients with coronary artery disease: comparison between cardiovascular magnetic resonance and positron emission tomography. J Am Coll Cardiol. 2012;60(16):1546–55. doi:10.1016/j.jacc.2012.05.052.CrossRefPubMed Morton G, Chiribiri A, Ishida M, Hussain ST, Schuster A, Indermuehle A, et al. Quantification of absolute myocardial perfusion in patients with coronary artery disease: comparison between cardiovascular magnetic resonance and positron emission tomography. J Am Coll Cardiol. 2012;60(16):1546–55. doi:10.​1016/​j.​jacc.​2012.​05.​052.CrossRefPubMed
8.
14.
go back to reference Yin J, Sun H, Yang J, Guo Q. Automated detection of the arterial input function using normalized cut clustering to determine cerebral perfusion by dynamic susceptibility contrast-magnetic resonance imaging. J Magn Reson Imaging. 2014. doi:10.1002/jmri.24642.PubMed Yin J, Sun H, Yang J, Guo Q. Automated detection of the arterial input function using normalized cut clustering to determine cerebral perfusion by dynamic susceptibility contrast-magnetic resonance imaging. J Magn Reson Imaging. 2014. doi:10.​1002/​jmri.​24642.PubMed
15.
go back to reference Shi L, Wang D, Liu W, Fang K, Wang YX, Huang W, et al. Automatic detection of arterial input function in dynamic contrast enhanced MRI based on affinity propagation clustering. J Magn Reson Imaging. 2014;39(5):1327–37. doi:10.1002/jmri.24259.CrossRefPubMed Shi L, Wang D, Liu W, Fang K, Wang YX, Huang W, et al. Automatic detection of arterial input function in dynamic contrast enhanced MRI based on affinity propagation clustering. J Magn Reson Imaging. 2014;39(5):1327–37. doi:10.​1002/​jmri.​24259.CrossRefPubMed
16.
go back to reference Kim JH, Im GH, Yang J, Choi D, Lee WJ, Lee JH. Quantitative dynamic contrast-enhanced MRI for mouse models using automatic detection of the arterial input function. NMR Biomed. 2012;25(4):674–84. doi:10.1002/nbm.1784.CrossRefPubMed Kim JH, Im GH, Yang J, Choi D, Lee WJ, Lee JH. Quantitative dynamic contrast-enhanced MRI for mouse models using automatic detection of the arterial input function. NMR Biomed. 2012;25(4):674–84. doi:10.​1002/​nbm.​1784.CrossRefPubMed
17.
go back to reference Rijpkema M, Kaanders JHAM, Joosten FBM, van der Kogel AJ, Heerschap A. Method for quantitative mapping of dynamic MRI contrast agent uptake in human tumors. J Magn Reson Imaging. 2001;14:457–63.CrossRefPubMed Rijpkema M, Kaanders JHAM, Joosten FBM, van der Kogel AJ, Heerschap A. Method for quantitative mapping of dynamic MRI contrast agent uptake in human tumors. J Magn Reson Imaging. 2001;14:457–63.CrossRefPubMed
18.
go back to reference Parker GJ, Jackson A, Waterton JC, Buckley DL. Automated arterial input function extraction for T1-weighted DCE-MRI. Proc Int Soc Mag Reson Med. 2003;11:1264. Parker GJ, Jackson A, Waterton JC, Buckley DL. Automated arterial input function extraction for T1-weighted DCE-MRI. Proc Int Soc Mag Reson Med. 2003;11:1264.
19.
go back to reference Parker GJ, Roberts C, Macdonald A, Buonaccorsi GA, Cheung S, Buckley DL, et al. Experimentally-derived functional form for a population-averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI. Magn Reson Med. 2006;56(5):993–1000. doi:10.1002/mrm.21066.CrossRefPubMed Parker GJ, Roberts C, Macdonald A, Buonaccorsi GA, Cheung S, Buckley DL, et al. Experimentally-derived functional form for a population-averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI. Magn Reson Med. 2006;56(5):993–1000. doi:10.​1002/​mrm.​21066.CrossRefPubMed
20.
go back to reference Miller CA, Naish JH, Ainslie MP, Tonge C, Tout D, Arumugam P, et al. Voxel-wise quantification of myocardial blood flow with cardiovascular magnetic resonance: effect of variations in methodology and validation with positron emission tomography. J Cardiovasc Magn Reson. 2014;16:11. doi:10.1186/1532-429X-16-11.CrossRefPubMedPubMedCentral Miller CA, Naish JH, Ainslie MP, Tonge C, Tout D, Arumugam P, et al. Voxel-wise quantification of myocardial blood flow with cardiovascular magnetic resonance: effect of variations in methodology and validation with positron emission tomography. J Cardiovasc Magn Reson. 2014;16:11. doi:10.​1186/​1532-429X-16-11.CrossRefPubMedPubMedCentral
22.
go back to reference Zarinabad N, Hautvast GLTF, Sammut E, Arujuna A, Breeuwer M, Nagel E, et al. Effects of tracer arrical time on the accuracy of high-resolution (voxel-wise) myocardial perfusion maps from contrast-enhanced first-pass perfusion magnetic resonance. IEEE Trans Biomed Eng. 2014;61(9):2499–506.CrossRefPubMed Zarinabad N, Hautvast GLTF, Sammut E, Arujuna A, Breeuwer M, Nagel E, et al. Effects of tracer arrical time on the accuracy of high-resolution (voxel-wise) myocardial perfusion maps from contrast-enhanced first-pass perfusion magnetic resonance. IEEE Trans Biomed Eng. 2014;61(9):2499–506.CrossRefPubMed
23.
go back to reference Breeuwer M, Spreeuwers L, Quist M. Automatic quantitative analysis of cardiac MR perfusion images. In: Milan S, Hanson KM, editors. Proc. SPIE Medical Imaging 2001: Image Processing. San Diego, California; 2001. p. 733–42. Breeuwer M, Spreeuwers L, Quist M. Automatic quantitative analysis of cardiac MR perfusion images. In: Milan S, Hanson KM, editors. Proc. SPIE Medical Imaging 2001: Image Processing. San Diego, California; 2001. p. 733–42.
24.
go back to reference Tarroni G, Patel A, Veronesi F, Walter J, Lamberti C, Lang R, et al. MRI-based quantification of myocardial perfusion at rest and stress using automated frame-by-frame segmentation and non-rigid registration. In: Murray A, editor. Computing in Cardiology, 2010. Belfast: IEEE; 2010. p. 1–4. Tarroni G, Patel A, Veronesi F, Walter J, Lamberti C, Lang R, et al. MRI-based quantification of myocardial perfusion at rest and stress using automated frame-by-frame segmentation and non-rigid registration. In: Murray A, editor. Computing in Cardiology, 2010. Belfast: IEEE; 2010. p. 1–4.
25.
go back to reference Hautvast G, Chiribiri A, Zarinabad N, Schuster A, Breeuwer M, Nagel E. Myocardial blood flow quantification from MRI by deconvolution using an exponential approximation basis. IEEE Trans Biomed Eng. 2012;59(7):2060–7.CrossRefPubMed Hautvast G, Chiribiri A, Zarinabad N, Schuster A, Breeuwer M, Nagel E. Myocardial blood flow quantification from MRI by deconvolution using an exponential approximation basis. IEEE Trans Biomed Eng. 2012;59(7):2060–7.CrossRefPubMed
26.
go back to reference Jacobs M, Gorbachev M, Benovoy M, Chang LC, Arai AE, Hsu LY. Automated measurement of arterial input function in first-pass myocardial perfusion magnetic resonance images using Independent component analysis. In: 2015 IEEE International Symposium on Biomedical Imaging: From Nano to Macro. Brooklyn: IEEE; 2015. p. 1332–5.CrossRef Jacobs M, Gorbachev M, Benovoy M, Chang LC, Arai AE, Hsu LY. Automated measurement of arterial input function in first-pass myocardial perfusion magnetic resonance images using Independent component analysis. In: 2015 IEEE International Symposium on Biomedical Imaging: From Nano to Macro. Brooklyn: IEEE; 2015. p. 1332–5.CrossRef
28.
go back to reference Gatehouse PD, Elkington AG, Ablitt NA, Yang GZ, Pennell DJ, Firmin DN. Accurate assessment of the arterial input function during high-dose myocardial perfusion cardiovascular magnetic resonance. J Magn Reson Imaging. 2004;20(1):39–45. doi:10.1002/jmri.20054.CrossRefPubMed Gatehouse PD, Elkington AG, Ablitt NA, Yang GZ, Pennell DJ, Firmin DN. Accurate assessment of the arterial input function during high-dose myocardial perfusion cardiovascular magnetic resonance. J Magn Reson Imaging. 2004;20(1):39–45. doi:10.​1002/​jmri.​20054.CrossRefPubMed
30.
go back to reference Benovoy M, Jacobs M, Cheriety F, Dahdahz N, Arai AE, Hsu L-Y. Automatic nonrigid motion correction for quantitative first-pass cardiac MR perfusion imaging. In: 2015 IEEE International Symposium on Biomedical Imaging: From Nano to Macro; Brooklyn. New York: IEEE; 2015. p. 1588–91.CrossRef Benovoy M, Jacobs M, Cheriety F, Dahdahz N, Arai AE, Hsu L-Y. Automatic nonrigid motion correction for quantitative first-pass cardiac MR perfusion imaging. In: 2015 IEEE International Symposium on Biomedical Imaging: From Nano to Macro; Brooklyn. New York: IEEE; 2015. p. 1588–91.CrossRef
31.
go back to reference Hsu LY, Aletras AH, Arai AE. Correcting surface coil intensity inhomogeneity improves quantitative analysis of cardiac magnetic resonance images. In: 2008 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, vol. 1–4. New York: IEEE; 2008. p. 1425–8.CrossRef Hsu LY, Aletras AH, Arai AE. Correcting surface coil intensity inhomogeneity improves quantitative analysis of cardiac magnetic resonance images. In: 2008 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, vol. 1–4. New York: IEEE; 2008. p. 1425–8.CrossRef
32.
go back to reference Mann HB, Whitney DR. On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat. 1947;18:50–60.CrossRef Mann HB, Whitney DR. On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat. 1947;18:50–60.CrossRef
33.
Metadata
Title
Evaluation of an automated method for arterial input function detection for first-pass myocardial perfusion cardiovascular magnetic resonance
Authors
Matthew Jacobs
Mitchel Benovoy
Lin-Ching Chang
Andrew E. Arai
Li-Yueh Hsu
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Journal of Cardiovascular Magnetic Resonance / Issue 1/2017
Electronic ISSN: 1532-429X
DOI
https://doi.org/10.1186/s12968-016-0239-0

Other articles of this Issue 1/2017

Journal of Cardiovascular Magnetic Resonance 1/2017 Go to the issue