Skip to main content
Top
Published in: Journal of Cardiovascular Magnetic Resonance 1/2015

Open Access 01-12-2015 | Research

Unrecognized myocardial infarctions assessed by cardiovascular magnetic resonance are associated with the severity of the stenosis in the supplying coronary artery

Authors: Per Hammar, Anna M. Nordenskjöld, Bertil Lindahl, Olov Duvernoy, Håkan Ahlström, Lars Johansson, Nermin Hadziosmanovic, Tomas Bjerner

Published in: Journal of Cardiovascular Magnetic Resonance | Issue 1/2015

Login to get access

Abstract

Background

A previous study has shown an increased prevalence of late gadolinium enhancement cardiovascular magnetic resonance (LGE CMR) detected unrecognized myocardial infarction (UMI) with increasing extent and severity of coronary artery disease. However, the coronary artery disease was evaluated on a patient level assuming normal coronary anatomy. Therefore, the aims of the present study were to investigate the prevalence of UMI identified by LGE CMR imaging in patients with stable angina pectoris and no known previous myocardial infarction; and to investigate whether presence of UMI is associated with stenotic lesions in the coronary artery supplying the segment of the myocardium in which the UMI is located, using coronary angiography to determine the individual coronary anatomy in each patient.

Methods

In this prospective multicenter study, we included patients with stable angina pectoris and without prior myocardial infarction, scheduled for coronary angiography. A LGE CMR examination was performed prior to the coronary angiography. The study cohort consisted of 235 patients (80 women, 155 men) with a mean age of 64.8 years.

Results

UMIs were found in 25 % of patients. There was a strong association between stenotic lesions (≥70 % stenosis) in a coronary artery and the presence of an UMI in the myocardial segments supplied by the stenotic artery; it was significantly more likely to have an UMI downstream a stenosis ≥ 70 % as compared to < 70 % (OR 5.1, CI 3.1-8.3, p < 0.0001). 56 % of the UMIs were located in the inferior and infero-lateral myocardial segments, despite predominance for stenotic lesions in the left anterior descending artery.

Conclusion

UMI is common in patients with stable angina and the results indicate that the majority of the UMIs are of ischemic origin due to severe coronary atherosclerosis. In contrast to what is seen in recognized myocardial infarctions, UMIs are predominately located in the inferior and infero-lateral myocardial segments.

Trial registration

The PUMI study is registered at ClinicalTrials.gov (NCT01257282).
Appendix
Available only for authorised users
Literature
1.
go back to reference Sheifer SE, Manolio TA, Gersh BJ. Unrecognized myocardial infarction. Ann Intern Med. 2001;135:801–11.CrossRefPubMed Sheifer SE, Manolio TA, Gersh BJ. Unrecognized myocardial infarction. Ann Intern Med. 2001;135:801–11.CrossRefPubMed
2.
go back to reference Sigurdsson E, Thorgeirsson G, Sigvaldason H, Sigfusson N. Unrecognized myocardial infarction: epidemiology, clinical characteristics, and the prognostic role of angina pectoris. The Reykjavik Study. Ann Intern Med. 1995;122:96–102.CrossRefPubMed Sigurdsson E, Thorgeirsson G, Sigvaldason H, Sigfusson N. Unrecognized myocardial infarction: epidemiology, clinical characteristics, and the prognostic role of angina pectoris. The Reykjavik Study. Ann Intern Med. 1995;122:96–102.CrossRefPubMed
3.
go back to reference Kannel WB, Sorlie P, McNamara PM. Prognosis after initial myocardial infarction: the Framingham study. Am J Cardiol. 1979;44:53–9.CrossRefPubMed Kannel WB, Sorlie P, McNamara PM. Prognosis after initial myocardial infarction: the Framingham study. Am J Cardiol. 1979;44:53–9.CrossRefPubMed
4.
go back to reference Kim RJ, Chen EL, Lima JA, Judd RM. Myocardial Gd-DTPA kinetics determine MRI contrast enhancement and reflect the extent and severity of myocardial injury after acute reperfused infarction. Circulation. 1996;94:3318–26.CrossRefPubMed Kim RJ, Chen EL, Lima JA, Judd RM. Myocardial Gd-DTPA kinetics determine MRI contrast enhancement and reflect the extent and severity of myocardial injury after acute reperfused infarction. Circulation. 1996;94:3318–26.CrossRefPubMed
5.
go back to reference Schelbert EB, Cao JJ, Sigurdsson S, Aspelund T, Kellman P, Aletras AH, et al. Prevalence and prognosis of unrecognized myocardial infarction determined by cardiac magnetic resonance in older adults. JAMA. 2012;308:890–6.PubMedCentralCrossRefPubMed Schelbert EB, Cao JJ, Sigurdsson S, Aspelund T, Kellman P, Aletras AH, et al. Prevalence and prognosis of unrecognized myocardial infarction determined by cardiac magnetic resonance in older adults. JAMA. 2012;308:890–6.PubMedCentralCrossRefPubMed
6.
go back to reference Barbier CE, Nylander R, Themudo R, Ahlström H, Lind L, Larsson EM, et al. Prevalence of unrecognized myocardial infarction detected with magnetic resonance imaging and its relationship to cerebral ischemic lesions in both sexes. J Am Coll Cardiol. 2011;58:1372–7.CrossRefPubMed Barbier CE, Nylander R, Themudo R, Ahlström H, Lind L, Larsson EM, et al. Prevalence of unrecognized myocardial infarction detected with magnetic resonance imaging and its relationship to cerebral ischemic lesions in both sexes. J Am Coll Cardiol. 2011;58:1372–7.CrossRefPubMed
7.
go back to reference Barbier CE, Bjerner T, Johansson L, Lind L, Ahlström H. Myocardial scars more frequent than expected: magnetic resonance imaging detects potential risk group. J Am Coll Cardiol. 2006;48:765–71.CrossRefPubMed Barbier CE, Bjerner T, Johansson L, Lind L, Ahlström H. Myocardial scars more frequent than expected: magnetic resonance imaging detects potential risk group. J Am Coll Cardiol. 2006;48:765–71.CrossRefPubMed
8.
go back to reference Kim HW, Klem I, Shah DJ, Wu E, Meyers SN, Parker MA, et al. Unrecognized non-Q-wave myocardial infarction: prevalence and prognostic significance in patients with suspected coronary disease. PLoS Med. 2009;6:e1000057.PubMedCentralCrossRefPubMed Kim HW, Klem I, Shah DJ, Wu E, Meyers SN, Parker MA, et al. Unrecognized non-Q-wave myocardial infarction: prevalence and prognostic significance in patients with suspected coronary disease. PLoS Med. 2009;6:e1000057.PubMedCentralCrossRefPubMed
9.
go back to reference Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. American Heart Association Writing Group on Myocardial Segmentation and Registration for Cardiac Imaging. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002;105:539–42.CrossRefPubMed Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. American Heart Association Writing Group on Myocardial Segmentation and Registration for Cardiac Imaging. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002;105:539–42.CrossRefPubMed
10.
go back to reference Hunold P, Schlosser T, Vogt FM, Eggebrecht H, Schmermund A, Bruder O, et al. Myocardial late enhancement in contrast-enhanced cardiac MRI: distinction between infarction scar and non-infarction-related disease. AJR Am J Roentgenol. 2005;184:1420–6.CrossRefPubMed Hunold P, Schlosser T, Vogt FM, Eggebrecht H, Schmermund A, Bruder O, et al. Myocardial late enhancement in contrast-enhanced cardiac MRI: distinction between infarction scar and non-infarction-related disease. AJR Am J Roentgenol. 2005;184:1420–6.CrossRefPubMed
11.
go back to reference Austen WG, Edwards JE, Frye RL, Gensini GG, Gott VL, Griffith LS, et al. A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation. 1975;51:5–40.CrossRefPubMed Austen WG, Edwards JE, Frye RL, Gensini GG, Gott VL, Griffith LS, et al. A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation. 1975;51:5–40.CrossRefPubMed
12.
go back to reference Velders MA, James SK, Libungan B, Sarno G, Fröbert O, Carlsson J, et al. Prognosis of elderly patients with ST-elevation myocardial infarction treated with primary percutaneous coronary intervention in 2001 to 2011: A report from the Swedish Coronary Angiography and Angioplasty Registry (SCAAR) registry. Am Heart J. 2014;167:666–73.CrossRefPubMed Velders MA, James SK, Libungan B, Sarno G, Fröbert O, Carlsson J, et al. Prognosis of elderly patients with ST-elevation myocardial infarction treated with primary percutaneous coronary intervention in 2001 to 2011: A report from the Swedish Coronary Angiography and Angioplasty Registry (SCAAR) registry. Am Heart J. 2014;167:666–73.CrossRefPubMed
13.
go back to reference Pereztol-Valdés O, Candell-Riera J, Santana-Boado C, Angel J, Aguadé-Bruix S, Castell-Conesa J, et al. Correspondence between left ventricular 17 myocardial segments and coronary arteries. Eur Heart J. 2005;26:2637–43.CrossRefPubMed Pereztol-Valdés O, Candell-Riera J, Santana-Boado C, Angel J, Aguadé-Bruix S, Castell-Conesa J, et al. Correspondence between left ventricular 17 myocardial segments and coronary arteries. Eur Heart J. 2005;26:2637–43.CrossRefPubMed
14.
go back to reference Ortiz-Pérez JT, Rodríguez J, Meyers SN, Lee DC, Davidson C, Wu E. Correspondence between the 17-segment model and coronary arterial anatomy using contrast-enhanced cardiac magnetic resonance imaging. JACC Cardiovasc Imaging. 2008;1:282–93.CrossRefPubMed Ortiz-Pérez JT, Rodríguez J, Meyers SN, Lee DC, Davidson C, Wu E. Correspondence between the 17-segment model and coronary arterial anatomy using contrast-enhanced cardiac magnetic resonance imaging. JACC Cardiovasc Imaging. 2008;1:282–93.CrossRefPubMed
15.
go back to reference Zeger SL, Liang KY. Longitudinal data analysis for discrete and continuous outcomes. Biometrics. 1986;42:121–30.CrossRefPubMed Zeger SL, Liang KY. Longitudinal data analysis for discrete and continuous outcomes. Biometrics. 1986;42:121–30.CrossRefPubMed
16.
go back to reference Kwong RY, Sattar H, Wu H, Vorobiof G, Gandla V, Steel K, et al. Incidence and prognostic implication of unrecognized myocardial scar characterized by cardiac magnetic resonance in diabetic patients without clinical evidence of myocardial infarction. Circulation. 2008;118:1011–20.PubMedCentralCrossRefPubMed Kwong RY, Sattar H, Wu H, Vorobiof G, Gandla V, Steel K, et al. Incidence and prognostic implication of unrecognized myocardial scar characterized by cardiac magnetic resonance in diabetic patients without clinical evidence of myocardial infarction. Circulation. 2008;118:1011–20.PubMedCentralCrossRefPubMed
17.
go back to reference Geske JB, Edwards WD, MacDonald RJ, Holmes Jr DR. Location of coronary culprit lesions at autopsy in 41 nondiabetic patients with acute myocardial infarction. Am J Forensic Med Pathol. 2010;31:213–7.CrossRefPubMed Geske JB, Edwards WD, MacDonald RJ, Holmes Jr DR. Location of coronary culprit lesions at autopsy in 41 nondiabetic patients with acute myocardial infarction. Am J Forensic Med Pathol. 2010;31:213–7.CrossRefPubMed
18.
go back to reference Choi JH, Chang SA, Choi JO, Song YB, Hahn JY, Choi SH, et al. Frequency of myocardial infarction and its relationship to angiographic collateral flow in territories supplied by chronically occluded coronary arteries. Circulation. 2013;127:703–9.CrossRefPubMed Choi JH, Chang SA, Choi JO, Song YB, Hahn JY, Choi SH, et al. Frequency of myocardial infarction and its relationship to angiographic collateral flow in territories supplied by chronically occluded coronary arteries. Circulation. 2013;127:703–9.CrossRefPubMed
19.
go back to reference Niccoli G, Stefanini GG, Capodanno D, Crea F, Ambrose JA, Berg R. Are culprit lesions severely stenotic? JACC Cardiovasc Imaging. 2013;6:1108–14.CrossRefPubMed Niccoli G, Stefanini GG, Capodanno D, Crea F, Ambrose JA, Berg R. Are culprit lesions severely stenotic? JACC Cardiovasc Imaging. 2013;6:1108–14.CrossRefPubMed
20.
go back to reference De Bruyne B, Fearon WF, Pijls NHJ, Barbato E, Tonino P, Piroth Z, et al. Fractional flow reserve-guided PCI for stable coronary artery disease. N Engl J Med. 2014;371:1208–17.CrossRefPubMed De Bruyne B, Fearon WF, Pijls NHJ, Barbato E, Tonino P, Piroth Z, et al. Fractional flow reserve-guided PCI for stable coronary artery disease. N Engl J Med. 2014;371:1208–17.CrossRefPubMed
21.
go back to reference Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD. Third universal definition of myocardial infarction. Eur Heart J. 2012;33:2551–67.CrossRefPubMed Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD. Third universal definition of myocardial infarction. Eur Heart J. 2012;33:2551–67.CrossRefPubMed
22.
go back to reference Paiva L, Providência R, Barra S, Dinis P, Faustino AC, Gonçalves L. Universal definition of myocardial infarction: clinical insights. Cardiology. 2015;131:13–21.CrossRefPubMed Paiva L, Providência R, Barra S, Dinis P, Faustino AC, Gonçalves L. Universal definition of myocardial infarction: clinical insights. Cardiology. 2015;131:13–21.CrossRefPubMed
23.
go back to reference Fischer JJ, Samady H, McPherson JA, Sarembock IJ, Powers ER, Gimple LW, et al. Comparison between visual assessment and quantitative angiography versus fractional flow reserve for native coronary narrowings of moderate severity. Am J Cardiol. 2002;90:210–5.CrossRefPubMed Fischer JJ, Samady H, McPherson JA, Sarembock IJ, Powers ER, Gimple LW, et al. Comparison between visual assessment and quantitative angiography versus fractional flow reserve for native coronary narrowings of moderate severity. Am J Cardiol. 2002;90:210–5.CrossRefPubMed
24.
go back to reference Sianos G, Morel MA, Kappetein AP, Morice MC, Colombo A, Dawkins K, et al. The SYNTAX Score: an angiographic tool grading the complexity of coronary artery disease. EuroIntervention. 2005;1:219–27.PubMed Sianos G, Morel MA, Kappetein AP, Morice MC, Colombo A, Dawkins K, et al. The SYNTAX Score: an angiographic tool grading the complexity of coronary artery disease. EuroIntervention. 2005;1:219–27.PubMed
25.
go back to reference Herrman J, Kaski JC, Lerman A. Coronary microvascular dysfunction in the clinical setting: from mystery to reality. Eur Heart J. 2012;33:2771–81.CrossRef Herrman J, Kaski JC, Lerman A. Coronary microvascular dysfunction in the clinical setting: from mystery to reality. Eur Heart J. 2012;33:2771–81.CrossRef
Metadata
Title
Unrecognized myocardial infarctions assessed by cardiovascular magnetic resonance are associated with the severity of the stenosis in the supplying coronary artery
Authors
Per Hammar
Anna M. Nordenskjöld
Bertil Lindahl
Olov Duvernoy
Håkan Ahlström
Lars Johansson
Nermin Hadziosmanovic
Tomas Bjerner
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Cardiovascular Magnetic Resonance / Issue 1/2015
Electronic ISSN: 1532-429X
DOI
https://doi.org/10.1186/s12968-015-0202-5

Other articles of this Issue 1/2015

Journal of Cardiovascular Magnetic Resonance 1/2015 Go to the issue