Skip to main content
Top
Published in: Journal of Cardiovascular Magnetic Resonance 1/2015

Open Access 01-12-2015 | Research

Two repetition time saturation transfer (TwiST) with spill-over correction to measure creatine kinase reaction rates in human hearts

Authors: Michael Schär, Refaat E. Gabr, AbdEl-Monem M. El-Sharkawy, Angela Steinberg, Paul A. Bottomley, Robert G. Weiss

Published in: Journal of Cardiovascular Magnetic Resonance | Issue 1/2015

Login to get access

Abstract

Background

Phosphorus saturation transfer (ST) magnetic resonance spectroscopy can measure the rate of ATP generated from phosphocreatine (PCr) via creatine kinase (CK) in the human heart. Recently, the triple-repetition time ST (TRiST) method was introduced to measure the CK pseudo-first-order rate constant kf in three acquisitions. In TRiST, the longitudinal relaxation time of PCr while γ-ATP is saturated, T1`, is measured for each subject, but suffers from low SNR because the PCr signal is reduced due to exchange with saturated γ-ATP, and the short repetition time of one of the acquisitions. Here, a two-repetition time ST (TwiST) method is presented. In TwiST, the acquisition with γ-ATP saturation and short repetition time is dropped. Instead of measuring T1`, an intrinsic relaxation time T1 for PCr, T1 intrinsic, is assumed. The objective was to validate TwiST measurements of CK kinetics in healthy subjects and patients with heart failure (HF).

Methods

Bloch equation simulations that included the effect of spillover irradiation on PCr were used to derive formulae for T1 intrinsic and kf measured by both TRiST and TwiST methods. Spillover was quantified from an unsaturated PCr measurement used in the current protocol for determining PCr and ATP concentrations. Cardiac TRiST and TwiST data were acquired at 3 T from 12 healthy and 17 HF patients.

Results

Simulations showed that both kf measured by TwiST and T1 intrinsic require spill-over corrections. In human heart at 3 T, the spill-over corrected T1 intrinsic = 8.4 ± 1.4 s (mean ± SD) independent of study group. TwiST and TRiST kf measurements were the same, but TwiST was 9 min faster. Spill-over corrected TwiST kf was 0.33 ± 0.08 s−1 vs. 0.20 ± 0.06 s−1 in healthy vs HF hearts, respectively (p < 0.0001).

Conclusion

TwiST was validated against TRiST in the human heart at 3 T, generating the same results 9 min faster. TwiST detected significant reductions in CK kf in HF compared to healthy subjects, consistent with prior 1.5 T studies using different methodology.
Appendix
Available only for authorised users
Literature
1.
go back to reference Forsén S, Hoffman RA. Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance. J Chem Phys. 1963;39:2892.CrossRef Forsén S, Hoffman RA. Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance. J Chem Phys. 1963;39:2892.CrossRef
2.
go back to reference Brown TR, Gadian DG, Garlick PB, Radda GK, Seeley PJ, Styles P. Creatine kinase activities in skeletal and cardiac muscle measured by saturation transfer NMR. Front Biol Energ. 1978;2:1341–9.CrossRef Brown TR, Gadian DG, Garlick PB, Radda GK, Seeley PJ, Styles P. Creatine kinase activities in skeletal and cardiac muscle measured by saturation transfer NMR. Front Biol Energ. 1978;2:1341–9.CrossRef
3.
go back to reference Bottomley PA, Ouwerkerk R, Lee RF, Weiss RG. Four-angle saturation transfer (FAST) method for measuring creatine kinase reaction rates in vivo. Magn Reson Med. 2002;47:850–63.PubMedCentralPubMedCrossRef Bottomley PA, Ouwerkerk R, Lee RF, Weiss RG. Four-angle saturation transfer (FAST) method for measuring creatine kinase reaction rates in vivo. Magn Reson Med. 2002;47:850–63.PubMedCentralPubMedCrossRef
4.
go back to reference Weiss RG, Gerstenblith G, Bottomley PA. ATP flux through creatine kinase in the normal, stressed, and failing human heart. Proc Natl Acad Sci U S A. 2005;102:808–13.PubMedCentralPubMedCrossRef Weiss RG, Gerstenblith G, Bottomley PA. ATP flux through creatine kinase in the normal, stressed, and failing human heart. Proc Natl Acad Sci U S A. 2005;102:808–13.PubMedCentralPubMedCrossRef
5.
go back to reference Smith CS, Bottomley PA, Schulman SP, Gerstenblith G, Weiss RG. Altered Creatine Kinase Adenosine Triphosphate Kinetics in Failing Hypertrophied Human Myocardium. Circulation. 2006;114:1151–8.PubMedCentralPubMedCrossRef Smith CS, Bottomley PA, Schulman SP, Gerstenblith G, Weiss RG. Altered Creatine Kinase Adenosine Triphosphate Kinetics in Failing Hypertrophied Human Myocardium. Circulation. 2006;114:1151–8.PubMedCentralPubMedCrossRef
6.
go back to reference Bottomley PA, Panjrath GS, Lai S, Hirsch GA, Wu K, Najjar SS, et al. Metabolic Rates of ATP Transfer Through Creatine Kinase (CK Flux) Predict Clinical Heart Failure Events and Death. Sci Transl Med. 2013;5:215re3–3.PubMedCentralPubMedCrossRef Bottomley PA, Panjrath GS, Lai S, Hirsch GA, Wu K, Najjar SS, et al. Metabolic Rates of ATP Transfer Through Creatine Kinase (CK Flux) Predict Clinical Heart Failure Events and Death. Sci Transl Med. 2013;5:215re3–3.PubMedCentralPubMedCrossRef
7.
go back to reference Schär M, El-Sharkawy A-MM, Weiss RG, Bottomley PA. Triple repetition time saturation transfer (TRiST) 31P spectroscopy for measuring human creatine kinase reaction kinetics. Magn Reson Med. 2010;63:1493–501.PubMedCentralPubMedCrossRef Schär M, El-Sharkawy A-MM, Weiss RG, Bottomley PA. Triple repetition time saturation transfer (TRiST) 31P spectroscopy for measuring human creatine kinase reaction kinetics. Magn Reson Med. 2010;63:1493–501.PubMedCentralPubMedCrossRef
8.
go back to reference El-Sharkawy A-M, Schär M, Ouwerkerk R, Weiss RG, Bottomley PA. Quantitative cardiac 31 P spectroscopy at 3 Tesla using adiabatic pulses. Magn Reson Med. 2009;61:785–95.PubMedCentralPubMedCrossRef El-Sharkawy A-M, Schär M, Ouwerkerk R, Weiss RG, Bottomley PA. Quantitative cardiac 31 P spectroscopy at 3 Tesla using adiabatic pulses. Magn Reson Med. 2009;61:785–95.PubMedCentralPubMedCrossRef
9.
go back to reference Gabr RE, Weiss RG, Bottomley PA. Correcting reaction rates measured by saturation-transfer magnetic resonance spectroscopy. J Magn Reson. 2008;191:248–58.PubMedCentralPubMedCrossRef Gabr RE, Weiss RG, Bottomley PA. Correcting reaction rates measured by saturation-transfer magnetic resonance spectroscopy. J Magn Reson. 2008;191:248–58.PubMedCentralPubMedCrossRef
10.
go back to reference Kingsley PB, Monahan WG. Corrections for off-resonance effects and incomplete saturation in conventional (two-site) saturation-transfer kinetic measurements. Magn Reson Med. 2000;43:810–9.PubMedCrossRef Kingsley PB, Monahan WG. Corrections for off-resonance effects and incomplete saturation in conventional (two-site) saturation-transfer kinetic measurements. Magn Reson Med. 2000;43:810–9.PubMedCrossRef
11.
go back to reference Rees D, Smith MB, Harley J, Radda GK. In vivo functioning of creatine phosphokinase in human forearm muscle, studied by 31P NMR saturation transfer. Magn Reson Med. 1989;9:39–52.PubMedCrossRef Rees D, Smith MB, Harley J, Radda GK. In vivo functioning of creatine phosphokinase in human forearm muscle, studied by 31P NMR saturation transfer. Magn Reson Med. 1989;9:39–52.PubMedCrossRef
12.
go back to reference Friedrich J, Nascimben L, Liao R, Ingwall JS. Phosphocreatine T1 measurements with and without exchange in the heart. Magn Reson Med. 1993;30:45–50.PubMedCrossRef Friedrich J, Nascimben L, Liao R, Ingwall JS. Phosphocreatine T1 measurements with and without exchange in the heart. Magn Reson Med. 1993;30:45–50.PubMedCrossRef
13.
go back to reference Schär M, El-Sharkawy A-MM, Bottomley PA, Weiss RG. Reduced myocardial creatine kinase reaction rates in human heart failure: first measurements at 3T. In: Proceedings of the Joint Annual Meeting ISMRM-ESMRMB 2010. Stockholm, Sweden. 2010. p. 166. Schär M, El-Sharkawy A-MM, Bottomley PA, Weiss RG. Reduced myocardial creatine kinase reaction rates in human heart failure: first measurements at 3T. In: Proceedings of the Joint Annual Meeting ISMRM-ESMRMB 2010. Stockholm, Sweden. 2010. p. 166.
14.
go back to reference El-Sharkawy A-MM, Gabr RE, Schär M, Weiss RG, Bottomley PA. Quantification of human high-energy phosphate metabolite concentrations at 3 T with partial volume and sensitivity corrections. NMR Biomed. 2013;26:1363–71.PubMedCrossRef El-Sharkawy A-MM, Gabr RE, Schär M, Weiss RG, Bottomley PA. Quantification of human high-energy phosphate metabolite concentrations at 3 T with partial volume and sensitivity corrections. NMR Biomed. 2013;26:1363–71.PubMedCrossRef
15.
go back to reference Yabe T, Mitsunami K, Inubushi T, Kinoshita M. Quantitative measurements of cardiac phosphorus metabolites in coronary artery disease by 31P magnetic resonance spectroscopy. Circulation. 1995;92:15–23.PubMedCrossRef Yabe T, Mitsunami K, Inubushi T, Kinoshita M. Quantitative measurements of cardiac phosphorus metabolites in coronary artery disease by 31P magnetic resonance spectroscopy. Circulation. 1995;92:15–23.PubMedCrossRef
16.
go back to reference Bottomley PA, Wu KC, Gerstenblith G, Schulman SP, Steinberg A, Weiss RG. Reduced myocardial creatine kinase flux in human myocardial infarction: an in vivo phosphorus magnetic resonance spectroscopy study. Circulation. 2009;119:1918–24.PubMedCentralPubMedCrossRef Bottomley PA, Wu KC, Gerstenblith G, Schulman SP, Steinberg A, Weiss RG. Reduced myocardial creatine kinase flux in human myocardial infarction: an in vivo phosphorus magnetic resonance spectroscopy study. Circulation. 2009;119:1918–24.PubMedCentralPubMedCrossRef
17.
go back to reference Beer M, Seyfarth T, Sandstede J, Landschütz W, Lipke C, Köstler H, et al. Absolute concentrations of high-energy phosphate metabolites in normal, hypertrophied, and failing human myocardium measured noninvasively with (31)P-SLOOP magnetic resonance spectroscopy. J Am Coll Cardiol. 2002;40:1267–74.PubMedCrossRef Beer M, Seyfarth T, Sandstede J, Landschütz W, Lipke C, Köstler H, et al. Absolute concentrations of high-energy phosphate metabolites in normal, hypertrophied, and failing human myocardium measured noninvasively with (31)P-SLOOP magnetic resonance spectroscopy. J Am Coll Cardiol. 2002;40:1267–74.PubMedCrossRef
18.
go back to reference Machann W, Breunig F, Weidemann F, Sandstede J, Hahn D, Köstler H, et al. Cardiac energy metabolism is disturbed in Fabry disease and improves with enzyme replacement therapy using recombinant human galactosidase A. Eur J Heart Fail. 2011;13:278–83.PubMedCrossRef Machann W, Breunig F, Weidemann F, Sandstede J, Hahn D, Köstler H, et al. Cardiac energy metabolism is disturbed in Fabry disease and improves with enzyme replacement therapy using recombinant human galactosidase A. Eur J Heart Fail. 2011;13:278–83.PubMedCrossRef
19.
go back to reference Spencer RG, Ferretti JA, Weiss GH. NMR saturation factors in the presence of chemical exchange. J Magn Reson. 1989;84:223–35. Spencer RG, Ferretti JA, Weiss GH. NMR saturation factors in the presence of chemical exchange. J Magn Reson. 1989;84:223–35.
20.
go back to reference McConnell HM. Reaction rates by nuclear magnetic resonance. J Chem Phys. 1958;28:430.CrossRef McConnell HM. Reaction rates by nuclear magnetic resonance. J Chem Phys. 1958;28:430.CrossRef
21.
go back to reference Zwart NR, Pipe JG. Graphical programming interface: A development environment for MRI methods: Graphical Programming Interface. Magn. Reson. Med. 2014:n/a–n/a. 10.1002/mrm.25528. Zwart NR, Pipe JG. Graphical programming interface: A development environment for MRI methods: Graphical Programming Interface. Magn. Reson. Med. 2014:n/a–n/a. 10.​1002/​mrm.​25528.
22.
go back to reference Meyerspeer M, Krssak M, Moser E. Relaxation times of31P-metabolites in human calf muscle at 3 T. Magn Reson Med. 2003;49:620–5.PubMedCrossRef Meyerspeer M, Krssak M, Moser E. Relaxation times of31P-metabolites in human calf muscle at 3 T. Magn Reson Med. 2003;49:620–5.PubMedCrossRef
23.
go back to reference Schär M, Kozerke S, Fischer SE, Boesiger P. Cardiac SSFP imaging at 3 Tesla. Magn Reson Med. 2004;51:799–806.PubMedCrossRef Schär M, Kozerke S, Fischer SE, Boesiger P. Cardiac SSFP imaging at 3 Tesla. Magn Reson Med. 2004;51:799–806.PubMedCrossRef
24.
go back to reference Bashir A, Gropler R. Reproducibility of creatine kinase reaction kinetics in human heart: a 31 P time-dependent saturation transfer spectroscopy study. NMR Biomed. 2014;27:663–71.PubMedCentralPubMedCrossRef Bashir A, Gropler R. Reproducibility of creatine kinase reaction kinetics in human heart: a 31 P time-dependent saturation transfer spectroscopy study. NMR Biomed. 2014;27:663–71.PubMedCentralPubMedCrossRef
25.
go back to reference Xiong Q, Li Q, Mansoor A, Jameel MN, Du F, Chen W, et al. Novel strategy for measuring creatine kinase reaction rate in the in vivo heart. AJP Heart Circ Physiol. 2009;297:H1010–9.CrossRef Xiong Q, Li Q, Mansoor A, Jameel MN, Du F, Chen W, et al. Novel strategy for measuring creatine kinase reaction rate in the in vivo heart. AJP Heart Circ Physiol. 2009;297:H1010–9.CrossRef
26.
go back to reference Xiong Q, Du F, Zhu X, Zhang P, Suntharalingam P, Ippolito J, et al. ATP production rate via Creatine Kinase or ATP synthase in vivo: a novel superfast magnetization saturation transfer method. Circ Res. 2011;108:653–63.PubMedCentralPubMedCrossRef Xiong Q, Du F, Zhu X, Zhang P, Suntharalingam P, Ippolito J, et al. ATP production rate via Creatine Kinase or ATP synthase in vivo: a novel superfast magnetization saturation transfer method. Circ Res. 2011;108:653–63.PubMedCentralPubMedCrossRef
Metadata
Title
Two repetition time saturation transfer (TwiST) with spill-over correction to measure creatine kinase reaction rates in human hearts
Authors
Michael Schär
Refaat E. Gabr
AbdEl-Monem M. El-Sharkawy
Angela Steinberg
Paul A. Bottomley
Robert G. Weiss
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Cardiovascular Magnetic Resonance / Issue 1/2015
Electronic ISSN: 1532-429X
DOI
https://doi.org/10.1186/s12968-015-0175-4

Other articles of this Issue 1/2015

Journal of Cardiovascular Magnetic Resonance 1/2015 Go to the issue