Skip to main content
Top
Published in: Journal of Cardiovascular Magnetic Resonance 1/2015

Open Access 01-12-2015 | Research

Inter-study reproducibility of interleaved spiral phase velocity mapping of renal artery haemodynamics

Authors: Jennifer Keegan, Hitesh C Patel, Robin M Simpson, Raad H Mohiaddin, David N Firmin

Published in: Journal of Cardiovascular Magnetic Resonance | Issue 1/2015

Login to get access

Abstract

Background

Qualitative and quantitative assessment of renal blood flow is valuable in the evaluation of patients with renal and renovascular diseases as well as in patients with heart failure. The temporal pattern of renal flow velocity through the cardiac cycle provides important information about renal haemodynamics. High temporal resolution interleaved spiral phase velocity mapping could potentially be used to study temporal patterns of flow and measure resistive and pulsatility indices which are measures of downstream resistance.

Methods

A retrospectively gated breath-hold spiral phase velocity mapping sequence (TR 19 ms) was developed at 3 Tesla. Phase velocity maps were acquired in the proximal right and left arteries of 10 healthy subjects in each of two separate scanning sessions. Each acquisition was analysed by two independent observers who calculated the resistive index (RI), the pulsatility index (PI), the mean flow velocity and the renal artery blood flow (RABF). Inter-study and inter-observer reproducibility of each variable was determined as the mean +/− standard deviation of the differences between paired values. The effect of background phase errors on each parameter was investigated.

Results

RI, PI, mean velocity and RABF per kidney were 0.71+/− 0.06, 1.47 +/− 0.29, 253.5 +/− 65.2 mm/s and 413 +/− 122 ml/min respectively. The inter-study reproducibilities were: RI −0.00 +/− 0.04 , PI −0.03 +/− 0.17, mean velocity −6.7 +/− 31.1 mm/s and RABF per kidney 17.9 +/− 44.8 ml/min. The effect of background phase errors was negligible (<2% for each parameter).

Conclusions

High temporal resolution breath-hold spiral phase velocity mapping allows reproducible assessment of renal pulsatility indices and RABF.
Literature
1.
go back to reference Radermacher J, Chavan A, Bleck J, Vitzthum A, Stoess B, Gebel MJ, Galanski M, Koch KM, Haller H. Use of doppler ultrasonography to predict the outcome of therapy for renal-artery stenosis. N Engl J Med. 2001;344:410–7.PubMedCrossRef Radermacher J, Chavan A, Bleck J, Vitzthum A, Stoess B, Gebel MJ, Galanski M, Koch KM, Haller H. Use of doppler ultrasonography to predict the outcome of therapy for renal-artery stenosis. N Engl J Med. 2001;344:410–7.PubMedCrossRef
2.
go back to reference Le Dorze M, Bougle A, Deruddre S, Duranteau J. Renal Doppler ultrasound: a new tool to assess renal perfusion in critical illness. Shock. 2012;37:360–5.PubMedCrossRef Le Dorze M, Bougle A, Deruddre S, Duranteau J. Renal Doppler ultrasound: a new tool to assess renal perfusion in critical illness. Shock. 2012;37:360–5.PubMedCrossRef
3.
go back to reference Patel H, Rosen S, Lindsay A, Hayward C, Lyon A, di Mario C. Targeting the autonomic nervous system: measuring autonomic function and novel devices for heart failure management. Int J Cardiol. 2013;170:107–17.PubMedCrossRef Patel H, Rosen S, Lindsay A, Hayward C, Lyon A, di Mario C. Targeting the autonomic nervous system: measuring autonomic function and novel devices for heart failure management. Int J Cardiol. 2013;170:107–17.PubMedCrossRef
4.
go back to reference Tsioufis C, Papademetriou V, Dimitriadis K, Tsiachris D, Thomopoulos C, Park E, Hata C, Papalois A, Stefanidis C. Catheter-based renal sympathetic denervation exerts acute and chronic effects on renal hemodynamics in swine. Int J Cardiol. 2013;168:987–92.PubMedCrossRef Tsioufis C, Papademetriou V, Dimitriadis K, Tsiachris D, Thomopoulos C, Park E, Hata C, Papalois A, Stefanidis C. Catheter-based renal sympathetic denervation exerts acute and chronic effects on renal hemodynamics in swine. Int J Cardiol. 2013;168:987–92.PubMedCrossRef
5.
go back to reference Markl M, Frydrychowicz A, Kozerke S, Hope M, Wieben O. 4D flow MRI. J Magn Reson Imaging. 2012;36:1015–36.PubMedCrossRef Markl M, Frydrychowicz A, Kozerke S, Hope M, Wieben O. 4D flow MRI. J Magn Reson Imaging. 2012;36:1015–36.PubMedCrossRef
6.
7.
go back to reference Langham MC, Englund EK, III2 Mohler ER, Li C, Rodgers ZB, Floyd TF, Wehrli FW. Quantitative CMR markers of impaired vascular reactivity associated with age and peripheral artery disease. J Cardiovasc Magn Reson. 2013;15:17–27.PubMedCentralPubMedCrossRef Langham MC, Englund EK, III2 Mohler ER, Li C, Rodgers ZB, Floyd TF, Wehrli FW. Quantitative CMR markers of impaired vascular reactivity associated with age and peripheral artery disease. J Cardiovasc Magn Reson. 2013;15:17–27.PubMedCentralPubMedCrossRef
8.
go back to reference Frydrychowicz A, Winterer JT, Zaitsev M, Jung B, Hennig J, Langer M, Markl M. Visualization of iliac and proximal femoral artery hemodynamics using time-resolved 3D phase contrast MRI at 3T. J Magn Reson Imaging. 2007;25:1085–92.PubMedCrossRef Frydrychowicz A, Winterer JT, Zaitsev M, Jung B, Hennig J, Langer M, Markl M. Visualization of iliac and proximal femoral artery hemodynamics using time-resolved 3D phase contrast MRI at 3T. J Magn Reson Imaging. 2007;25:1085–92.PubMedCrossRef
9.
go back to reference Krug B, Kugel H, Harnischmacher U, Heindel W, Schmidt R, Krings F. MR pulsatility measurements in peripheral arteries: preliminary results. Magn Reson Med. 1995;34:698–705.PubMedCrossRef Krug B, Kugel H, Harnischmacher U, Heindel W, Schmidt R, Krings F. MR pulsatility measurements in peripheral arteries: preliminary results. Magn Reson Med. 1995;34:698–705.PubMedCrossRef
10.
go back to reference Wåhlin A, Ambarki K, Birgander R, Wieben O, Johnson KM, Malm J, Eklund A. Measuring pulsatile flow in cerebral arteries using 4D phase-contrast MR imaging. Am J Neuroradiol. 2013;34:1740–5.PubMedCrossRef Wåhlin A, Ambarki K, Birgander R, Wieben O, Johnson KM, Malm J, Eklund A. Measuring pulsatile flow in cerebral arteries using 4D phase-contrast MR imaging. Am J Neuroradiol. 2013;34:1740–5.PubMedCrossRef
11.
go back to reference Tarumi T, Ayaz Khan M, Liu J, Tseng BY, Parker R, Riley J, Tinajero C, Zhang R. Cerebral hemodynamics in normal aging: central artery stiffness, wave reflection, and pressure pulsatility. J Cereb Blood Flow Metab. 2014;34:971–8.PubMedCrossRef Tarumi T, Ayaz Khan M, Liu J, Tseng BY, Parker R, Riley J, Tinajero C, Zhang R. Cerebral hemodynamics in normal aging: central artery stiffness, wave reflection, and pressure pulsatility. J Cereb Blood Flow Metab. 2014;34:971–8.PubMedCrossRef
12.
go back to reference Ambarki K, Hallberg P, Jóhannesson G, Lindén C, Zarrinkoob L, Wåhlin A, Birgander R, Malm J, Eklund A. Blood flow of ophthalmic artery in healthy individuals determined by phase-contrast magnetic resonance imaging. Invest Opthalmol Vis Sci. 2013;54:2738–45.CrossRef Ambarki K, Hallberg P, Jóhannesson G, Lindén C, Zarrinkoob L, Wåhlin A, Birgander R, Malm J, Eklund A. Blood flow of ophthalmic artery in healthy individuals determined by phase-contrast magnetic resonance imaging. Invest Opthalmol Vis Sci. 2013;54:2738–45.CrossRef
13.
go back to reference Schubert T, Santini F, Stalder AF, Bock J, Meckel S, Bonati L, Markl M, Wetzel S. Dampening of blood-flow pulsatility along the carotid siphon: does form follow function? Am J Neuroradiol. 2011;32:1107–12.PubMedCrossRef Schubert T, Santini F, Stalder AF, Bock J, Meckel S, Bonati L, Markl M, Wetzel S. Dampening of blood-flow pulsatility along the carotid siphon: does form follow function? Am J Neuroradiol. 2011;32:1107–12.PubMedCrossRef
14.
go back to reference Markl M, Geiger J, Kilner PJ, Föll D, Stiller B, Beyersdorf F, Arnold R, Frydrychowicz A. Time-resolved three-dimensional magnetic resonance velocity mapping of cardiovascular flow paths in volunteers and patients with Fontan circulation. Eur J Cardiothorac Surg. 2011;39:206–12.PubMedCrossRef Markl M, Geiger J, Kilner PJ, Föll D, Stiller B, Beyersdorf F, Arnold R, Frydrychowicz A. Time-resolved three-dimensional magnetic resonance velocity mapping of cardiovascular flow paths in volunteers and patients with Fontan circulation. Eur J Cardiothorac Surg. 2011;39:206–12.PubMedCrossRef
15.
go back to reference Barret K, Barmon S, Bostano S, Brooks H. Chapter 37: Renal function and micturition in Ganong’s review of medical physiology. 24th Edition. McGraw-Hill; 2012 Barret K, Barmon S, Bostano S, Brooks H. Chapter 37: Renal function and micturition in Ganong’s review of medical physiology. 24th Edition. McGraw-Hill; 2012
16.
go back to reference Pelc LR, Pelc NJ, Rayhill SC, Castro LJ, Glover GH, Herfkens RJ, Miller DC, Jeffrey RB. Arterial and venous blood flow: noninvasive quantitation with MR imaging. Radiology. 1992;185:809–12.PubMedCrossRef Pelc LR, Pelc NJ, Rayhill SC, Castro LJ, Glover GH, Herfkens RJ, Miller DC, Jeffrey RB. Arterial and venous blood flow: noninvasive quantitation with MR imaging. Radiology. 1992;185:809–12.PubMedCrossRef
17.
go back to reference Sommer G, Noorbehesht B, Pelc N, Jamison R, Pinevich AJ, Newton L, Myers B. Normal renal blood flow measurement using phase-contrast cine magnetic resonance imaging. Invest Radiol. 1992;27:465–70.PubMedCrossRef Sommer G, Noorbehesht B, Pelc N, Jamison R, Pinevich AJ, Newton L, Myers B. Normal renal blood flow measurement using phase-contrast cine magnetic resonance imaging. Invest Radiol. 1992;27:465–70.PubMedCrossRef
18.
go back to reference Wolf R, King B, Torres V, Wilson D, Ehman R. Measurement of normal renal artery blood flow: cine phase contrast MR imaging vs clearance of p-aminohippurate. Am J Roentgen. 1993;161:995–1002.CrossRef Wolf R, King B, Torres V, Wilson D, Ehman R. Measurement of normal renal artery blood flow: cine phase contrast MR imaging vs clearance of p-aminohippurate. Am J Roentgen. 1993;161:995–1002.CrossRef
19.
go back to reference Debatin JF, Ting RH, Wegmüller H, Sommer FG, Frederickson JO, Brosnan TJ, Bowman BS, Myers BD, Herfkens RJ, Pelc NJ. Renal artery blood flow: quantitation with phase-contrast MR imaging with and without breath-holding. Radiology. 1994;190:371–8.PubMedCrossRef Debatin JF, Ting RH, Wegmüller H, Sommer FG, Frederickson JO, Brosnan TJ, Bowman BS, Myers BD, Herfkens RJ, Pelc NJ. Renal artery blood flow: quantitation with phase-contrast MR imaging with and without breath-holding. Radiology. 1994;190:371–8.PubMedCrossRef
20.
go back to reference Thomsen C, Corsten M, Sondergaard L, Henriksen O, Stahlberg F. A segmented k-space velocity mapping protocol for quatification of renal artery blood flow during breath-holding. J Magn Reson Imaging. 1995;4:393–401.CrossRef Thomsen C, Corsten M, Sondergaard L, Henriksen O, Stahlberg F. A segmented k-space velocity mapping protocol for quatification of renal artery blood flow during breath-holding. J Magn Reson Imaging. 1995;4:393–401.CrossRef
21.
go back to reference Sommer G, Corrigan G, Fredrickson J, Sawyer-Glover A, Liao JR, Myers B, Pelc N. Renal blood flow: measurement in vivo with rapid spiral MR imaging. Radiology. 1998;208:729–34.PubMedCrossRef Sommer G, Corrigan G, Fredrickson J, Sawyer-Glover A, Liao JR, Myers B, Pelc N. Renal blood flow: measurement in vivo with rapid spiral MR imaging. Radiology. 1998;208:729–34.PubMedCrossRef
22.
go back to reference de Haan MW, Kouwenhoven M, Kessels AGH, van Engelshoven JMA. Renal artery blood flow: quantification with breath-hold or respiratory triggered phase-contrast MR imaging. Eur Radiol. 2000;10:1133–7.PubMedCrossRef de Haan MW, Kouwenhoven M, Kessels AGH, van Engelshoven JMA. Renal artery blood flow: quantification with breath-hold or respiratory triggered phase-contrast MR imaging. Eur Radiol. 2000;10:1133–7.PubMedCrossRef
23.
go back to reference Bax L, Bakker C, Klein W, Blanken N, Beutler J, Mali W. Renal blood flow measurements with use of phase contrast magnetic resonance imaging: normal values and reproducibility. J Vasc Interv Radiol. 2005;16:807–14.PubMedCrossRef Bax L, Bakker C, Klein W, Blanken N, Beutler J, Mali W. Renal blood flow measurements with use of phase contrast magnetic resonance imaging: normal values and reproducibility. J Vasc Interv Radiol. 2005;16:807–14.PubMedCrossRef
24.
go back to reference Khatir D, Petersen M, Jespersen B, Buus N. Reproducibility of MRI renal artery blood flow and BOLD measurements in patients with chronic kidney disease and healthy controls. J Magn Reson Imaging. 2013 Nov 5. doi:101002/jmri.24446 [Epub ahead of print]. Khatir D, Petersen M, Jespersen B, Buus N. Reproducibility of MRI renal artery blood flow and BOLD measurements in patients with chronic kidney disease and healthy controls. J Magn Reson Imaging. 2013 Nov 5. doi:101002/jmri.24446 [Epub ahead of print].
25.
go back to reference Bock M, Schoenberg S, Schad L, Knopp M, Essig M, van Kaick G. Interleaved gradient echo planar (IGEPI) and phase contrast cine-pc flow measurements in the renal artery. J Magn Reson Imaging. 1998;8:889–95.PubMedCrossRef Bock M, Schoenberg S, Schad L, Knopp M, Essig M, van Kaick G. Interleaved gradient echo planar (IGEPI) and phase contrast cine-pc flow measurements in the renal artery. J Magn Reson Imaging. 1998;8:889–95.PubMedCrossRef
26.
go back to reference Dambreville S, Chapman AB, Torres V, King BF, Wallin AK, Frakes DH et al. Renal arterial blood flow measurement by breath-hold MRI: accuracy in phantom scans and reproducibility in healthy subjects. Magn Reson Med. 2010;63:940–50. Dambreville S, Chapman AB, Torres V, King BF, Wallin AK, Frakes DH et al. Renal arterial blood flow measurement by breath-hold MRI: accuracy in phantom scans and reproducibility in healthy subjects. Magn Reson Med. 2010;63:940–50.
27.
go back to reference Park JB, Santos JM, Hargreaves BA, Nayak KS, Sommer G, Hu BS, Nishimura DG. Rapid measurement of renal artery blood flow with ungated spiral phase-contrast MRI. J Magn Reson Imaging. 2005;21:590–5.PubMedCrossRef Park JB, Santos JM, Hargreaves BA, Nayak KS, Sommer G, Hu BS, Nishimura DG. Rapid measurement of renal artery blood flow with ungated spiral phase-contrast MRI. J Magn Reson Imaging. 2005;21:590–5.PubMedCrossRef
28.
go back to reference Park JB, Olcot E, Nishimura DG. Rapid measurement of time-averaged blood flow using ungated spiral contrast. Magn Reson Med. 2003;49:322–8.PubMedCrossRef Park JB, Olcot E, Nishimura DG. Rapid measurement of time-averaged blood flow using ungated spiral contrast. Magn Reson Med. 2003;49:322–8.PubMedCrossRef
29.
go back to reference Steeden JA, Muthurangu V. Investigating the limitations of single breath-hold renal artery blood flow measurements using spiral phase contrast MR with R-R interval averaging. J Magn Reson Imaging. 2014 Apr 10. doi:10.1002/jmri.24638. [Epub ahead of print] Steeden JA, Muthurangu V. Investigating the limitations of single breath-hold renal artery blood flow measurements using spiral phase contrast MR with R-R interval averaging. J Magn Reson Imaging. 2014 Apr 10. doi:10.1002/jmri.24638. [Epub ahead of print]
30.
go back to reference Jackson JI, Meyer CH, Nishimura DG, Macovski A. Selection of a convolution function for Fourier inversion using gridding [computerized tomography application]. IEEE Trans Med Imaging. 1991;10:473–8.PubMedCrossRef Jackson JI, Meyer CH, Nishimura DG, Macovski A. Selection of a convolution function for Fourier inversion using gridding [computerized tomography application]. IEEE Trans Med Imaging. 1991;10:473–8.PubMedCrossRef
31.
go back to reference Chernobelsky A, Shubayev O, Comeau CR, Wolff SD. Baseline correction of phase contrast images improves quantification of blood flow in the great vessels. J Cardiovasc Magn Reson. 2007;9:681–5.PubMedCrossRef Chernobelsky A, Shubayev O, Comeau CR, Wolff SD. Baseline correction of phase contrast images improves quantification of blood flow in the great vessels. J Cardiovasc Magn Reson. 2007;9:681–5.PubMedCrossRef
32.
go back to reference Jones R, Payne B. Clinical Investigation and Statistics in Laboratory Medicine. London: ACB Venture Publications; 1997. Jones R, Payne B. Clinical Investigation and Statistics in Laboratory Medicine. London: ACB Venture Publications; 1997.
33.
go back to reference Petersen L, Petersen J, Ladefoged S, Mehlsen J, Jensen A. The pulsatility index and the resistive index in renal arteries in patients with hypertension and chronic renal failure. Nephrol Dial Transplant. 1995;10:2060–4.PubMed Petersen L, Petersen J, Ladefoged S, Mehlsen J, Jensen A. The pulsatility index and the resistive index in renal arteries in patients with hypertension and chronic renal failure. Nephrol Dial Transplant. 1995;10:2060–4.PubMed
34.
go back to reference Krumme B, Hollenbeck M. Doppler sonography in renal artery stenosis - does the resistive index predict the success of intervention? Nephrol Dial Transplant. 2007;22:692–6.PubMedCrossRef Krumme B, Hollenbeck M. Doppler sonography in renal artery stenosis - does the resistive index predict the success of intervention? Nephrol Dial Transplant. 2007;22:692–6.PubMedCrossRef
35.
go back to reference Gatehouse PD, Rolf MP, Graves MJ, Kilner PJ, Firmin DN, Hofman MB. Flow measurement by cardiovascular magnetic resonance: a multi-centre multi-vendor study of background phase offset errors that can compromise the accuracy of derived regurgitant or shunt flow measurements. J Cardiovasc Magn Reson. 2010;12:5. doi:10.1186/1532-429X-12-5.PubMedCentralPubMedCrossRef Gatehouse PD, Rolf MP, Graves MJ, Kilner PJ, Firmin DN, Hofman MB. Flow measurement by cardiovascular magnetic resonance: a multi-centre multi-vendor study of background phase offset errors that can compromise the accuracy of derived regurgitant or shunt flow measurements. J Cardiovasc Magn Reson. 2010;12:5. doi:10.1186/1532-429X-12-5.PubMedCentralPubMedCrossRef
36.
go back to reference Tang C, Blatter DD, Parker DL. Accuracy of phase contrast flow measurements in the presence of partial-volume effects. J Magn Reson Imaging. 1993;3:377–85.PubMedCrossRef Tang C, Blatter DD, Parker DL. Accuracy of phase contrast flow measurements in the presence of partial-volume effects. J Magn Reson Imaging. 1993;3:377–85.PubMedCrossRef
37.
go back to reference Wolf RL, Ehman RL, Riederer SJ, Rossman PJ. Analysis of systematic and random error in MR volumetric flow measurements. Magn Reson Med. 1993;30:82–91.PubMedCrossRef Wolf RL, Ehman RL, Riederer SJ, Rossman PJ. Analysis of systematic and random error in MR volumetric flow measurements. Magn Reson Med. 1993;30:82–91.PubMedCrossRef
38.
go back to reference Ohta Y, Fujii K, Arima H, Matsumura K, Tsuchihashi T, Tokumoto M, Tsuruya K, Kanai H, Iwase M, Hirakata H, Iida M. Increased renal resistive index in atherosclerosis and diabetic nephropathy assessed by Doppler sonography. J Hypertension. 2005;23:1905–11.CrossRef Ohta Y, Fujii K, Arima H, Matsumura K, Tsuchihashi T, Tokumoto M, Tsuruya K, Kanai H, Iwase M, Hirakata H, Iida M. Increased renal resistive index in atherosclerosis and diabetic nephropathy assessed by Doppler sonography. J Hypertension. 2005;23:1905–11.CrossRef
39.
go back to reference Sacerdoti D, Gaiani S, Buonamico P, Merkel C, Zoli M, Bolondi L, Sabba C. Interobserver and interequipment variability of hepatic, splenic and renal arterial Doppler resistance indices in normal subjects and patients with cirrhosis. J Hepatol. 1997;27:986–92.PubMedCrossRef Sacerdoti D, Gaiani S, Buonamico P, Merkel C, Zoli M, Bolondi L, Sabba C. Interobserver and interequipment variability of hepatic, splenic and renal arterial Doppler resistance indices in normal subjects and patients with cirrhosis. J Hepatol. 1997;27:986–92.PubMedCrossRef
40.
go back to reference Boddi M, Sacchi S, Lammel R, Mohseni R, Serneri G. Age-related and vasomotor stimuli-induced changes in renal vascular resistance detected by Doppler ultrasound. AJR. 1996;9:461–6. Boddi M, Sacchi S, Lammel R, Mohseni R, Serneri G. Age-related and vasomotor stimuli-induced changes in renal vascular resistance detected by Doppler ultrasound. AJR. 1996;9:461–6.
41.
go back to reference London N, Aldoori M, Lodge V, Bates J, Irving H, Giles G. Reproducibility of Doppler ultrasound measurement of renal resistance index in renal allografts. BJR. 1993;66:510–3.PubMedCrossRef London N, Aldoori M, Lodge V, Bates J, Irving H, Giles G. Reproducibility of Doppler ultrasound measurement of renal resistance index in renal allografts. BJR. 1993;66:510–3.PubMedCrossRef
42.
go back to reference Currier DP. Elements of Research in Physical Therapy. 3rd ed. Baltimore: Williams and Wilkins; 1990. Currier DP. Elements of Research in Physical Therapy. 3rd ed. Baltimore: Williams and Wilkins; 1990.
43.
go back to reference Zhang H, Sos T, Wichester P, Gao J, Prince M. Renal artery stenosis: imaging options, pitfalls and concerns. Prog Cardiovasc Dis. 2009;52:209–19.PubMedCrossRef Zhang H, Sos T, Wichester P, Gao J, Prince M. Renal artery stenosis: imaging options, pitfalls and concerns. Prog Cardiovasc Dis. 2009;52:209–19.PubMedCrossRef
44.
go back to reference Kaiser C1, Götzberger M, Landauer N, Dieterle C, Heldwein W, Schiemann U. Age dependency of intrarenal resistance index (RI) in healthy adults and patients with fatty liver disease. Eur J Med Res. 2007;12:191–5.PubMed Kaiser C1, Götzberger M, Landauer N, Dieterle C, Heldwein W, Schiemann U. Age dependency of intrarenal resistance index (RI) in healthy adults and patients with fatty liver disease. Eur J Med Res. 2007;12:191–5.PubMed
45.
go back to reference Mastorakou I, Lindsell D, Piepoli M, Adamopoulos S, Lidingham J. Pulsatility and resistance indices in intrarenal arteries of normal adults. Abdom Imaging. 1994;19:369–73.PubMedCrossRef Mastorakou I, Lindsell D, Piepoli M, Adamopoulos S, Lidingham J. Pulsatility and resistance indices in intrarenal arteries of normal adults. Abdom Imaging. 1994;19:369–73.PubMedCrossRef
Metadata
Title
Inter-study reproducibility of interleaved spiral phase velocity mapping of renal artery haemodynamics
Authors
Jennifer Keegan
Hitesh C Patel
Robin M Simpson
Raad H Mohiaddin
David N Firmin
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Cardiovascular Magnetic Resonance / Issue 1/2015
Electronic ISSN: 1532-429X
DOI
https://doi.org/10.1186/s12968-014-0105-x

Other articles of this Issue 1/2015

Journal of Cardiovascular Magnetic Resonance 1/2015 Go to the issue