Skip to main content
Top
Published in: Population Health Metrics 1/2018

Open Access 01-12-2018 | Research

Projection of the future diabetes burden in the United States through 2060

Authors: Ji Lin, Theodore J. Thompson, Yiling J. Cheng, Xiaohui Zhuo, Ping Zhang, Edward Gregg, Deborah B. Rolka

Published in: Population Health Metrics | Issue 1/2018

Login to get access

Abstract

Background

In the United States, diabetes has increased rapidly, exceeding prior predictions. Projections of the future diabetes burden need to reflect changes in incidence, mortality, and demographics. We applied the most recent data available to develop an updated projection through 2060.

Methods

A dynamic Markov model was used to project prevalence of diagnosed diabetes among US adults by age, sex, and race (white, black, other). Incidence and current prevalence were from the National Health Interview Survey (NHIS) 1985–2014. Relative mortality was from NHIS 2000–2011 follow-up data linked to the National Death Index. Future population estimates including birth, death, and migration were from the 2014 Census projection.

Results

The projected number and percent of adults with diagnosed diabetes would increase from 22.3 million (9.1%) in 2014 to 39.7 million (13.9%) in 2030, and to 60.6 million (17.9%) in 2060. The number of people with diabetes aged 65 years or older would increase from 9.2 million in 2014 to 21.0 million in 2030, and to 35.2 million in 2060. The percent prevalence would increase in all race-sex groups, with black women and men continuing to have the highest diabetes percent prevalence, and black women and women of other race having the largest relative increases.

Conclusions

By 2060, the number of US adults with diagnosed diabetes is projected to nearly triple, and the percent prevalence double. Our estimates are essential to predict health services needs and plan public health programs aimed to reduce the future burden of diabetes.
Appendix
Available only for authorised users
Literature
2.
go back to reference King H, Aubert RE, Herman WH. Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections. Diabetes Care. 1998;21:1414–31.CrossRefPubMed King H, Aubert RE, Herman WH. Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections. Diabetes Care. 1998;21:1414–31.CrossRefPubMed
3.
go back to reference Boyle JP, Honeycutt AA, Narayan KV, Hoerger TJ, Geiss LS, Chen H, Thompson TJ. Projection of diabetes burden through 2050 impact of changing demography and disease prevalence in the US. Diabetes Care. 2001;24:1936–40.CrossRefPubMed Boyle JP, Honeycutt AA, Narayan KV, Hoerger TJ, Geiss LS, Chen H, Thompson TJ. Projection of diabetes burden through 2050 impact of changing demography and disease prevalence in the US. Diabetes Care. 2001;24:1936–40.CrossRefPubMed
4.
go back to reference Narayan KV, Boyle JP, Geiss LS, Saaddine JB, Thompson TJ. Impact of recent increase in incidence on future diabetes burden US, 2005–2050. Diabetes Care. 2006;29:2114–6.CrossRefPubMed Narayan KV, Boyle JP, Geiss LS, Saaddine JB, Thompson TJ. Impact of recent increase in incidence on future diabetes burden US, 2005–2050. Diabetes Care. 2006;29:2114–6.CrossRefPubMed
5.
go back to reference Honeycutt AA, Boyle JP, Broglio KR, Thompson TJ, Hoerger TJ, Geiss LS, Narayan KV. A dynamic Markov model for forecasting diabetes prevalence in the United States through 2050. Health care management science. 2003;6:155–64.CrossRefPubMed Honeycutt AA, Boyle JP, Broglio KR, Thompson TJ, Hoerger TJ, Geiss LS, Narayan KV. A dynamic Markov model for forecasting diabetes prevalence in the United States through 2050. Health care management science. 2003;6:155–64.CrossRefPubMed
6.
go back to reference Imperatore G, Boyle JP, Thompson TJ, Case D, Dabelea D, Hamman RF, Lawrence JM, Liese AD, Liu LL, Mayer-Davis EJ. Projections of type 1 and type 2 diabetes burden in the US population aged< 20 years through 2050 dynamic modeling of incidence, mortality, and population growth. Diabetes Care. 2012;35:2515–20.CrossRefPubMedPubMedCentral Imperatore G, Boyle JP, Thompson TJ, Case D, Dabelea D, Hamman RF, Lawrence JM, Liese AD, Liu LL, Mayer-Davis EJ. Projections of type 1 and type 2 diabetes burden in the US population aged< 20 years through 2050 dynamic modeling of incidence, mortality, and population growth. Diabetes Care. 2012;35:2515–20.CrossRefPubMedPubMedCentral
7.
go back to reference Geiss LS, Wang J, Cheng Y, Thompson TJ, Barker L, Li Y, Albright AL, Gregg EW. Prevalence and incidence trends for diagnosed diabetes among adults aged 20–79 years, United States, 1980–2012. J Am Med Assoc. 2014;312:1218–26.CrossRef Geiss LS, Wang J, Cheng Y, Thompson TJ, Barker L, Li Y, Albright AL, Gregg EW. Prevalence and incidence trends for diagnosed diabetes among adults aged 20–79 years, United States, 1980–2012. J Am Med Assoc. 2014;312:1218–26.CrossRef
8.
go back to reference Gregg EW, Cheng YJ, Saydah S, Cowie C, Garfield S, Geiss L, Barker L. Trends in death rates among US adults with and without diabetes between 1997 and 2006 findings from the National Health Interview Survey. Diabetes Care. 2012;35:1252–7.CrossRefPubMedPubMedCentral Gregg EW, Cheng YJ, Saydah S, Cowie C, Garfield S, Geiss L, Barker L. Trends in death rates among US adults with and without diabetes between 1997 and 2006 findings from the National Health Interview Survey. Diabetes Care. 2012;35:1252–7.CrossRefPubMedPubMedCentral
9.
go back to reference Gregg EW, Zhuo X, Cheng YJ, Albright AL, Narayan KV, Thompson TJ. Trends in lifetime risk and years of life lost due to diabetes in the USA, 1985–2011: a modelling study. The Lancet Diabetes & Endocrinology. 2014;2:867–74.CrossRef Gregg EW, Zhuo X, Cheng YJ, Albright AL, Narayan KV, Thompson TJ. Trends in lifetime risk and years of life lost due to diabetes in the USA, 1985–2011: a modelling study. The Lancet Diabetes & Endocrinology. 2014;2:867–74.CrossRef
10.
go back to reference Arterburn DE, Bogart A, Sherwood NE, Sidney S, Coleman KJ, Haneuse S, O’Connor PJ, Theis MK, Campos GM, McCulloch D. A multisite study of long-term remission and relapse of type 2 diabetes mellitus following gastric bypass. Obes Surg. 2013;23:93–102.CrossRefPubMedPubMedCentral Arterburn DE, Bogart A, Sherwood NE, Sidney S, Coleman KJ, Haneuse S, O’Connor PJ, Theis MK, Campos GM, McCulloch D. A multisite study of long-term remission and relapse of type 2 diabetes mellitus following gastric bypass. Obes Surg. 2013;23:93–102.CrossRefPubMedPubMedCentral
12.
go back to reference Cheng YJ, Gregg EW, Rolka DB, Thompson TJ. Using multi-year national survey cohorts for period estimates: an application of weighted discrete Poisson regression for assessing annual national mortality in US adults with and without diabetes, 2000–2006. Popul Health Metrics. 2016;14:48.CrossRef Cheng YJ, Gregg EW, Rolka DB, Thompson TJ. Using multi-year national survey cohorts for period estimates: an application of weighted discrete Poisson regression for assessing annual national mortality in US adults with and without diabetes, 2000–2006. Popul Health Metrics. 2016;14:48.CrossRef
14.
go back to reference Balk EM, Earley A, Raman G, Avendano EA, Pittas AG, Remington PL. Combined diet and physical activity promotion programs to prevent type 2 diabetes among persons at increased risk: a systematic review for the community preventive services task ForceCombined diet and physical activity promotion programs to prevent diabetes. Ann Intern Med. 2015;163:437–51.CrossRefPubMedPubMedCentral Balk EM, Earley A, Raman G, Avendano EA, Pittas AG, Remington PL. Combined diet and physical activity promotion programs to prevent type 2 diabetes among persons at increased risk: a systematic review for the community preventive services task ForceCombined diet and physical activity promotion programs to prevent diabetes. Ann Intern Med. 2015;163:437–51.CrossRefPubMedPubMedCentral
15.
go back to reference Beaglehole R, Bonita R, Horton R, Adams C, Alleyne G, Asaria P, Baugh V, Bekedam H, Billo N, Casswell S. Priority actions for the non-communicable disease crisis. Lancet. 2011;377:1438–47.CrossRefPubMed Beaglehole R, Bonita R, Horton R, Adams C, Alleyne G, Asaria P, Baugh V, Bekedam H, Billo N, Casswell S. Priority actions for the non-communicable disease crisis. Lancet. 2011;377:1438–47.CrossRefPubMed
16.
go back to reference Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27:1047–53.CrossRefPubMed Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27:1047–53.CrossRefPubMed
17.
go back to reference Huang ES, Basu A, O'Grady M, Capretta JC. Projecting the future diabetes population size and related costs for the US. Diabetes Care. 2009;32:2225–9.CrossRefPubMedPubMedCentral Huang ES, Basu A, O'Grady M, Capretta JC. Projecting the future diabetes population size and related costs for the US. Diabetes Care. 2009;32:2225–9.CrossRefPubMedPubMedCentral
18.
go back to reference U.S. CENSUS Bureau (Ed.). 2012 to 2060 Population Projections based on Census 2010. United States Census Bureau, 2012. U.S. CENSUS Bureau (Ed.). 2012 to 2060 Population Projections based on Census 2010. United States Census Bureau, 2012.
19.
go back to reference U.S. CENSUS Bureau (Ed.). 2004 Interim National Population Projections United States Census Bureau, 2004. U.S. CENSUS Bureau (Ed.). 2004 Interim National Population Projections United States Census Bureau, 2004.
20.
go back to reference Vincent GK, Velkoff VA. The next four decades: the older population in the United States: 2010 to 2050. Economics and Statistics Administration, US Census Bureau: US Department of Commerce; 2010. Vincent GK, Velkoff VA. The next four decades: the older population in the United States: 2010 to 2050. Economics and Statistics Administration, US Census Bureau: US Department of Commerce; 2010.
21.
go back to reference Diabetes Prevention Program Research Group. The 10-year cost-effectiveness of lifestyle intervention or metformin for diabetes prevention an intent-to-treat analysis of the DPP/DPPOS. Diabetes Care. 2012;35:723–30.CrossRef Diabetes Prevention Program Research Group. The 10-year cost-effectiveness of lifestyle intervention or metformin for diabetes prevention an intent-to-treat analysis of the DPP/DPPOS. Diabetes Care. 2012;35:723–30.CrossRef
22.
go back to reference Li R, Qu S, Zhang P, Chattopadhyay S, Gregg EW, Albright A, Hopkins D, Pronk NP. Economic evaluation of combined diet and physical activity promotion programs to prevent type 2 diabetes among persons at increased risk: a systematic review for the community preventive services task force. Ann Intern Med. 2015;163:452–60.CrossRefPubMedPubMedCentral Li R, Qu S, Zhang P, Chattopadhyay S, Gregg EW, Albright A, Hopkins D, Pronk NP. Economic evaluation of combined diet and physical activity promotion programs to prevent type 2 diabetes among persons at increased risk: a systematic review for the community preventive services task force. Ann Intern Med. 2015;163:452–60.CrossRefPubMedPubMedCentral
23.
go back to reference Centers for Disease Control and Prevention (Ed.). National Diabetes Statistics Report: Estimates of Diabetes and Its Burden in the United States, 2014. Atlanta: U.S. Department of Health and Human Services. p. 2014. Centers for Disease Control and Prevention (Ed.). National Diabetes Statistics Report: Estimates of Diabetes and Its Burden in the United States, 2014. Atlanta: U.S. Department of Health and Human Services. p. 2014.
24.
go back to reference Brinks R, Bardenheier BH, Hoyer A, Lin J, Landwehr S, Gregg EW. Development and demonstration of a state model for the estimation of incidence of partly undetected chronic diseases. BMC Med Res Methodol. 2015;15:98.CrossRefPubMedPubMedCentral Brinks R, Bardenheier BH, Hoyer A, Lin J, Landwehr S, Gregg EW. Development and demonstration of a state model for the estimation of incidence of partly undetected chronic diseases. BMC Med Res Methodol. 2015;15:98.CrossRefPubMedPubMedCentral
25.
go back to reference Mainous AG, Baker R, Koopman RJ, Saxena S, Diaz VA, Everett CJ, Majeed A. Impact of the population at risk of diabetes on projections of diabetes burden in the United States: an epidemic on the way. Diabetologia. 2007;50:934–40.CrossRefPubMed Mainous AG, Baker R, Koopman RJ, Saxena S, Diaz VA, Everett CJ, Majeed A. Impact of the population at risk of diabetes on projections of diabetes burden in the United States: an epidemic on the way. Diabetologia. 2007;50:934–40.CrossRefPubMed
26.
go back to reference Cunningham SA, Riosmena F, Wang J, Boyle JP, Rolka DB, Geiss LS. Decreases in diabetes-free life expectancy in the US and the role of obesity. Diabetes Care. 2011;34:2225–30.CrossRefPubMedPubMedCentral Cunningham SA, Riosmena F, Wang J, Boyle JP, Rolka DB, Geiss LS. Decreases in diabetes-free life expectancy in the US and the role of obesity. Diabetes Care. 2011;34:2225–30.CrossRefPubMedPubMedCentral
Metadata
Title
Projection of the future diabetes burden in the United States through 2060
Authors
Ji Lin
Theodore J. Thompson
Yiling J. Cheng
Xiaohui Zhuo
Ping Zhang
Edward Gregg
Deborah B. Rolka
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Population Health Metrics / Issue 1/2018
Electronic ISSN: 1478-7954
DOI
https://doi.org/10.1186/s12963-018-0166-4

Other articles of this Issue 1/2018

Population Health Metrics 1/2018 Go to the issue