Skip to main content
Top
Published in: Reproductive Biology and Endocrinology 1/2022

Open Access 01-12-2022 | Infertility | Correspondence

A loss-of-function variant in SSFA2 causes male infertility with globozoospermia and failed oocyte activation

Authors: Gelin Huang, Xueguang Zhang, Guanping Yao, Lin Huang, Sixian Wu, Xiaoliang Li, Juncen Guo, Yuting Wen, Yan Wang, Lijun Shang, Na Li, Wenming Xu

Published in: Reproductive Biology and Endocrinology | Issue 1/2022

Login to get access

Abstract

Globozoospermia (OMIM: 102530) is a rare type of teratozoospermia (< 0.1%). The etiology of globozoospermia is complicated and has not been fully revealed. Here, we report an infertile patient with globozoospermia. Variational analysis revealed a homozygous missense variant in the SSFA2 gene (NM_001130445.3: c.3671G > A; p.R1224Q) in the patient. This variant significantly reduced the protein expression of SSFA2. Immunofluorescence staining showed positive SSFA2 expression in the acrosome of human sperm. Liquid chromatography–mass spectrometry/mass spectrometry (LC–MS/MS) and Coimmunoprecipitation (Co-IP) analyses identified that GSTM3 and Actin interact with SSFA2. Further investigation revealed that for the patient, regular intracytoplasmic sperm injection (ICSI) treatment had a poor prognosis. However, Artificial oocyte activation (AOA) by a calcium ionophore (A23187) after ICSI successfully rescued the oocyte activation failure for the patient with the SSFA2 variant, and the couple achieved a live birth. This study revealed that SSFA2 plays an important role in acrosome formation, and the homozygous c.3671G > A loss-of-function variant in SSFA2 caused globozoospermia. SSFA2 may represent a new gene in the genetic diagnosis of globozoospermia, especially the successful outcome of AOA-ICSI treatment for couples, which has potential value for clinicians in their treatment regimen selections.
Appendix
Available only for authorised users
Literature
1.
go back to reference Agarwal A, Baskaran S, Parekh N, Cho CL, Henkel R, Vij S, et al. Male infertility. Lancet. 2021;397:319–33.PubMedCrossRef Agarwal A, Baskaran S, Parekh N, Cho CL, Henkel R, Vij S, et al. Male infertility. Lancet. 2021;397:319–33.PubMedCrossRef
2.
go back to reference Barratt CLR, Bjorndahl L, De Jonge CJ, Lamb DJ, Osorio Martini F, McLachlan R, et al. The diagnosis of male infertility: an analysis of the evidence to support the development of global WHO guidance-challenges and future research opportunities. Hum Reprod Update. 2017;23:660–80.PubMedPubMedCentralCrossRef Barratt CLR, Bjorndahl L, De Jonge CJ, Lamb DJ, Osorio Martini F, McLachlan R, et al. The diagnosis of male infertility: an analysis of the evidence to support the development of global WHO guidance-challenges and future research opportunities. Hum Reprod Update. 2017;23:660–80.PubMedPubMedCentralCrossRef
3.
go back to reference Tournaye H, Krausz C, Oates RD. Novel concepts in the aetiology of male reproductive impairment. Lancet Diabetes Endocrinol. 2017;5:544–53.PubMedCrossRef Tournaye H, Krausz C, Oates RD. Novel concepts in the aetiology of male reproductive impairment. Lancet Diabetes Endocrinol. 2017;5:544–53.PubMedCrossRef
4.
5.
6.
go back to reference Wolff HH, Schill WB, Moritz P. Round-headed spermatozoa: a rare andrologic finding (“globe-headed spermatozoa”, “globozoospermia”). Hautarzt. 1976;27:111–6.PubMed Wolff HH, Schill WB, Moritz P. Round-headed spermatozoa: a rare andrologic finding (“globe-headed spermatozoa”, “globozoospermia”). Hautarzt. 1976;27:111–6.PubMed
7.
go back to reference Singh G. Ultrastructural features of round-headed human spermatozoa. Int J Fertil. 1992;37:99–102.PubMed Singh G. Ultrastructural features of round-headed human spermatozoa. Int J Fertil. 1992;37:99–102.PubMed
8.
10.
go back to reference Oud MS, Okutman O, Hendricks LAJ, de Vries PF, Houston BJ, Vissers L, et al. Exome sequencing reveals novel causes as well as new candidate genes for human globozoospermia. Hum Reprod. 2020;35:240–52.PubMedPubMedCentralCrossRef Oud MS, Okutman O, Hendricks LAJ, de Vries PF, Houston BJ, Vissers L, et al. Exome sequencing reveals novel causes as well as new candidate genes for human globozoospermia. Hum Reprod. 2020;35:240–52.PubMedPubMedCentralCrossRef
11.
go back to reference Chen P, Saiyin H, Shi R, Liu B, Han X, Gao Y, et al. Loss of SPACA1 function causes autosomal recessive globozoospermia by damaging the acrosome-acroplaxome complex. Hum Reprod. 2021;36:2587–96.PubMedCrossRef Chen P, Saiyin H, Shi R, Liu B, Han X, Gao Y, et al. Loss of SPACA1 function causes autosomal recessive globozoospermia by damaging the acrosome-acroplaxome complex. Hum Reprod. 2021;36:2587–96.PubMedCrossRef
12.
go back to reference Elinati E, Kuentz P, Redin C, Jaber S, Meerschaut FV, Makarian J, et al. Globozoospermia is mainly due to DPY19L2 deletion via non-allelic homologous recombination involving two recombination hotspots. Hum Mol Genet. 2012;21:3695–702.PubMedCrossRef Elinati E, Kuentz P, Redin C, Jaber S, Meerschaut FV, Makarian J, et al. Globozoospermia is mainly due to DPY19L2 deletion via non-allelic homologous recombination involving two recombination hotspots. Hum Mol Genet. 2012;21:3695–702.PubMedCrossRef
13.
go back to reference Harbuz R, Zouari R, Pierre V, Ben Khelifa M, Kharouf M, Coutton C, et al. A recurrent deletion of DPY19L2 causes infertility in man by blocking sperm head elongation and acrosome formation. Am J Hum Genet. 2011;88:351–61.PubMedPubMedCentralCrossRef Harbuz R, Zouari R, Pierre V, Ben Khelifa M, Kharouf M, Coutton C, et al. A recurrent deletion of DPY19L2 causes infertility in man by blocking sperm head elongation and acrosome formation. Am J Hum Genet. 2011;88:351–61.PubMedPubMedCentralCrossRef
14.
go back to reference Thillaiappan NB, Smith HA, Atakpa-Adaji P, Taylor CW. KRAP tethers IP3 receptors to actin and licenses them to evoke cytosolic Ca(2+) signals. Nat Commun. 2021;12:4514.PubMedPubMedCentralCrossRef Thillaiappan NB, Smith HA, Atakpa-Adaji P, Taylor CW. KRAP tethers IP3 receptors to actin and licenses them to evoke cytosolic Ca(2+) signals. Nat Commun. 2021;12:4514.PubMedPubMedCentralCrossRef
15.
go back to reference Fujimoto T, Machida T, Tanaka Y, Tsunoda T, Doi K, Ota T, et al. KRAS-induced actin-interacting protein is required for the proper localization of inositol 1,4,5-trisphosphate receptor in the epithelial cells. Biochem Biophys Res Commun. 2011;407:438–43.PubMedCrossRef Fujimoto T, Machida T, Tanaka Y, Tsunoda T, Doi K, Ota T, et al. KRAS-induced actin-interacting protein is required for the proper localization of inositol 1,4,5-trisphosphate receptor in the epithelial cells. Biochem Biophys Res Commun. 2011;407:438–43.PubMedCrossRef
16.
go back to reference Fujimoto T, Machida T, Tsunoda T, Doi K, Ota T, Kuroki M, et al. KRAS-induced actin-interacting protein regulates inositol 1,4,5-trisphosphate-receptor-mediated calcium release. Biochem Biophys Res Commun. 2011;408:214–7.PubMedCrossRef Fujimoto T, Machida T, Tsunoda T, Doi K, Ota T, Kuroki M, et al. KRAS-induced actin-interacting protein regulates inositol 1,4,5-trisphosphate-receptor-mediated calcium release. Biochem Biophys Res Commun. 2011;408:214–7.PubMedCrossRef
17.
go back to reference McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.PubMedPubMedCentralCrossRef McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.PubMedPubMedCentralCrossRef
18.
go back to reference Bellve AR, Cavicchia JC, Millette CF, O'Brien DA, Bhatnagar YM, Dym M. Spermatogenic cells of the prepuberal mouse. Isolation and morphological characterization. J Cell Biol. 1977;74:68–85.PubMedPubMedCentralCrossRef Bellve AR, Cavicchia JC, Millette CF, O'Brien DA, Bhatnagar YM, Dym M. Spermatogenic cells of the prepuberal mouse. Isolation and morphological characterization. J Cell Biol. 1977;74:68–85.PubMedPubMedCentralCrossRef
19.
go back to reference Cooper TG, Noonan E, von Eckardstein S, Auger J, Baker HW, Behre HM, et al. World Health Organization reference values for human semen characteristics. Hum Reprod Update. 2010;16:231–45.PubMedCrossRef Cooper TG, Noonan E, von Eckardstein S, Auger J, Baker HW, Behre HM, et al. World Health Organization reference values for human semen characteristics. Hum Reprod Update. 2010;16:231–45.PubMedCrossRef
20.
go back to reference Cooper TG, Noonan E, von Eckardstein S, Auger J, Baker HW, Behre HM, Haugen TB, Kruger T, Wang C, Mbizvo MT, Vogelsong KM. World Health Organization reference values for human semen characteristics. Hum Reprod Update. 2010;16:231-45. Cooper TG, Noonan E, von Eckardstein S, Auger J, Baker HW, Behre HM, Haugen TB, Kruger T, Wang C, Mbizvo MT, Vogelsong KM. World Health Organization reference values for human semen characteristics. Hum Reprod Update. 2010;16:231-45.
21.
go back to reference Kierszenbaum AL, Rivkin E, Tres LL. Acroplaxome, an F-actin-keratin-containing plate, anchors the acrosome to the nucleus during shaping of the spermatid head. Mol Biol Cell. 2003;14:4628–40.PubMedPubMedCentralCrossRef Kierszenbaum AL, Rivkin E, Tres LL. Acroplaxome, an F-actin-keratin-containing plate, anchors the acrosome to the nucleus during shaping of the spermatid head. Mol Biol Cell. 2003;14:4628–40.PubMedPubMedCentralCrossRef
22.
go back to reference Yanagimachi R, Noda YD. Ultrastructural changes in the hamster sperm head during fertilization. J Ultrastruct Res. 1970;31:465–85.PubMedCrossRef Yanagimachi R, Noda YD. Ultrastructural changes in the hamster sperm head during fertilization. J Ultrastruct Res. 1970;31:465–85.PubMedCrossRef
23.
go back to reference Fujimoto T, Machida T, Tsunoda T, Doi K, Ota T, Kuroki M, et al. Determination of the critical region of KRAS-induced actin-interacting protein for the interaction with inositol 1,4,5-trisphosphate receptor. Biochem Biophys Res Commun. 2011;408:282–6.PubMedCrossRef Fujimoto T, Machida T, Tsunoda T, Doi K, Ota T, Kuroki M, et al. Determination of the critical region of KRAS-induced actin-interacting protein for the interaction with inositol 1,4,5-trisphosphate receptor. Biochem Biophys Res Commun. 2011;408:282–6.PubMedCrossRef
24.
go back to reference Llavanera M, Mateo-Otero Y, Bonet S, Barranco I, Fernandez-Fuertes B, Yeste M. The triple role of glutathione S-transferases in mammalian male fertility. Cell Mol Life Sci. 2020;77:2331–42.PubMedCrossRef Llavanera M, Mateo-Otero Y, Bonet S, Barranco I, Fernandez-Fuertes B, Yeste M. The triple role of glutathione S-transferases in mammalian male fertility. Cell Mol Life Sci. 2020;77:2331–42.PubMedCrossRef
25.
go back to reference Petit FM, Serres C, Bourgeon F, Pineau C, Auer J. Identification of sperm head proteins involved in zona pellucida binding. Hum Reprod. 2013;28:852–65.PubMedCrossRef Petit FM, Serres C, Bourgeon F, Pineau C, Auer J. Identification of sperm head proteins involved in zona pellucida binding. Hum Reprod. 2013;28:852–65.PubMedCrossRef
26.
go back to reference Safarinejad MR, Shafiei N, Safarinejad S. The association of glutathione-S-transferase gene polymorphisms (GSTM1, GSTT1, GSTP1) with idiopathic male infertility. J Hum Genet. 2010;55:565–70.PubMedCrossRef Safarinejad MR, Shafiei N, Safarinejad S. The association of glutathione-S-transferase gene polymorphisms (GSTM1, GSTT1, GSTP1) with idiopathic male infertility. J Hum Genet. 2010;55:565–70.PubMedCrossRef
27.
go back to reference Kwon WS, Oh SA, Kim YJ, Rahman MS, Park YJ, Pang MG. Proteomic approaches for profiling negative fertility markers in inferior boar spermatozoa. Sci Rep. 2015;5:13821.PubMedPubMedCentralCrossRef Kwon WS, Oh SA, Kim YJ, Rahman MS, Park YJ, Pang MG. Proteomic approaches for profiling negative fertility markers in inferior boar spermatozoa. Sci Rep. 2015;5:13821.PubMedPubMedCentralCrossRef
28.
go back to reference Llavanera M, Delgado-Bermudez A, Fernandez-Fuertes B, Recuero S, Mateo Y, Bonet S, et al. GSTM3, but not IZUMO1, is a cryotolerance marker of boar sperm. J Anim Sci Biotechnol. 2019;10:61.PubMedPubMedCentralCrossRef Llavanera M, Delgado-Bermudez A, Fernandez-Fuertes B, Recuero S, Mateo Y, Bonet S, et al. GSTM3, but not IZUMO1, is a cryotolerance marker of boar sperm. J Anim Sci Biotechnol. 2019;10:61.PubMedPubMedCentralCrossRef
29.
go back to reference Llavanera M, Delgado-Bermudez A, Olives S, Mateo-Otero Y, Recuero S, Bonet S, et al. Glutathione S-transferases play a crucial role in mitochondrial function, plasma membrane stability and oxidative regulation of mammalian sperm. Antioxidants (Basel). 2020;9:100.CrossRef Llavanera M, Delgado-Bermudez A, Olives S, Mateo-Otero Y, Recuero S, Bonet S, et al. Glutathione S-transferases play a crucial role in mitochondrial function, plasma membrane stability and oxidative regulation of mammalian sperm. Antioxidants (Basel). 2020;9:100.CrossRef
30.
go back to reference Nomikos M. Novel signalling mechanism and clinical applications of sperm-specific PLCzeta. Biochem Soc Trans. 2015;43:371–6.PubMedCrossRef Nomikos M. Novel signalling mechanism and clinical applications of sperm-specific PLCzeta. Biochem Soc Trans. 2015;43:371–6.PubMedCrossRef
31.
go back to reference Saunders CM, Larman MG, Parrington J, Cox LJ, Royse J, Blayney LM, et al. PLC zeta: a sperm-specific trigger of Ca(2+) oscillations in eggs and embryo development. Development. 2002;129:3533–44.PubMedCrossRef Saunders CM, Larman MG, Parrington J, Cox LJ, Royse J, Blayney LM, et al. PLC zeta: a sperm-specific trigger of Ca(2+) oscillations in eggs and embryo development. Development. 2002;129:3533–44.PubMedCrossRef
32.
go back to reference Escoffier J, Lee HC, Yassine S, Zouari R, Martinez G, Karaouzene T, et al. Homozygous mutation of PLCZ1 leads to defective human oocyte activation and infertility that is not rescued by the WW-binding protein PAWP. Hum Mol Genet. 2016;25:878–91.PubMedCrossRef Escoffier J, Lee HC, Yassine S, Zouari R, Martinez G, Karaouzene T, et al. Homozygous mutation of PLCZ1 leads to defective human oocyte activation and infertility that is not rescued by the WW-binding protein PAWP. Hum Mol Genet. 2016;25:878–91.PubMedCrossRef
33.
go back to reference Heytens E, Parrington J, Coward K, Young C, Lambrecht S, Yoon SY, et al. Reduced amounts and abnormal forms of phospholipase C zeta (PLCzeta) in spermatozoa from infertile men. Hum Reprod. 2009;24:2417–28.PubMedCrossRef Heytens E, Parrington J, Coward K, Young C, Lambrecht S, Yoon SY, et al. Reduced amounts and abnormal forms of phospholipase C zeta (PLCzeta) in spermatozoa from infertile men. Hum Reprod. 2009;24:2417–28.PubMedCrossRef
34.
go back to reference Kashir J, Konstantinidis M, Jones C, Heindryckx B, De Sutter P, Parrington J, et al. Characterization of two heterozygous mutations of the oocyte activation factor phospholipase C zeta (PLCzeta) from an infertile man by use of minisequencing of individual sperm and expression in somatic cells. Fertil Steril. 2012;98:423–31.PubMedCrossRef Kashir J, Konstantinidis M, Jones C, Heindryckx B, De Sutter P, Parrington J, et al. Characterization of two heterozygous mutations of the oocyte activation factor phospholipase C zeta (PLCzeta) from an infertile man by use of minisequencing of individual sperm and expression in somatic cells. Fertil Steril. 2012;98:423–31.PubMedCrossRef
35.
go back to reference Nomikos M, Elgmati K, Theodoridou M, Calver BL, Cumbes B, Nounesis G, et al. Male infertility-linked point mutation disrupts the Ca2+ oscillation-inducing and PIP(2) hydrolysis activity of sperm PLCzeta. Biochem J. 2011;434:211–7.PubMedCrossRef Nomikos M, Elgmati K, Theodoridou M, Calver BL, Cumbes B, Nounesis G, et al. Male infertility-linked point mutation disrupts the Ca2+ oscillation-inducing and PIP(2) hydrolysis activity of sperm PLCzeta. Biochem J. 2011;434:211–7.PubMedCrossRef
36.
go back to reference Nomikos M, Stamatiadis P, Sanders JR, Beck K, Calver BL, Buntwal L, et al. Male infertility-linked point mutation reveals a vital binding role for the C2 domain of sperm PLCzeta. Biochem J. 2017;474:1003–16.PubMedCrossRef Nomikos M, Stamatiadis P, Sanders JR, Beck K, Calver BL, Buntwal L, et al. Male infertility-linked point mutation reveals a vital binding role for the C2 domain of sperm PLCzeta. Biochem J. 2017;474:1003–16.PubMedCrossRef
37.
go back to reference Torra-Massana M, Cornet-Bartolome D, Barragan M, Durban M, Ferrer-Vaquer A, Zambelli F, et al. Novel phospholipase C zeta 1 mutations associated with fertilization failures after ICSI. Hum Reprod. 2019;34:1494–504.PubMedCrossRef Torra-Massana M, Cornet-Bartolome D, Barragan M, Durban M, Ferrer-Vaquer A, Zambelli F, et al. Novel phospholipase C zeta 1 mutations associated with fertilization failures after ICSI. Hum Reprod. 2019;34:1494–504.PubMedCrossRef
38.
go back to reference Yoon SY, Jellerette T, Salicioni AM, Lee HC, Yoo MS, Coward K, et al. Human sperm devoid of PLC, zeta 1 fail to induce Ca(2+) release and are unable to initiate the first step of embryo development. J Clin Invest. 2008;118:3671–81.PubMedPubMedCentralCrossRef Yoon SY, Jellerette T, Salicioni AM, Lee HC, Yoo MS, Coward K, et al. Human sperm devoid of PLC, zeta 1 fail to induce Ca(2+) release and are unable to initiate the first step of embryo development. J Clin Invest. 2008;118:3671–81.PubMedPubMedCentralCrossRef
39.
go back to reference Yuan P, Yang C, Ren Y, Yan J, Nie Y, Yan L, et al. A novel homozygous mutation of phospholipase C zeta leading to defective human oocyte activation and fertilization failure. Hum Reprod. 2020;35:977–85.PubMedCrossRef Yuan P, Yang C, Ren Y, Yan J, Nie Y, Yan L, et al. A novel homozygous mutation of phospholipase C zeta leading to defective human oocyte activation and fertilization failure. Hum Reprod. 2020;35:977–85.PubMedCrossRef
40.
go back to reference Dai J, Dai C, Guo J, Zheng W, Zhang T, Li Y, et al. Novel homozygous variations in PLCZ1 lead to poor or failed fertilization characterized by abnormal localization patterns of PLCzeta in sperm. Clin Genet. 2020;97:347–51.PubMedCrossRef Dai J, Dai C, Guo J, Zheng W, Zhang T, Li Y, et al. Novel homozygous variations in PLCZ1 lead to poor or failed fertilization characterized by abnormal localization patterns of PLCzeta in sperm. Clin Genet. 2020;97:347–51.PubMedCrossRef
41.
go back to reference Talebi AR, Ghasemzadeh J, Khalili MA, Halvaei I, Fesahat F. Sperm chromatin quality and DNA integrity in partial versus total globozoospermia. Andrologia. 2018;50:e12823.CrossRef Talebi AR, Ghasemzadeh J, Khalili MA, Halvaei I, Fesahat F. Sperm chromatin quality and DNA integrity in partial versus total globozoospermia. Andrologia. 2018;50:e12823.CrossRef
42.
go back to reference de las Heras MA, Valcarcel A, Perez LJ, Moses DF. Actin localization in ram spermatozoa: effect of freezing/thawing, capacitation and calcium ionophore-induced acrosomal exocytosis. Tissue Cell. 1997;29:47–53.PubMedCrossRef de las Heras MA, Valcarcel A, Perez LJ, Moses DF. Actin localization in ram spermatozoa: effect of freezing/thawing, capacitation and calcium ionophore-induced acrosomal exocytosis. Tissue Cell. 1997;29:47–53.PubMedCrossRef
43.
go back to reference Delgado-Buenrostro NL, Hernandez-Gonzalez EO, Segura-Nieto M, Mujica A. Actin polymerization in the equatorial and postacrosomal regions of guinea pig spermatozoa during the acrosome reaction is regulated by G proteins. Mol Reprod Dev. 2005;70:198–210.PubMedCrossRef Delgado-Buenrostro NL, Hernandez-Gonzalez EO, Segura-Nieto M, Mujica A. Actin polymerization in the equatorial and postacrosomal regions of guinea pig spermatozoa during the acrosome reaction is regulated by G proteins. Mol Reprod Dev. 2005;70:198–210.PubMedCrossRef
44.
go back to reference Flaherty SP, Winfrey VP, Olson GE. Localization of actin in human, bull, rabbit, and hamster sperm by immunoelectron microscopy. Anat Rec. 1988;221:599–610.PubMedCrossRef Flaherty SP, Winfrey VP, Olson GE. Localization of actin in human, bull, rabbit, and hamster sperm by immunoelectron microscopy. Anat Rec. 1988;221:599–610.PubMedCrossRef
45.
go back to reference Hernandez-Gonzalez EO, Lecona-Valera AN, Escobar-Herrera J, Mujica A. Involvement of an F-actin skeleton on the acrosome reaction in guinea pig spermatozoa. Cell Motil Cytoskeleton. 2000;46:43–58.PubMedCrossRef Hernandez-Gonzalez EO, Lecona-Valera AN, Escobar-Herrera J, Mujica A. Involvement of an F-actin skeleton on the acrosome reaction in guinea pig spermatozoa. Cell Motil Cytoskeleton. 2000;46:43–58.PubMedCrossRef
46.
go back to reference Moreno-Fierros L, Hernandez EO, Salgado ZO, Mujica A. F-actin in guinea pig spermatozoa: its role in calmodulin translocation during acrosome reaction. Mol Reprod Dev. 1992;33:172–81.PubMedCrossRef Moreno-Fierros L, Hernandez EO, Salgado ZO, Mujica A. F-actin in guinea pig spermatozoa: its role in calmodulin translocation during acrosome reaction. Mol Reprod Dev. 1992;33:172–81.PubMedCrossRef
47.
go back to reference Vogl AW, Genereux K, Pfeiffer DC. Filamentous actin detected in rat spermatozoa. Tissue Cell. 1993;25:33–48.PubMedCrossRef Vogl AW, Genereux K, Pfeiffer DC. Filamentous actin detected in rat spermatozoa. Tissue Cell. 1993;25:33–48.PubMedCrossRef
48.
go back to reference Breitbart H, Finkelstein M. Regulation of sperm capacitation and the acrosome reaction by PIP 2 and actin modulation. Asian J Androl. 2015;17:597–600.PubMedPubMedCentralCrossRef Breitbart H, Finkelstein M. Regulation of sperm capacitation and the acrosome reaction by PIP 2 and actin modulation. Asian J Androl. 2015;17:597–600.PubMedPubMedCentralCrossRef
49.
go back to reference Breitbart H, Finkelstein M. Actin cytoskeleton and sperm function. Biochem Biophys Res Commun. 2018;506:372–7.PubMedCrossRef Breitbart H, Finkelstein M. Actin cytoskeleton and sperm function. Biochem Biophys Res Commun. 2018;506:372–7.PubMedCrossRef
50.
go back to reference Oikonomopoulou I, Patel H, Watson PF, Chantler PD. Relocation of myosin and actin, kinesin and tubulin in the acrosome reaction of bovine spermatozoa. Reprod Fertil Dev. 2009;21:364–77.PubMedCrossRef Oikonomopoulou I, Patel H, Watson PF, Chantler PD. Relocation of myosin and actin, kinesin and tubulin in the acrosome reaction of bovine spermatozoa. Reprod Fertil Dev. 2009;21:364–77.PubMedCrossRef
51.
go back to reference Kierszenbaum AL, Tres LL. The acrosome-acroplaxome-manchette complex and the shaping of the spermatid head. Arch Histol Cytol. 2004;67:271–84.PubMedCrossRef Kierszenbaum AL, Tres LL. The acrosome-acroplaxome-manchette complex and the shaping of the spermatid head. Arch Histol Cytol. 2004;67:271–84.PubMedCrossRef
52.
go back to reference Tavalaee M, Nomikos M, Lai FA, Nasr-Esfahani MH. Expression of sperm PLCzeta and clinical outcomes of ICSI-AOA in men affected by globozoospermia due to DPY19L2 deletion. Reprod BioMed Online. 2018;36:348–55.PubMedCrossRef Tavalaee M, Nomikos M, Lai FA, Nasr-Esfahani MH. Expression of sperm PLCzeta and clinical outcomes of ICSI-AOA in men affected by globozoospermia due to DPY19L2 deletion. Reprod BioMed Online. 2018;36:348–55.PubMedCrossRef
53.
go back to reference Banker MR, Patel PM, Joshi BV, Shah PB, Goyal R. Successful pregnancies and a live birth after intracytoplasmic sperm injection in globozoospermia. J Hum Reprod Sci. 2009;2:81–2.PubMedPubMedCentralCrossRef Banker MR, Patel PM, Joshi BV, Shah PB, Goyal R. Successful pregnancies and a live birth after intracytoplasmic sperm injection in globozoospermia. J Hum Reprod Sci. 2009;2:81–2.PubMedPubMedCentralCrossRef
54.
go back to reference Ghazavi F, Peymani M, Hashemi MS, Ghaedi K, Nasr-Esfahani MH. Embryos derived from couples with consanguineous marriages with globozoospermia should be screened for gender or DPY19L2 deletion. Andrologia. 2019;51:e13221.PubMedCrossRef Ghazavi F, Peymani M, Hashemi MS, Ghaedi K, Nasr-Esfahani MH. Embryos derived from couples with consanguineous marriages with globozoospermia should be screened for gender or DPY19L2 deletion. Andrologia. 2019;51:e13221.PubMedCrossRef
55.
go back to reference Nomikos M, Kashir J, Swann K, Lai FA. Sperm PLCzeta: from structure to Ca2+ oscillations, egg activation and therapeutic potential. FEBS Lett. 2013;587:3609–16.PubMedCrossRef Nomikos M, Kashir J, Swann K, Lai FA. Sperm PLCzeta: from structure to Ca2+ oscillations, egg activation and therapeutic potential. FEBS Lett. 2013;587:3609–16.PubMedCrossRef
56.
57.
go back to reference Sette C, Paronetto MP, Barchi M, Bevilacqua A, Geremia R, Rossi P. Tr-kit-induced resumption of the cell cycle in mouse eggs requires activation of a Src-like kinase. EMBO J. 2002;21:5386–95.PubMedPubMedCentralCrossRef Sette C, Paronetto MP, Barchi M, Bevilacqua A, Geremia R, Rossi P. Tr-kit-induced resumption of the cell cycle in mouse eggs requires activation of a Src-like kinase. EMBO J. 2002;21:5386–95.PubMedPubMedCentralCrossRef
58.
go back to reference Harada Y, Matsumoto T, Hirahara S, Nakashima A, Ueno S, Oda S, et al. Characterization of a sperm factor for egg activation at fertilization of the newt Cynops pyrrhogaster. Dev Biol. 2007;306:797–808.PubMedCrossRef Harada Y, Matsumoto T, Hirahara S, Nakashima A, Ueno S, Oda S, et al. Characterization of a sperm factor for egg activation at fertilization of the newt Cynops pyrrhogaster. Dev Biol. 2007;306:797–808.PubMedCrossRef
59.
go back to reference Aarabi M, Qin Z, Xu W, Mewburn J, Oko R. Sperm-borne protein, PAWP, initiates zygotic development in Xenopus laevis by eliciting intracellular calcium release. Mol Reprod Dev. 2010;77:249–56.PubMed Aarabi M, Qin Z, Xu W, Mewburn J, Oko R. Sperm-borne protein, PAWP, initiates zygotic development in Xenopus laevis by eliciting intracellular calcium release. Mol Reprod Dev. 2010;77:249–56.PubMed
Metadata
Title
A loss-of-function variant in SSFA2 causes male infertility with globozoospermia and failed oocyte activation
Authors
Gelin Huang
Xueguang Zhang
Guanping Yao
Lin Huang
Sixian Wu
Xiaoliang Li
Juncen Guo
Yuting Wen
Yan Wang
Lijun Shang
Na Li
Wenming Xu
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Reproductive Biology and Endocrinology / Issue 1/2022
Electronic ISSN: 1477-7827
DOI
https://doi.org/10.1186/s12958-022-00976-5

Other articles of this Issue 1/2022

Reproductive Biology and Endocrinology 1/2022 Go to the issue