Skip to main content
Top
Published in: Reproductive Biology and Endocrinology 1/2020

Open Access 01-12-2020 | Infertility | Research

Characterization of the role for cadherin 6 in the regulation of human endometrial receptivity

Authors: Wei Zhou, Leilani Santos, Evdokia Dimitriadis

Published in: Reproductive Biology and Endocrinology | Issue 1/2020

Login to get access

Abstract

Background

The endometrial luminal epithelium is the first point of attachment of embryos during implantation. Failure of embryos to firmly adhere results in implantation failure and infertility. A receptive endometrial luminal epithelium is achieved through the expression of adhesion molecules in the mid-secretory phase and is a requirement for implantation. Cadherin 6 (CDH6) is an adhesion molecule localizing to the endometrial luminal epithelial cell surface in the mid-secretory/receptive phase and knockdown of CDH6 in the Ishikawa cells (receptive endometrial epithelial cell line) compromises cell integrity. However, there are no studies investigating the role of CDH6 on receptivity and infertility. This study aimed to investigate whether CDH6 is dysregulated in the endometrium of women with infertility during the receptive window and the effect of CDH6 on endometrial adhesion and receptivity.

Methods

The expression and the localization of CDH6 in the human endometrium were determined by immunohistochemistry. Ishikawa cells were used to investigate the functional consequences of CDH6 knockdown on endometrial adhesive capacity to HTR8/SVneo (trophoblast cell line) spheroids in vitro. CDH6 knockdown was assessed by qPCR and immunoblotting. After CDH6 knockdown, the expression of type II cadherin family members and CDH6 functional partners were assessed by qPCR. Two-tailed unpaired student’s t-test or one-way ANOVA as appropriate were used for statistical analysis with a significance threshold of P < 0.05.

Results

A significant reduction of CDH6 immunolocalization was recorded in the luminal and glandular epithelium of endometrium from women with infertility (P < 0.05) compared to fertile group respective cellular compartments in the mid-secretory phase. Functional analysis using Ishikawa cells demonstrated that knockdown of CDH6 (treated with 50 nM CDH6 siRNA) significantly reduced epithelial adhesive capacity (P < 0.05) to HTR8/SVneo spheroids compared to control and other type II cadherin family members likely failed to compensate for the loss of CDH6. The expression levels of CDH6 functional partners, catenin family members were not changed after CDH6 knockdown in Ishikawa cells.

Conclusion

Together, our data revealed that CDH6 was dysregulated in the endometrium from women with infertility and altered Ishikawa cell adhesive capacity. Our study supports a role for CDH6 in regulating endometrial adhesion and implantation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Boivin J, Bunting L, Collins JA, Nygren KG. International estimates of infertility prevalence and treatment-seeking: potential need and demand for infertility medical care. Hum Reprod. 2007;22:1506–12.PubMed Boivin J, Bunting L, Collins JA, Nygren KG. International estimates of infertility prevalence and treatment-seeking: potential need and demand for infertility medical care. Hum Reprod. 2007;22:1506–12.PubMed
2.
go back to reference Norwitz ER, Schust DJ, Fisher SJ. Implantation and the survival of early pregnancy. N Engl J Med. 2001;345:1400–8.PubMed Norwitz ER, Schust DJ, Fisher SJ. Implantation and the survival of early pregnancy. N Engl J Med. 2001;345:1400–8.PubMed
3.
go back to reference Dimitriadis E, Nie G, Hannan NJ, Paiva P, Salamonsen LA. Local regulation of implantation at the human fetal-maternal interface. Int J Dev Biol. 2009;54:313–22. Dimitriadis E, Nie G, Hannan NJ, Paiva P, Salamonsen LA. Local regulation of implantation at the human fetal-maternal interface. Int J Dev Biol. 2009;54:313–22.
4.
go back to reference Dimitriadis E, White C, Jones R, Salamonsen L. Cytokines, chemokines and growth factors in endometrium related to implantation. Hum Reprod Update. 2005;11:613–30.PubMed Dimitriadis E, White C, Jones R, Salamonsen L. Cytokines, chemokines and growth factors in endometrium related to implantation. Hum Reprod Update. 2005;11:613–30.PubMed
5.
go back to reference Koot Y, Teklenburg G, Salker M, Brosens J, Macklon N. Molecular aspects of implantation failure. Biochim Biophys Acta. 1822;2012:1943–50. Koot Y, Teklenburg G, Salker M, Brosens J, Macklon N. Molecular aspects of implantation failure. Biochim Biophys Acta. 1822;2012:1943–50.
6.
go back to reference Evans J, Salamonsen LA, Winship A, Menkhorst E, Nie G, Gargett CE, Dimitriadis E. Fertile ground: human endometrial programming and lessons in health and disease. Nat Rev Endocrinol. 2016;12:654–67.PubMed Evans J, Salamonsen LA, Winship A, Menkhorst E, Nie G, Gargett CE, Dimitriadis E. Fertile ground: human endometrial programming and lessons in health and disease. Nat Rev Endocrinol. 2016;12:654–67.PubMed
7.
go back to reference Bergh PA, Navot D. The impact of embryonic development and endometrial maturity on the timing of implantation. Fertil Steril. 1992;58:537–42.PubMed Bergh PA, Navot D. The impact of embryonic development and endometrial maturity on the timing of implantation. Fertil Steril. 1992;58:537–42.PubMed
8.
go back to reference Lessey BA. Assessment of endometrial receptivity. Fertil Steril. 2011;96:522–9.PubMed Lessey BA. Assessment of endometrial receptivity. Fertil Steril. 2011;96:522–9.PubMed
9.
go back to reference Helfrich MH, Stenbeck G, Nesbitt SA, Horton MA. Integrins and other cell surface attachment molecules of bone cells. In: Bilezikian J, Raisz L, Marton TJ, editors. Principles of Bone Biology. 3rd ed. Academic Press; 2008. p. 385–424. Helfrich MH, Stenbeck G, Nesbitt SA, Horton MA. Integrins and other cell surface attachment molecules of bone cells. In: Bilezikian J, Raisz L, Marton TJ, editors. Principles of Bone Biology. 3rd ed. Academic Press; 2008. p. 385–424.
10.
go back to reference Halbleib JM, Nelson WJ. Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev. 2006;20:3199–214.PubMed Halbleib JM, Nelson WJ. Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev. 2006;20:3199–214.PubMed
11.
go back to reference Carson DD, Lagow E, Thathiah A, Al-Shami R, Farach-Carson MC, Vernon M, Yuan L, Fritz MA, Lessey B. Changes in gene expression during the early to mid-luteal (receptive phase) transition in human endometrium detected by high-density microarray screening. Mol Hum Reprod. 2002;8:871–9.PubMed Carson DD, Lagow E, Thathiah A, Al-Shami R, Farach-Carson MC, Vernon M, Yuan L, Fritz MA, Lessey B. Changes in gene expression during the early to mid-luteal (receptive phase) transition in human endometrium detected by high-density microarray screening. Mol Hum Reprod. 2002;8:871–9.PubMed
12.
go back to reference Poncelet C, Leblanc M, Walker-Combrouze F, Soriano D, Feldmann G, Madelenat P, Scoazec JY, Daraï E. Expression of cadherins and CD44 isoforms in human endometrium and peritoneal endometriosis. Acta Obstet Gynecol Scand. 2002;81:195–203.PubMed Poncelet C, Leblanc M, Walker-Combrouze F, Soriano D, Feldmann G, Madelenat P, Scoazec JY, Daraï E. Expression of cadherins and CD44 isoforms in human endometrium and peritoneal endometriosis. Acta Obstet Gynecol Scand. 2002;81:195–203.PubMed
13.
go back to reference van der Linden PJ, de Goeij AF, Dunselman GA, Erkens HW, Evers JL. Expression of cadherins and integrins in human endometrium throughout the menstrual cycle. Fertil Steril. 1995;63:1210–6.PubMed van der Linden PJ, de Goeij AF, Dunselman GA, Erkens HW, Evers JL. Expression of cadherins and integrins in human endometrium throughout the menstrual cycle. Fertil Steril. 1995;63:1210–6.PubMed
14.
go back to reference Singh H, Aplin JD. Adhesion molecules in endometrial epithelium: tissue integrity and embryo implantation. J Anat. 2009;215:3–13.PubMedPubMedCentral Singh H, Aplin JD. Adhesion molecules in endometrial epithelium: tissue integrity and embryo implantation. J Anat. 2009;215:3–13.PubMedPubMedCentral
15.
go back to reference Coutifaris C, Kao L, Sehdev H, Chin U, Babalola G, Blaschuk O, Strauss J. E-cadherin expression during the differentiation of human trophoblasts. Development. 1991;113:767–77.PubMed Coutifaris C, Kao L, Sehdev H, Chin U, Babalola G, Blaschuk O, Strauss J. E-cadherin expression during the differentiation of human trophoblasts. Development. 1991;113:767–77.PubMed
16.
go back to reference Rahnama F, Thompson B, Steiner M, Shafiei F, Lobie PE, Mitchell MD. Epigenetic regulation of E-cadherin controls endometrial receptivity. Endocrinology. 2009;150:1466–72.PubMed Rahnama F, Thompson B, Steiner M, Shafiei F, Lobie PE, Mitchell MD. Epigenetic regulation of E-cadherin controls endometrial receptivity. Endocrinology. 2009;150:1466–72.PubMed
17.
go back to reference Fullerton PT, Monsivais D, Kommagani R, Matzuk MM. Follistatin is critical for mouse uterine receptivity and decidualization. Proc Natl Acad Sci U S A. 2017;114:E4772–81.PubMedPubMedCentral Fullerton PT, Monsivais D, Kommagani R, Matzuk MM. Follistatin is critical for mouse uterine receptivity and decidualization. Proc Natl Acad Sci U S A. 2017;114:E4772–81.PubMedPubMedCentral
18.
go back to reference Thie M, Harrach-Ruprechtb B, Sauere H, Fuchsa P, Albersa A, Denkera H-W. Cell adhesion to the apical pole of epithelium: a function of ce11 polarity. Eur J Cell Biol. 1995;66:180–91.PubMed Thie M, Harrach-Ruprechtb B, Sauere H, Fuchsa P, Albersa A, Denkera H-W. Cell adhesion to the apical pole of epithelium: a function of ce11 polarity. Eur J Cell Biol. 1995;66:180–91.PubMed
19.
go back to reference Whitby S, Salamonsen LA, Evans J. The endometrial polarity paradox: differential regulation of polarity within secretory-phase human endometrium. Endocrinology. 2018;159:506–18.PubMed Whitby S, Salamonsen LA, Evans J. The endometrial polarity paradox: differential regulation of polarity within secretory-phase human endometrium. Endocrinology. 2018;159:506–18.PubMed
20.
go back to reference Maccalman CD, Getsios S, Chen GT. Type 2 cadherins in the human endometrium and placenta: their putative roles in human implantation and placentation. Am J Reprod Immunol. 1998;39:96–107.PubMed Maccalman CD, Getsios S, Chen GT. Type 2 cadherins in the human endometrium and placenta: their putative roles in human implantation and placentation. Am J Reprod Immunol. 1998;39:96–107.PubMed
21.
go back to reference Dassen H, Punyadeera C, Kamps R, Klomp J, Dunselman G, Dijcks F, De Goeij A, Ederveen A, Groothuis P. Progesterone regulation of implantation-related genes: new insights into the role of oestrogen. Cell Mol Life Sci. 2007;64:1009.PubMedPubMedCentral Dassen H, Punyadeera C, Kamps R, Klomp J, Dunselman G, Dijcks F, De Goeij A, Ederveen A, Groothuis P. Progesterone regulation of implantation-related genes: new insights into the role of oestrogen. Cell Mol Life Sci. 2007;64:1009.PubMedPubMedCentral
22.
go back to reference Gargett CE, Schwab KE, Deane JA. Endometrial stem/progenitor cells: the first 10 years. Hum Reprod Update. 2016;22:137–63.PubMed Gargett CE, Schwab KE, Deane JA. Endometrial stem/progenitor cells: the first 10 years. Hum Reprod Update. 2016;22:137–63.PubMed
23.
go back to reference Vilella F, Moreno-Moya JM, Balaguer N, Grasso A, Herrero M, Martínez S, Marcilla A, Simón C. Hsa-miR-30d, secreted by the human endometrium, is taken up by the pre-implantation embryo and might modify its transcriptome. Development. 2015;142:3210–21.PubMed Vilella F, Moreno-Moya JM, Balaguer N, Grasso A, Herrero M, Martínez S, Marcilla A, Simón C. Hsa-miR-30d, secreted by the human endometrium, is taken up by the pre-implantation embryo and might modify its transcriptome. Development. 2015;142:3210–21.PubMed
24.
go back to reference Getsios S, Chen GT, Stephenson MD, Leclerc P, Blaschuk OW, MacCalman CD. Regulated expression of cadherin-6 and cadherin-11 in the glandular epithelial and stromal cells of the human endometrium. Dev Dyn. 1998;211:238–47.PubMed Getsios S, Chen GT, Stephenson MD, Leclerc P, Blaschuk OW, MacCalman CD. Regulated expression of cadherin-6 and cadherin-11 in the glandular epithelial and stromal cells of the human endometrium. Dev Dyn. 1998;211:238–47.PubMed
25.
go back to reference Singh H, Aplin J. Endometrial apical glycoproteomic analysis reveals roles for cadherin 6, desmoglein-2 and plexin b2 in epithelial integrity. Mol Hum Reprod. 2015;21:81–94.PubMed Singh H, Aplin J. Endometrial apical glycoproteomic analysis reveals roles for cadherin 6, desmoglein-2 and plexin b2 in epithelial integrity. Mol Hum Reprod. 2015;21:81–94.PubMed
26.
go back to reference Osterhout JA, Josten N, Yamada J, Pan F, Wu S-w, Nguyen PL, Panagiotakos G, Inoue YU, Egusa SF, Volgyi B. Cadherin-6 mediates axon-target matching in a non-image-forming visual circuit. Neuron. 2011;71:632–9.PubMedPubMedCentral Osterhout JA, Josten N, Yamada J, Pan F, Wu S-w, Nguyen PL, Panagiotakos G, Inoue YU, Egusa SF, Volgyi B. Cadherin-6 mediates axon-target matching in a non-image-forming visual circuit. Neuron. 2011;71:632–9.PubMedPubMedCentral
27.
go back to reference Hannan NJ, Paiva P, Dimitriadis E, Salamonsen LA. Models for study of human embryo implantation: choice of cell lines? Biol Reprod. 2010;82:235–45.PubMed Hannan NJ, Paiva P, Dimitriadis E, Salamonsen LA. Models for study of human embryo implantation: choice of cell lines? Biol Reprod. 2010;82:235–45.PubMed
28.
go back to reference Nishida M. The Ishikawa cells from birth to the present. Hum Cell. 2002;15:104–17.PubMed Nishida M. The Ishikawa cells from birth to the present. Hum Cell. 2002;15:104–17.PubMed
29.
go back to reference Achache H, Revel A. Endometrial receptivity markers, the journey to successful embryo implantation. Hum Reprod Update. 2006;12:731–46.PubMed Achache H, Revel A. Endometrial receptivity markers, the journey to successful embryo implantation. Hum Reprod Update. 2006;12:731–46.PubMed
30.
go back to reference Griffiths M, Van Sinderen M, Rainczuk K, Dimitriadis E. miR-29c overexpression and COL4A1 downregulation in infertile human endometrium reduces endometrial epithelial cell adhesive capacity in vitro implying roles in receptivity. Sci Rep. 2019;9:8644.PubMedPubMedCentral Griffiths M, Van Sinderen M, Rainczuk K, Dimitriadis E. miR-29c overexpression and COL4A1 downregulation in infertile human endometrium reduces endometrial epithelial cell adhesive capacity in vitro implying roles in receptivity. Sci Rep. 2019;9:8644.PubMedPubMedCentral
31.
go back to reference Winship A, Ton A, Van Sinderen M, Menkhorst E, Rainczuk K, Griffiths M, Cuman C, Dimitriadis E. Mouse double minute homologue 2 (MDM2) downregulation by miR-661 impairs human endometrial epithelial cell adhesive capacity. Reprod Fertil Dev. 2018;30:477–86.PubMed Winship A, Ton A, Van Sinderen M, Menkhorst E, Rainczuk K, Griffiths M, Cuman C, Dimitriadis E. Mouse double minute homologue 2 (MDM2) downregulation by miR-661 impairs human endometrial epithelial cell adhesive capacity. Reprod Fertil Dev. 2018;30:477–86.PubMed
32.
go back to reference Kopec AM, Rivera PD, Lacagnina MJ, Hanamsagar R, Bilbo SD. Optimized solubilization of TRIzol-precipitated protein permits Western blotting analysis to maximize data available from brain tissue. J Neurosci Methods. 2017;280:64–76.PubMedPubMedCentral Kopec AM, Rivera PD, Lacagnina MJ, Hanamsagar R, Bilbo SD. Optimized solubilization of TRIzol-precipitated protein permits Western blotting analysis to maximize data available from brain tissue. J Neurosci Methods. 2017;280:64–76.PubMedPubMedCentral
33.
go back to reference Matsunaga E, Okanoya K. Cadherins: potential regulators in the faculty of language. Curr Opin Neurobiol. 2014;28:28–33.PubMed Matsunaga E, Okanoya K. Cadherins: potential regulators in the faculty of language. Curr Opin Neurobiol. 2014;28:28–33.PubMed
34.
go back to reference Jensen PJ, Telegan B, Lavker RM, Wheelock MJ. E-cadherin and P-cadherin have partially redundant roles in human epidermal stratification. Cell Tissue Res. 1997;288:307–16.PubMed Jensen PJ, Telegan B, Lavker RM, Wheelock MJ. E-cadherin and P-cadherin have partially redundant roles in human epidermal stratification. Cell Tissue Res. 1997;288:307–16.PubMed
35.
go back to reference Adjaye J, Huntriss J, Herwig R, BenKahla A, Brink TC, Wierling C, Hultschig C, Groth D, Yaspo ML, Picton HM. Primary differentiation in the human blastocyst: comparative molecular portraits of inner cell mass and trophectoderm cells. Stem Cells. 2005;23:1514–25.PubMed Adjaye J, Huntriss J, Herwig R, BenKahla A, Brink TC, Wierling C, Hultschig C, Groth D, Yaspo ML, Picton HM. Primary differentiation in the human blastocyst: comparative molecular portraits of inner cell mass and trophectoderm cells. Stem Cells. 2005;23:1514–25.PubMed
36.
go back to reference Kan NG, Stemmler MP, Junghans D, Kanzler B, de Vries WN, Dominis M, Kemler R. Gene replacement reveals a specific role for E-cadherin in the formation of a functional trophectoderm. Development. 2007;134:31–41.PubMed Kan NG, Stemmler MP, Junghans D, Kanzler B, de Vries WN, Dominis M, Kemler R. Gene replacement reveals a specific role for E-cadherin in the formation of a functional trophectoderm. Development. 2007;134:31–41.PubMed
37.
go back to reference Sancisi V, Gandolfi G, Ragazzi M, Nicoli D, Tamagnini I, Piana S, Ciarrocchi A. Cadherin 6 is a new RUNX2 target in TGF-β signalling pathway. PLoS One. 2013;8. Sancisi V, Gandolfi G, Ragazzi M, Nicoli D, Tamagnini I, Piana S, Ciarrocchi A. Cadherin 6 is a new RUNX2 target in TGF-β signalling pathway. PLoS One. 2013;8.
38.
go back to reference Gheldof A, Berx G. Cadherins and epithelial-to-mesenchymal transition. Prog Mol Biol Transl Sci. 2013;116:317–36. Gheldof A, Berx G. Cadherins and epithelial-to-mesenchymal transition. Prog Mol Biol Transl Sci. 2013;116:317–36.
39.
go back to reference Savagner P. Epithelial-mesenchymal transitions: from cell plasticity to concept elasticity. Curr Top Dev Biol. 2015;112:273–300. Savagner P. Epithelial-mesenchymal transitions: from cell plasticity to concept elasticity. Curr Top Dev Biol. 2015;112:273–300.
40.
go back to reference Tomita K, Van Bokhoven A, van Leenders GJ, Ruijter ET, Jansen CF, Bussemakers MJ, Schalken JA. Cadherin switching in human prostate cancer progression. Cancer Res. 2000;60:3650–4.PubMed Tomita K, Van Bokhoven A, van Leenders GJ, Ruijter ET, Jansen CF, Bussemakers MJ, Schalken JA. Cadherin switching in human prostate cancer progression. Cancer Res. 2000;60:3650–4.PubMed
41.
go back to reference Matsuzaki S, Darcha C, Maleysson E, Canis M, Mage G. Impaired down-regulation of E-cadherin and β-catenin protein expression in endometrial epithelial cells in the mid-secretory endometrium of infertile patients with endometriosis. J Clin Endocrinol Metab. 2010;95:3437–45.PubMed Matsuzaki S, Darcha C, Maleysson E, Canis M, Mage G. Impaired down-regulation of E-cadherin and β-catenin protein expression in endometrial epithelial cells in the mid-secretory endometrium of infertile patients with endometriosis. J Clin Endocrinol Metab. 2010;95:3437–45.PubMed
42.
go back to reference Heneweer C, Schmidt M, Denker H-W, Thie M. Molecular mechanisms in uterine epithelium during trophoblast binding: the role of small GTPase RhoA in human uterine Ishikawa cells. J Exp Clin Assist Reprod. 2005;2:4.PubMedPubMedCentral Heneweer C, Schmidt M, Denker H-W, Thie M. Molecular mechanisms in uterine epithelium during trophoblast binding: the role of small GTPase RhoA in human uterine Ishikawa cells. J Exp Clin Assist Reprod. 2005;2:4.PubMedPubMedCentral
43.
go back to reference Mohamed OA, Jonnaert M, Labelle-Dumais C, Kuroda K, Clarke HJ, Dufort D. Uterine Wnt/β-catenin signaling is required for implantation. Proc Natl Acad Sci U S A. 2005;102:8579–84.PubMedPubMedCentral Mohamed OA, Jonnaert M, Labelle-Dumais C, Kuroda K, Clarke HJ, Dufort D. Uterine Wnt/β-catenin signaling is required for implantation. Proc Natl Acad Sci U S A. 2005;102:8579–84.PubMedPubMedCentral
44.
go back to reference Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.PubMed Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.PubMed
45.
go back to reference Ji Q, Xu X, Song Q, Xu Y, Tai Y, Goodman SB, Bi W, Xu M, Jiao S, Maloney WJ: miR-223-3p inhibits human osteosarcoma metastasis and progression by directly targeting CDH6. Mol Ther 2018, 26:1299–1312. Ji Q, Xu X, Song Q, Xu Y, Tai Y, Goodman SB, Bi W, Xu M, Jiao S, Maloney WJ: miR-223-3p inhibits human osteosarcoma metastasis and progression by directly targeting CDH6. Mol Ther 2018, 26:1299–1312.
46.
go back to reference Dong X, Sui C, Huang K, Wang L, Hu D, Xiong T, Wang R, Zhang H. MicroRNA-223-3p suppresses leukemia inhibitory factor expression and pinopodes formation during embryo implantation in mice. Am J Transl Res. 2016;8:1155.PubMedPubMedCentral Dong X, Sui C, Huang K, Wang L, Hu D, Xiong T, Wang R, Zhang H. MicroRNA-223-3p suppresses leukemia inhibitory factor expression and pinopodes formation during embryo implantation in mice. Am J Transl Res. 2016;8:1155.PubMedPubMedCentral
47.
go back to reference Marwood M, Visser K, Salamonsen L, Dimitriadis E. Interleukin-11 and leukemia inhibitory factor regulate the adhesion of endometrial epithelial cells: implications in fertility regulation. Endocrinology. 2009;150:2915–23.PubMed Marwood M, Visser K, Salamonsen L, Dimitriadis E. Interleukin-11 and leukemia inhibitory factor regulate the adhesion of endometrial epithelial cells: implications in fertility regulation. Endocrinology. 2009;150:2915–23.PubMed
48.
go back to reference White CA, Zhang J-G, Salamonsen LA, Baca M, Fairlie WD, Metcalf D, Nicola NA, Robb L, Dimitriadis E. Blocking LIF action in the uterus by using a PEGylated antagonist prevents implantation: a nonhormonal contraceptive strategy. Proc Natl Acad Sci U S A. 2007;104:19357–62.PubMedPubMedCentral White CA, Zhang J-G, Salamonsen LA, Baca M, Fairlie WD, Metcalf D, Nicola NA, Robb L, Dimitriadis E. Blocking LIF action in the uterus by using a PEGylated antagonist prevents implantation: a nonhormonal contraceptive strategy. Proc Natl Acad Sci U S A. 2007;104:19357–62.PubMedPubMedCentral
49.
go back to reference Shariati MBH, Niknafs B, Seghinsara AM, Shokrzadeh N, Alivand MR. Administration of dexamethasone disrupts endometrial receptivity by alteration of expression of miRNA 223, 200a, LIF, Muc1, SGK1, and ENaC via the ERK1/2-mTOR pathway. J Cell Physiol. 2019;234:19629–39.PubMed Shariati MBH, Niknafs B, Seghinsara AM, Shokrzadeh N, Alivand MR. Administration of dexamethasone disrupts endometrial receptivity by alteration of expression of miRNA 223, 200a, LIF, Muc1, SGK1, and ENaC via the ERK1/2-mTOR pathway. J Cell Physiol. 2019;234:19629–39.PubMed
50.
go back to reference Takamura M, Zhou W, Rombauts L, Dimitriadis EJBor: The long noncoding RNA PTENP1 regulates human endometrial epithelial adhesive capacity in vitro: implications in infertility. 2019. Takamura M, Zhou W, Rombauts L, Dimitriadis EJBor: The long noncoding RNA PTENP1 regulates human endometrial epithelial adhesive capacity in vitro: implications in infertility. 2019.
51.
go back to reference Li F, Zhang M, Zhang Y, Liu T, Qu X. GnRH analogues may increase endometrial Hoxa10 promoter methylation and affect endometrial receptivity. Mol Med Rep. 2015;11:509–14.PubMed Li F, Zhang M, Zhang Y, Liu T, Qu X. GnRH analogues may increase endometrial Hoxa10 promoter methylation and affect endometrial receptivity. Mol Med Rep. 2015;11:509–14.PubMed
Metadata
Title
Characterization of the role for cadherin 6 in the regulation of human endometrial receptivity
Authors
Wei Zhou
Leilani Santos
Evdokia Dimitriadis
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Reproductive Biology and Endocrinology / Issue 1/2020
Electronic ISSN: 1477-7827
DOI
https://doi.org/10.1186/s12958-020-00624-w

Other articles of this Issue 1/2020

Reproductive Biology and Endocrinology 1/2020 Go to the issue