Skip to main content
Top
Published in: Reproductive Biology and Endocrinology 1/2020

01-12-2020 | Insulins | Research

MicroRNA-33a-5p sponges to inhibit pancreatic β-cell function in gestational diabetes mellitus LncRNA DANCR

Authors: Yan Feng, Xin Qu, Yu Chen, Qi Feng, Yinghong Zhang, Jianwei Hu, Xiaoyan Li

Published in: Reproductive Biology and Endocrinology | Issue 1/2020

Login to get access

Abstract

Background

Gestational diabetes mellitus (GDM) is the most common medical complication associated with pregnancy, which may impose risks on both mother and fetus. Micro RNAs (miRNAs) and long noncoding RNAs (lncRNAs) are implied as vital regulators in GDM. A recent paper revealed dysregulation of miR-33a-5p in placental tissues of GDM patients. However, the biological function of miR-33a-5p in GDM remains elusive. This study focused on exploring the function and underlying mechanisms of miR-33a-5p in GDM.

Methods

12 GDM pregnancies and 12 healthy pregnancies were enrolled in the study. INS-1 cell line was applied in in vitro experiments. The expression levels of miR-33a-5p, lnc-DANCR (Differentiation Antagonizing Non-Protein Coding RNA), and ABCA1 (ATP-binding cassette transporter 1) mRNA were determined by RT-qPCR assay. Glucose and insulin levels were measured by ELISA assay. Luciferase reporter assay and western blot assay were applied to validate the target of miR-33a-5p.

Results

miR-33a-5p was upregulated in the blood samples from GDM, and was positively correlated with blood glucose (p < 0.0001). Overexpression or inhibition of miR-33a-5p significantly inhibited or promoted cell growth and insulin production of INS-1 cells (p < 0.01). Furthermore, ABCA1 is a direct target of miR-33a-5p, and lnc-DANCR functions as a sponge for miR-33a-5p to antagonize the function of miR-33a-5p in INS-1 cells.

Conclusion

Our study demonstrated that lnc-DANCR-miR-33a-5p-ABCA1 signaling cascade plays a crucial role in the regulation of the cellular function of INS-1 cells.
Literature
2.
go back to reference Spaight C, Gross J, Horsch A, Puder JJ. Gestational diabetes mellitus. Endocr Dev. 2016;31:163–78.PubMedCrossRef Spaight C, Gross J, Horsch A, Puder JJ. Gestational diabetes mellitus. Endocr Dev. 2016;31:163–78.PubMedCrossRef
3.
go back to reference Plows JF, Stanley JL, Baker PN, Reynolds CM, Vickers MH. The pathophysiology of gestational diabetes mellitus. Int J Mol Sci. 2018;19:3342.PubMedCentralCrossRef Plows JF, Stanley JL, Baker PN, Reynolds CM, Vickers MH. The pathophysiology of gestational diabetes mellitus. Int J Mol Sci. 2018;19:3342.PubMedCentralCrossRef
4.
go back to reference Damm P, Houshmand-Oeregaard A, Kelstrup L, Lauenborg J, Mathiesen ER, Clausen TD. Gestational diabetes mellitus and long-term consequences for mother and offspring: a view from Denmark. Diabetologia. 2016;59:1396–9.PubMedCrossRef Damm P, Houshmand-Oeregaard A, Kelstrup L, Lauenborg J, Mathiesen ER, Clausen TD. Gestational diabetes mellitus and long-term consequences for mother and offspring: a view from Denmark. Diabetologia. 2016;59:1396–9.PubMedCrossRef
5.
7.
go back to reference Trzybulska D, Vergadi E, Tsatsanis C. miRNA and other non-coding RNAs as promising diagnostic markers. EJIFCC. 2018;29:221–6.PubMedPubMedCentral Trzybulska D, Vergadi E, Tsatsanis C. miRNA and other non-coding RNAs as promising diagnostic markers. EJIFCC. 2018;29:221–6.PubMedPubMedCentral
8.
go back to reference Holley CL, Topkara VK. An introduction to small non-coding RNAs: miRNA and snoRNA. Cardiovasc Drugs Ther. 2011;25:151–9.PubMedCrossRef Holley CL, Topkara VK. An introduction to small non-coding RNAs: miRNA and snoRNA. Cardiovasc Drugs Ther. 2011;25:151–9.PubMedCrossRef
9.
go back to reference Ibarra A, Vega-Guedes B, Brito-Casillas Y, Wagner AM. Diabetes in pregnancy and MicroRNAs: promises and limitations in their clinical application. Noncoding RNA. 2018;4:32.PubMedCentral Ibarra A, Vega-Guedes B, Brito-Casillas Y, Wagner AM. Diabetes in pregnancy and MicroRNAs: promises and limitations in their clinical application. Noncoding RNA. 2018;4:32.PubMedCentral
10.
go back to reference Yoffe L, Polsky A, Gilam A, Raff C, Mecacci F, Ognibene A, Crispi F, Gratacos E, Kanety H, Mazaki-Tovi S, et al. Early diagnosis of gestational diabetes mellitus using circulating microRNAs. Eur J Endocrinol. 2019;181:565–77.PubMedCrossRef Yoffe L, Polsky A, Gilam A, Raff C, Mecacci F, Ognibene A, Crispi F, Gratacos E, Kanety H, Mazaki-Tovi S, et al. Early diagnosis of gestational diabetes mellitus using circulating microRNAs. Eur J Endocrinol. 2019;181:565–77.PubMedCrossRef
11.
go back to reference Plaisance V, Abderrahmani A, Perret-Menoud V, Jacquemin P, Lemaigre F, Regazzi R. MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells. J Biol Chem. 2006;281:26932–42.CrossRefPubMed Plaisance V, Abderrahmani A, Perret-Menoud V, Jacquemin P, Lemaigre F, Regazzi R. MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells. J Biol Chem. 2006;281:26932–42.CrossRefPubMed
12.
go back to reference Latreille M, Hausser J, Stutzer I, Zhang Q, Hastoy B, Gargani S, Kerr-Conte J, Pattou F, Zavolan M, Esguerra JL, et al. MicroRNA-7a regulates pancreatic beta cell function. J Clin Invest. 2014;124:2722–35.PubMedPubMedCentralCrossRef Latreille M, Hausser J, Stutzer I, Zhang Q, Hastoy B, Gargani S, Kerr-Conte J, Pattou F, Zavolan M, Esguerra JL, et al. MicroRNA-7a regulates pancreatic beta cell function. J Clin Invest. 2014;124:2722–35.PubMedPubMedCentralCrossRef
13.
14.
go back to reference Rayner KJ, Suarez Y, Davalos A, Parathath S, Fitzgerald ML, Tamehiro N, Fisher EA, Moore KJ, Fernandez-Hernando C. MiR-33 contributes to the regulation of cholesterol homeostasis. Science. 2010;328:1570–3.PubMedPubMedCentralCrossRef Rayner KJ, Suarez Y, Davalos A, Parathath S, Fitzgerald ML, Tamehiro N, Fisher EA, Moore KJ, Fernandez-Hernando C. MiR-33 contributes to the regulation of cholesterol homeostasis. Science. 2010;328:1570–3.PubMedPubMedCentralCrossRef
15.
go back to reference Najafi-Shoushtari SH, Kristo F, Li Y, Shioda T, Cohen DE, Gerszten RE, Naar AM. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science. 2010;328:1566–9.PubMedCrossRef Najafi-Shoushtari SH, Kristo F, Li Y, Shioda T, Cohen DE, Gerszten RE, Naar AM. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science. 2010;328:1566–9.PubMedCrossRef
16.
go back to reference Marquart TJ, Allen RM, Ory DS, Baldan A. miR-33 links SREBP-2 induction to repression of sterol transporters. Proc Natl Acad Sci U S A. 2010;107:12228–32.PubMedPubMedCentralCrossRef Marquart TJ, Allen RM, Ory DS, Baldan A. miR-33 links SREBP-2 induction to repression of sterol transporters. Proc Natl Acad Sci U S A. 2010;107:12228–32.PubMedPubMedCentralCrossRef
17.
go back to reference Wijesekara N, Zhang LH, Kang MH, Abraham T, Bhattacharjee A, Warnock GL, Verchere CB, Hayden MR. miR-33a modulates ABCA1 expression, cholesterol accumulation, and insulin secretion in pancreatic islets. Diabetes. 2012;61:653–8.PubMedPubMedCentralCrossRef Wijesekara N, Zhang LH, Kang MH, Abraham T, Bhattacharjee A, Warnock GL, Verchere CB, Hayden MR. miR-33a modulates ABCA1 expression, cholesterol accumulation, and insulin secretion in pancreatic islets. Diabetes. 2012;61:653–8.PubMedPubMedCentralCrossRef
18.
go back to reference Ren K, Jiang T, Zhou HF, Liang Y, Zhao GJ. Apigenin retards Atherogenesis by promoting ABCA1-mediated cholesterol efflux and suppressing inflammation. Cell Physiol Biochem. 2018;47:2170–84.PubMedCrossRef Ren K, Jiang T, Zhou HF, Liang Y, Zhao GJ. Apigenin retards Atherogenesis by promoting ABCA1-mediated cholesterol efflux and suppressing inflammation. Cell Physiol Biochem. 2018;47:2170–84.PubMedCrossRef
19.
go back to reference Vega-Badillo J, Gutierrez-Vidal R, Hernandez-Perez HA, Villamil-Ramirez H, Leon-Mimila P, Sanchez-Munoz F, Moran-Ramos S, Larrieta-Carrasco E, Fernandez-Silva I, Mendez-Sanchez N, et al. Hepatic miR-33a/miR-144 and their target gene ABCA1 are associated with steatohepatitis in morbidly obese subjects. Liver Int. 2016;36:1383–91.PubMedCrossRef Vega-Badillo J, Gutierrez-Vidal R, Hernandez-Perez HA, Villamil-Ramirez H, Leon-Mimila P, Sanchez-Munoz F, Moran-Ramos S, Larrieta-Carrasco E, Fernandez-Silva I, Mendez-Sanchez N, et al. Hepatic miR-33a/miR-144 and their target gene ABCA1 are associated with steatohepatitis in morbidly obese subjects. Liver Int. 2016;36:1383–91.PubMedCrossRef
20.
go back to reference Kim J, Yoon H, Horie T, Burchett JM, Restivo JL, Rotllan N, Ramirez CM, Verghese PB, Ihara M, Hoe HS, et al. microRNA-33 regulates ApoE Lipidation and amyloid-beta metabolism in the brain. J Neurosci. 2015;35:14717–26.PubMedPubMedCentralCrossRef Kim J, Yoon H, Horie T, Burchett JM, Restivo JL, Rotllan N, Ramirez CM, Verghese PB, Ihara M, Hoe HS, et al. microRNA-33 regulates ApoE Lipidation and amyloid-beta metabolism in the brain. J Neurosci. 2015;35:14717–26.PubMedPubMedCentralCrossRef
21.
go back to reference Davalos A, Goedeke L, Smibert P, Ramirez CM, Warrier NP, Andreo U, Cirera-Salinas D, Rayner K, Suresh U, Pastor-Pareja JC, et al. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc Natl Acad Sci U S A. 2011;108:9232–7.PubMedPubMedCentralCrossRef Davalos A, Goedeke L, Smibert P, Ramirez CM, Warrier NP, Andreo U, Cirera-Salinas D, Rayner K, Suresh U, Pastor-Pareja JC, et al. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc Natl Acad Sci U S A. 2011;108:9232–7.PubMedPubMedCentralCrossRef
22.
go back to reference Corona-Meraz FI, Vazquez-Del Mercado M, Ortega FJ, Ruiz-Quezada SL, Guzman-Ornelas MO, Navarro-Hernandez RE. Ageing influences the relationship of circulating miR-33a and miR- 33b levels with insulin resistance and adiposity. Diab Vasc Dis Res. 2019;16:244–53.PubMedCrossRef Corona-Meraz FI, Vazquez-Del Mercado M, Ortega FJ, Ruiz-Quezada SL, Guzman-Ornelas MO, Navarro-Hernandez RE. Ageing influences the relationship of circulating miR-33a and miR- 33b levels with insulin resistance and adiposity. Diab Vasc Dis Res. 2019;16:244–53.PubMedCrossRef
23.
go back to reference Cao K, Li J, Chen J, Qian L, Wang A, Chen X, Xiong W, Tang J, Tang S, Chen Y, et al. microRNA-33a-5p increases radiosensitivity by inhibiting glycolysis in melanoma. Oncotarget. 2017;8:83660–72.PubMedPubMedCentralCrossRef Cao K, Li J, Chen J, Qian L, Wang A, Chen X, Xiong W, Tang J, Tang S, Chen Y, et al. microRNA-33a-5p increases radiosensitivity by inhibiting glycolysis in melanoma. Oncotarget. 2017;8:83660–72.PubMedPubMedCentralCrossRef
24.
go back to reference Li J, Song L, Zhou L, Wu J, Sheng C, Chen H, Liu Y, Gao S, Huang W. A MicroRNA signature in gestational diabetes mellitus associated with risk of Macrosomia. Cell Physiol Biochem. 2015;37:243–52.PubMedCrossRef Li J, Song L, Zhou L, Wu J, Sheng C, Chen H, Liu Y, Gao S, Huang W. A MicroRNA signature in gestational diabetes mellitus associated with risk of Macrosomia. Cell Physiol Biochem. 2015;37:243–52.PubMedCrossRef
25.
go back to reference Pan J, Zhou C, Zhao X, He J, Tian H, Shen W, Han Y, Chen J, Fang S, Meng X, et al. A two-miRNA signature (miR-33a-5p and miR-128-3p) in whole blood as potential biomarker for early diagnosis of lung cancer. Sci Rep. 2018;8:16699.PubMedPubMedCentralCrossRef Pan J, Zhou C, Zhao X, He J, Tian H, Shen W, Han Y, Chen J, Fang S, Meng X, et al. A two-miRNA signature (miR-33a-5p and miR-128-3p) in whole blood as potential biomarker for early diagnosis of lung cancer. Sci Rep. 2018;8:16699.PubMedPubMedCentralCrossRef
26.
go back to reference Dai Y, Wu Z, Lang C, Zhang X, He S, Yang Q, Guo W, Lai Y, Du H, Peng X, Ren D. Copy number gain of ZEB1 mediates a double-negative feedback loop with miR-33a-5p that regulates EMT and bone metastasis of prostate cancer dependent on TGF-beta signaling. Theranostics. 2019;9:6063–79.PubMedPubMedCentralCrossRef Dai Y, Wu Z, Lang C, Zhang X, He S, Yang Q, Guo W, Lai Y, Du H, Peng X, Ren D. Copy number gain of ZEB1 mediates a double-negative feedback loop with miR-33a-5p that regulates EMT and bone metastasis of prostate cancer dependent on TGF-beta signaling. Theranostics. 2019;9:6063–79.PubMedPubMedCentralCrossRef
27.
go back to reference Yang JX, Sun Y, Gao L, Meng Q, Yang BY. Long non-coding RNA DANCR facilitates glioma malignancy by sponging miR-33a-5p. Neoplasma. 2018;65:790–8.PubMedCrossRef Yang JX, Sun Y, Gao L, Meng Q, Yang BY. Long non-coding RNA DANCR facilitates glioma malignancy by sponging miR-33a-5p. Neoplasma. 2018;65:790–8.PubMedCrossRef
28.
go back to reference Yan Y, Zhang D, Lei T, Zhao C, Han J, Cui J, Wang Y. MicroRNA-33a-5p suppresses colorectal cancer cell growth by inhibiting MTHFD2. Clin Exp Pharmacol Physiol. 2019;46:928–36.PubMedCrossRef Yan Y, Zhang D, Lei T, Zhao C, Han J, Cui J, Wang Y. MicroRNA-33a-5p suppresses colorectal cancer cell growth by inhibiting MTHFD2. Clin Exp Pharmacol Physiol. 2019;46:928–36.PubMedCrossRef
29.
go back to reference Meng W, Tai Y, Zhao H, Fu B, Zhang T, Liu W, Li H, Yang Y, Zhang Q, Feng Y, Chen G. Downregulation of miR-33a-5p in hepatocellular carcinoma: a possible mechanism for chemotherapy resistance. Med Sci Monit. 2017;23:1295–304.PubMedPubMedCentralCrossRef Meng W, Tai Y, Zhao H, Fu B, Zhang T, Liu W, Li H, Yang Y, Zhang Q, Feng Y, Chen G. Downregulation of miR-33a-5p in hepatocellular carcinoma: a possible mechanism for chemotherapy resistance. Med Sci Monit. 2017;23:1295–304.PubMedPubMedCentralCrossRef
30.
go back to reference Li YJ, Sun YX, Hao RM, Wu P, Zhang LJ, Ma X, Ma Y, Wang PY, Xie N, Xie SY, Chen W. miR-33a-5p enhances the sensitivity of lung adenocarcinoma cells to celastrol by regulating mTOR signaling. Int J Oncol. 2018;52:1328–38.PubMed Li YJ, Sun YX, Hao RM, Wu P, Zhang LJ, Ma X, Ma Y, Wang PY, Xie N, Xie SY, Chen W. miR-33a-5p enhances the sensitivity of lung adenocarcinoma cells to celastrol by regulating mTOR signaling. Int J Oncol. 2018;52:1328–38.PubMed
32.
go back to reference Mao M, Lei H, Liu Q, Chen Y, Zhao L, Li Q, Luo S, Zuo Z, He Q, Huang W, et al. Effects of miR-33a-5P on ABCA1/G1-mediated cholesterol efflux under inflammatory stress in THP-1 macrophages. PLoS One. 2014;9:e109722.PubMedPubMedCentralCrossRef Mao M, Lei H, Liu Q, Chen Y, Zhao L, Li Q, Luo S, Zuo Z, He Q, Huang W, et al. Effects of miR-33a-5P on ABCA1/G1-mediated cholesterol efflux under inflammatory stress in THP-1 macrophages. PLoS One. 2014;9:e109722.PubMedPubMedCentralCrossRef
33.
go back to reference Wang N, Silver DL, Thiele C, Tall AR. ATP-binding cassette transporter A1 (ABCA1) functions as a cholesterol efflux regulatory protein. J Biol Chem. 2001;276:23742–7.PubMedCrossRef Wang N, Silver DL, Thiele C, Tall AR. ATP-binding cassette transporter A1 (ABCA1) functions as a cholesterol efflux regulatory protein. J Biol Chem. 2001;276:23742–7.PubMedCrossRef
34.
go back to reference Farke C, Viturro E, Meyer HH, Albrecht C. Identification of the bovine cholesterol efflux regulatory protein ABCA1 and its expression in various tissues. J Anim Sci. 2006;84:2887–94.PubMedCrossRef Farke C, Viturro E, Meyer HH, Albrecht C. Identification of the bovine cholesterol efflux regulatory protein ABCA1 and its expression in various tissues. J Anim Sci. 2006;84:2887–94.PubMedCrossRef
35.
go back to reference Baumann M, Korner M, Huang X, Wenger F, Surbek D, Albrecht C. Placental ABCA1 and ABCG1 expression in gestational disease: pre-eclampsia affects ABCA1 levels in syncytiotrophoblasts. Placenta. 2013;34:1079–86.PubMedCrossRef Baumann M, Korner M, Huang X, Wenger F, Surbek D, Albrecht C. Placental ABCA1 and ABCG1 expression in gestational disease: pre-eclampsia affects ABCA1 levels in syncytiotrophoblasts. Placenta. 2013;34:1079–86.PubMedCrossRef
36.
go back to reference Houde AA, Guay SP, Desgagne V, Hivert MF, Baillargeon JP, St-Pierre J, Perron P, Gaudet D, Brisson D, Bouchard L. Adaptations of placental and cord blood ABCA1 DNA methylation profile to maternal metabolic status. Epigenetics. 2013;8:1289–302.PubMedPubMedCentralCrossRef Houde AA, Guay SP, Desgagne V, Hivert MF, Baillargeon JP, St-Pierre J, Perron P, Gaudet D, Brisson D, Bouchard L. Adaptations of placental and cord blood ABCA1 DNA methylation profile to maternal metabolic status. Epigenetics. 2013;8:1289–302.PubMedPubMedCentralCrossRef
37.
go back to reference Gimpfl M, Rozman J, Dahlhoff M, Kubeck R, Blutke A, Rathkolb B, Klingenspor M, Hrabe de Angelis M, Oner-Sieben S, Seibt A, et al. Modification of the fatty acid composition of an obesogenic diet improves the maternal and placental metabolic environment in obese pregnant mice. Biochim Biophys Acta Mol basis Dis. 1863;2017:1605–14. Gimpfl M, Rozman J, Dahlhoff M, Kubeck R, Blutke A, Rathkolb B, Klingenspor M, Hrabe de Angelis M, Oner-Sieben S, Seibt A, et al. Modification of the fatty acid composition of an obesogenic diet improves the maternal and placental metabolic environment in obese pregnant mice. Biochim Biophys Acta Mol basis Dis. 1863;2017:1605–14.
38.
go back to reference Dube E, Ethier-Chiasson M, Lafond J. Modulation of cholesterol transport by insulin-treated gestational diabetes mellitus in human full-term placenta. Biol Reprod. 2013;88:16.PubMedCrossRef Dube E, Ethier-Chiasson M, Lafond J. Modulation of cholesterol transport by insulin-treated gestational diabetes mellitus in human full-term placenta. Biol Reprod. 2013;88:16.PubMedCrossRef
39.
go back to reference Li Y, Chen G, Yan Y, Fan Q. CASC15 promotes epithelial to mesenchymal transition and facilitates malignancy of hepatocellular carcinoma cells by increasing TWIST1 gene expression via miR-33a-5p sponging. Eur J Pharmacol. 2019;860:172589.PubMedCrossRef Li Y, Chen G, Yan Y, Fan Q. CASC15 promotes epithelial to mesenchymal transition and facilitates malignancy of hepatocellular carcinoma cells by increasing TWIST1 gene expression via miR-33a-5p sponging. Eur J Pharmacol. 2019;860:172589.PubMedCrossRef
40.
go back to reference Jarroux J, Morillon A, Pinskaya M. History, discovery, and classification of lncRNAs. Adv Exp Med Biol. 2017;1008:1–46.PubMedCrossRef Jarroux J, Morillon A, Pinskaya M. History, discovery, and classification of lncRNAs. Adv Exp Med Biol. 2017;1008:1–46.PubMedCrossRef
41.
go back to reference Thin KZ, Liu X, Feng X, Raveendran S, Tu JC. LncRNA-DANCR: a valuable cancer related long non-coding RNA for human cancers. Pathol Res Pract. 2018;214:801–5.PubMedCrossRef Thin KZ, Liu X, Feng X, Raveendran S, Tu JC. LncRNA-DANCR: a valuable cancer related long non-coding RNA for human cancers. Pathol Res Pract. 2018;214:801–5.PubMedCrossRef
42.
go back to reference Jiang N, Wang X, Xie X, Liao Y, Liu N, Liu J, Miao N, Shen J, Peng T. lncRNA DANCR promotes tumor progression and cancer stemness features in osteosarcoma by upregulating AXL via miR-33a-5p inhibition. Cancer Lett. 2017;405:46–55.PubMedCrossRef Jiang N, Wang X, Xie X, Liao Y, Liu N, Liu J, Miao N, Shen J, Peng T. lncRNA DANCR promotes tumor progression and cancer stemness features in osteosarcoma by upregulating AXL via miR-33a-5p inhibition. Cancer Lett. 2017;405:46–55.PubMedCrossRef
Metadata
Title
MicroRNA-33a-5p sponges to inhibit pancreatic β-cell function in gestational diabetes mellitus LncRNA DANCR
Authors
Yan Feng
Xin Qu
Yu Chen
Qi Feng
Yinghong Zhang
Jianwei Hu
Xiaoyan Li
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Reproductive Biology and Endocrinology / Issue 1/2020
Electronic ISSN: 1477-7827
DOI
https://doi.org/10.1186/s12958-020-00618-8

Other articles of this Issue 1/2020

Reproductive Biology and Endocrinology 1/2020 Go to the issue