Skip to main content
Top
Published in: Reproductive Biology and Endocrinology 1/2020

01-12-2020 | Insulins | Research

Glucose, insulin, insulin receptor subunits α and β in normal and spontaneously diabetic and obese ob/ob and db/db infertile mouse testis and hypophysis

Authors: R.-Marc Pelletier, Hamed Layeghkhavidaki, María L. Vitale

Published in: Reproductive Biology and Endocrinology | Issue 1/2020

Login to get access

Abstract

Background

Type 2 diabetes touches young subjects of reproductive age in epidemic proportion. This study assesses glucose, total InsulinT, Insulin2 and insulin receptor subunits α and β in testis during mouse development then, in the spontaneously type 2 diabetes models associated with infertility db/db and ob/ob mice. IR-β and α were also assessed in spermatozoa (SPZ), anterior pituitary (AP) and serum.

Methods

Serum and tissue glucose were measured with enzymatic colorimetric assays and InsulinT and Insulin2 by ELISAs in serum, interstitial tissue- (ITf) and seminiferous tubule (STf) fractions in14- > 60-day-old normal and db/db, ob/ob and wild type (WT) mice. IR subunits were assessed by immunoblotting in tissues and by immunoprecipitation followed by immunoblotting in serum.

Results

Development: Glucose increased in serum, ITf and STf. InsulinT and Insulin2 dropped in serum; both were higher in STf than in ITf. In > 60-day-old mouse ITf, insulinT rose whereas Insulin2 decreased; InsulinT and Insulin2 rose concurrently in STf. Glucose and insulin were high in > 60-day-old ITf; in STf high insulin2 accompanied low glucose. One hundred ten kDa IR-β peaked in 28-day-old ITf and 14-day-old STf. One hundred thirty five kDa IR-α was high in ITf but decreased in STf.
Glucose escalated in db/db and ob/ob sera. Glucose doubled in ITf while being halved in STf in db/db mice. Glucose significantly dropped in db/db and ob/ob mice spermatozoa. InsulinT and Insulin2 rose significantly in the serum, ITf and STf in db/db and ob/ob mice. One hundred ten kDa IR-β and 135 kDa IR-α decreased in db/db and ob/ob ITf. Only 110 kDa IR-β dropped in db/db and ob/ob STf and AP. One hundred ten kDa IR-β fell in db/db and ob/ob SPZ. One hundred ten kDa sIR-α rose in the db/db and ob/ob mouse sera.

Conclusion

Insulin regulates glucose in tubules not in the interstitium. The mouse interstitium contains InsulinT and Insulin2 whereas tubules contain Insulin2. Decreased 110 kDa IR-β and 135 kDa IR-α in the db/db and ob/ob interstitial tissue suggest a loss of active receptor sites that could alter the testicular cell insulin binding and response to the hormone. Decreased IR-β levels were insufficient to stimulate downstream effectors in AP and tubules. IR-α shedding increased in db/db and ob/ob mice.
Literature
2.
go back to reference Pandey A, Chawla S, Guchhait P. Type-2 diabetes: current understanding and future perspectives. Intl Union Biochem Mol Biol. 2015;667:506–13.CrossRef Pandey A, Chawla S, Guchhait P. Type-2 diabetes: current understanding and future perspectives. Intl Union Biochem Mol Biol. 2015;667:506–13.CrossRef
4.
go back to reference Larson B, Sinha Y, Vanderlaan W. Serum growth hormone and prolactin during and after development of the obese-hyperglycemic syndrome in mice. Endocrinology. 1976;98:139–45.CrossRefPubMed Larson B, Sinha Y, Vanderlaan W. Serum growth hormone and prolactin during and after development of the obese-hyperglycemic syndrome in mice. Endocrinology. 1976;98:139–45.CrossRefPubMed
5.
go back to reference Werther GA, Hogg A, Oldfield BJ, McKinnley MJ, Figdor R, Allen AM, et al. Localization and characterization of insulin receptors in rat brain and pituitary gland using in vitro autoradiography and computarized densitometry. Endocrinology. 1987;121:1562–70.CrossRefPubMed Werther GA, Hogg A, Oldfield BJ, McKinnley MJ, Figdor R, Allen AM, et al. Localization and characterization of insulin receptors in rat brain and pituitary gland using in vitro autoradiography and computarized densitometry. Endocrinology. 1987;121:1562–70.CrossRefPubMed
6.
go back to reference Yu WH, Kimura M, Walczewska A, Karnth S, McCann SM. Role of leptin in hypothalamic-pituitary function. Proc Natl Acad Sci U S A. 1997;94(1023):1028. Yu WH, Kimura M, Walczewska A, Karnth S, McCann SM. Role of leptin in hypothalamic-pituitary function. Proc Natl Acad Sci U S A. 1997;94(1023):1028.
8.
go back to reference Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372:425–32.CrossRefPubMed Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372:425–32.CrossRefPubMed
9.
go back to reference Tartaglia LA, Dembski M, Weng X, Deng N, Culepper J, Devos R, et al. Identification and expression cloning of a leptin receptor, OB-R. Cell. 1995;83:1263–71.CrossRefPubMed Tartaglia LA, Dembski M, Weng X, Deng N, Culepper J, Devos R, et al. Identification and expression cloning of a leptin receptor, OB-R. Cell. 1995;83:1263–71.CrossRefPubMed
12.
go back to reference Caprio M, Fabbrini E, Ricci G, Basciani S, Gnessi L, Arizzi M, et al. Ontogenesis of leptin receptor in rat Leydig cells. Biol Reprod. 2003;68:1199–207.CrossRefPubMed Caprio M, Fabbrini E, Ricci G, Basciani S, Gnessi L, Arizzi M, et al. Ontogenesis of leptin receptor in rat Leydig cells. Biol Reprod. 2003;68:1199–207.CrossRefPubMed
13.
go back to reference Jope T, Lammert A, Kratzsch J, Paasch U, Glander HJ. Leptin and leptin receptor in human seminal plasma and in human spermatozoa. Int J Androl. 2003;26:335–41.CrossRefPubMed Jope T, Lammert A, Kratzsch J, Paasch U, Glander HJ. Leptin and leptin receptor in human seminal plasma and in human spermatozoa. Int J Androl. 2003;26:335–41.CrossRefPubMed
14.
go back to reference Isidiri AM, Caprio M, Strollo F, Moretti C, Frajese G, Isidori A, et al. Leptin and androgens in male obesity: evidence for leptin contribution to reduced androgen levels. J Clin Endocrinol Metab. 1999;84:3673–80. Isidiri AM, Caprio M, Strollo F, Moretti C, Frajese G, Isidori A, et al. Leptin and androgens in male obesity: evidence for leptin contribution to reduced androgen levels. J Clin Endocrinol Metab. 1999;84:3673–80.
15.
go back to reference Pelletier R-M, Akpovi CD, Chen L, Kumar NM, Vitale ML. Complementary regulation of Cx46 and Cx50 expression and phosphorylation in development and following gene deletion in mouse and in normal and orchitic mink testes. Am J Physiol Regul Integr Comp Physiol. 2015;309:R255–76.CrossRefPubMedPubMedCentral Pelletier R-M, Akpovi CD, Chen L, Kumar NM, Vitale ML. Complementary regulation of Cx46 and Cx50 expression and phosphorylation in development and following gene deletion in mouse and in normal and orchitic mink testes. Am J Physiol Regul Integr Comp Physiol. 2015;309:R255–76.CrossRefPubMedPubMedCentral
16.
go back to reference Adamson GD, Baker VL. Subfertility: causes, treatment and outcome. Best Pract Res Clin Obstet Gynaecol. 2003;17:169–85.CrossRefPubMed Adamson GD, Baker VL. Subfertility: causes, treatment and outcome. Best Pract Res Clin Obstet Gynaecol. 2003;17:169–85.CrossRefPubMed
17.
go back to reference Sallmén M, Sandler DP, Hoppin JA, Blair A, Baird DD. Reduced fertility among overweight and obese men. Epidemiology. 2006;17:520–3.CrossRefPubMed Sallmén M, Sandler DP, Hoppin JA, Blair A, Baird DD. Reduced fertility among overweight and obese men. Epidemiology. 2006;17:520–3.CrossRefPubMed
18.
go back to reference Tepperman J. Glucose utilization in vitro by normal adult, immature and cryptorchidic rat testis. Endocrinology. 1950;47:459–61.CrossRefPubMed Tepperman J. Glucose utilization in vitro by normal adult, immature and cryptorchidic rat testis. Endocrinology. 1950;47:459–61.CrossRefPubMed
19.
go back to reference Davis JR, Morris RM, Hollinger MA. Incorporation of L-lysine-U-14C into proteins of cryptorchid testis slices. Am J Physiol. 1964;207:50–4.CrossRefPubMed Davis JR, Morris RM, Hollinger MA. Incorporation of L-lysine-U-14C into proteins of cryptorchid testis slices. Am J Physiol. 1964;207:50–4.CrossRefPubMed
20.
go back to reference Means AR, Hall PF. Protein biosynthesis in the testis: I. comparison between stimulation by FSH and glucose. Endocrinology. 1968;82:597–602.CrossRefPubMed Means AR, Hall PF. Protein biosynthesis in the testis: I. comparison between stimulation by FSH and glucose. Endocrinology. 1968;82:597–602.CrossRefPubMed
21.
go back to reference Hollinger MA, Davis JR. Aerobic metabolism of uniformelly labelled (14C) glucose in tissue slices of rat testis. J Reprod Fertil. 1968;17:343–55.CrossRefPubMed Hollinger MA, Davis JR. Aerobic metabolism of uniformelly labelled (14C) glucose in tissue slices of rat testis. J Reprod Fertil. 1968;17:343–55.CrossRefPubMed
22.
go back to reference Free MJ, Massie ED, Vandemark NL. Glucose metabolism by the cryptorchidic rat testis. Biol Reprod. 1969;1:354–66.CrossRefPubMed Free MJ, Massie ED, Vandemark NL. Glucose metabolism by the cryptorchidic rat testis. Biol Reprod. 1969;1:354–66.CrossRefPubMed
23.
go back to reference Povoa H Jr, Silva ME, Aeiza A, Moraes MI, Rodrigues RB, Silva MS. Glucose in human semen. Biomed Biochim Acta. 1986;45:685–6.PubMed Povoa H Jr, Silva ME, Aeiza A, Moraes MI, Rodrigues RB, Silva MS. Glucose in human semen. Biomed Biochim Acta. 1986;45:685–6.PubMed
24.
go back to reference Fraser LR, Quinn PJ. A glycolytic product is obligatory for initiation of the sperm acrosome reaction and whiplash motility required for fertilizationin the mouse. J Reprod Fertil. 1981;61:25–35.CrossRefPubMed Fraser LR, Quinn PJ. A glycolytic product is obligatory for initiation of the sperm acrosome reaction and whiplash motility required for fertilizationin the mouse. J Reprod Fertil. 1981;61:25–35.CrossRefPubMed
25.
go back to reference Travis AJ, Tutuncu L, Jorgez CJ, Ord TS, Jones BH, Kopf GS, et al. Requirement for glucose beyond sperm capacitation during in vitro fertilization in the mouse. Biol Reprod. 2004;71:139–45.CrossRefPubMed Travis AJ, Tutuncu L, Jorgez CJ, Ord TS, Jones BH, Kopf GS, et al. Requirement for glucose beyond sperm capacitation during in vitro fertilization in the mouse. Biol Reprod. 2004;71:139–45.CrossRefPubMed
26.
go back to reference Urner F, Sakkas D. Glucose participates in sperm-oocyte fusion in the mouse. Biol Reprod. 1996;55:917–22.CrossRefPubMed Urner F, Sakkas D. Glucose participates in sperm-oocyte fusion in the mouse. Biol Reprod. 1996;55:917–22.CrossRefPubMed
27.
go back to reference Rogers BJ, Perreault SD. Importance of glycolysable substrates for in vitro capacitation of human spermatozoa. Biol Reprod. 1990;43(1064):1069. Rogers BJ, Perreault SD. Importance of glycolysable substrates for in vitro capacitation of human spermatozoa. Biol Reprod. 1990;43(1064):1069.
28.
go back to reference Mahadevan MM, Miller MM, Moutos DM. Absence of glucose decreases human fertilization and sperm movement characteristics in vitro. Hum Reprod. 1997;12:119–23.CrossRefPubMed Mahadevan MM, Miller MM, Moutos DM. Absence of glucose decreases human fertilization and sperm movement characteristics in vitro. Hum Reprod. 1997;12:119–23.CrossRefPubMed
29.
go back to reference Baccetti B, La Marca A, Piomboni P, Capitani S, Bruni E, Petragli F, et al. Insulin-dependent diabetes in men is associated with hypothalamo-pituitary derangement and with impairment in semen quality. Hum Reprod. 2002;17:2673–7.CrossRefPubMed Baccetti B, La Marca A, Piomboni P, Capitani S, Bruni E, Petragli F, et al. Insulin-dependent diabetes in men is associated with hypothalamo-pituitary derangement and with impairment in semen quality. Hum Reprod. 2002;17:2673–7.CrossRefPubMed
30.
go back to reference Silvestroni L, Modesti A, Sartori C. Insulin-sperm interaction: effects on plasma membrane and binding to acrosome. Arch Androl. 1992;28:201–11.CrossRefPubMed Silvestroni L, Modesti A, Sartori C. Insulin-sperm interaction: effects on plasma membrane and binding to acrosome. Arch Androl. 1992;28:201–11.CrossRefPubMed
31.
go back to reference Gómez O, Ballester B, Romero A, Amal E, Almansa I, Miranda M, et al. Expression and regulation of insulin and the glucose transporter GLUT8 in the testes of diabetic rats. Horm Metab Res. 2009;343:349. Gómez O, Ballester B, Romero A, Amal E, Almansa I, Miranda M, et al. Expression and regulation of insulin and the glucose transporter GLUT8 in the testes of diabetic rats. Horm Metab Res. 2009;343:349.
32.
go back to reference Aquila S, Gentile M, Middea E, Catalano S, Andò S. Autocrine regulation of insulin secretion in human ejaculated spermatozoa. Endocrinology. 2005;146:552–7.CrossRefPubMed Aquila S, Gentile M, Middea E, Catalano S, Andò S. Autocrine regulation of insulin secretion in human ejaculated spermatozoa. Endocrinology. 2005;146:552–7.CrossRefPubMed
33.
go back to reference Roessner C, Paasch U, Kratzsch J, Glander HJ, Grunewald S. Sperm apoptosis signalling in diabetic men. Reprod Biomed Online. 2012;25:292–9.CrossRefPubMed Roessner C, Paasch U, Kratzsch J, Glander HJ, Grunewald S. Sperm apoptosis signalling in diabetic men. Reprod Biomed Online. 2012;25:292–9.CrossRefPubMed
35.
go back to reference Chan SJ, Episkopou V, Zeitlin S, Karathanasis SK, Mackrell A, Steiner DF, et al. Guinea pig preproinsulin gene: an evolutionary compromise? Proc Natl Acad Sci U S A. 1984;81:5046–50.CrossRefPubMedPubMedCentral Chan SJ, Episkopou V, Zeitlin S, Karathanasis SK, Mackrell A, Steiner DF, et al. Guinea pig preproinsulin gene: an evolutionary compromise? Proc Natl Acad Sci U S A. 1984;81:5046–50.CrossRefPubMedPubMedCentral
36.
go back to reference Soares MB, Schon E, Karathanasis SK, Cate R, Zeitlin S, Chirgwin J, et al. RNA-mediated gene duplication: the rat preroinsulin I gene is a functional retroposon. Mol Cell Biol. 1985;5:2090–103.CrossRefPubMedPubMedCentral Soares MB, Schon E, Karathanasis SK, Cate R, Zeitlin S, Chirgwin J, et al. RNA-mediated gene duplication: the rat preroinsulin I gene is a functional retroposon. Mol Cell Biol. 1985;5:2090–103.CrossRefPubMedPubMedCentral
37.
go back to reference Wentworth BM, Schaefer IM, Villa-Komaroff L, Chirgwin JM. Characterization of the two nonallelic genes encoding mouse preproinsulin. J Mol Evol. 1986;23:305–12.CrossRefPubMed Wentworth BM, Schaefer IM, Villa-Komaroff L, Chirgwin JM. Characterization of the two nonallelic genes encoding mouse preproinsulin. J Mol Evol. 1986;23:305–12.CrossRefPubMed
39.
go back to reference Moriyama H, Abiru N, Paronen J, Sikora K, Liu E, Miao D, et al. Evidence for a primary islet autoantigen (preproinsulin 1) for insulitis and diabetes in the nonobese diabetic mouse. Proc Natl Acad Sci U S A. 2003;100:10376–81.CrossRefPubMedPubMedCentral Moriyama H, Abiru N, Paronen J, Sikora K, Liu E, Miao D, et al. Evidence for a primary islet autoantigen (preproinsulin 1) for insulitis and diabetes in the nonobese diabetic mouse. Proc Natl Acad Sci U S A. 2003;100:10376–81.CrossRefPubMedPubMedCentral
40.
go back to reference Babaya N, Nakayama M, Moriyama H, Gianini R, Still T, Miao D, et al. A new model of insulin-deficient diabetes: male NOD mice with a single copy of Ins1 and no Ins2. Diabetologia. 2006;49:1222–8.CrossRefPubMed Babaya N, Nakayama M, Moriyama H, Gianini R, Still T, Miao D, et al. A new model of insulin-deficient diabetes: male NOD mice with a single copy of Ins1 and no Ins2. Diabetologia. 2006;49:1222–8.CrossRefPubMed
41.
go back to reference Goldfine ID. The insulin receptor: molecular biology and transmembrane signaling. Endocr Rev. 1987;3:235–55.CrossRef Goldfine ID. The insulin receptor: molecular biology and transmembrane signaling. Endocr Rev. 1987;3:235–55.CrossRef
42.
go back to reference Patti ME, Kahn CR. The insulin receptor - a critical link in glucose homeostasis and insulin action. J Basic Clin Physiol Pharmacol. 1998;9:89–109.CrossRefPubMed Patti ME, Kahn CR. The insulin receptor - a critical link in glucose homeostasis and insulin action. J Basic Clin Physiol Pharmacol. 1998;9:89–109.CrossRefPubMed
44.
go back to reference Akpovi CD, Pelletier R-M. A revised and improved method for the isolation of seminiferous tubule-enriched fractions that preserves the phosphorylated and glycosylated forms of proteins. In: Lafond J, Vaillancourt C, editors. Human embryogenesis methods and protocols. Totowa: Humana Press Springer Protocols; 2009. p. 159–68.CrossRef Akpovi CD, Pelletier R-M. A revised and improved method for the isolation of seminiferous tubule-enriched fractions that preserves the phosphorylated and glycosylated forms of proteins. In: Lafond J, Vaillancourt C, editors. Human embryogenesis methods and protocols. Totowa: Humana Press Springer Protocols; 2009. p. 159–68.CrossRef
45.
go back to reference Pelletier R-M, Akpovi CD, Chen L, Vitale ML. Cholesterol metabolism and Cx43, Cx46, Cx50 expresssion in normal and spontaneously diabetic and obese Ob/Ob and db/db mouse testes. Am J Physiol Endocrinol Metab. 2018;314:E21–38.CrossRefPubMed Pelletier R-M, Akpovi CD, Chen L, Vitale ML. Cholesterol metabolism and Cx43, Cx46, Cx50 expresssion in normal and spontaneously diabetic and obese Ob/Ob and db/db mouse testes. Am J Physiol Endocrinol Metab. 2018;314:E21–38.CrossRefPubMed
46.
go back to reference Akpovi CD, Yoon SR, Vitale ML, Pelletier R-M. The predominance of one of the SRB-I isoforms is associated with increased esterified cholesterol levels not apoptosis in mink testis. J Lipid Res. 2006;47:2233–47.CrossRefPubMed Akpovi CD, Yoon SR, Vitale ML, Pelletier R-M. The predominance of one of the SRB-I isoforms is associated with increased esterified cholesterol levels not apoptosis in mink testis. J Lipid Res. 2006;47:2233–47.CrossRefPubMed
47.
go back to reference Herrada G, Wolgemuth DJ. The mouse transcription factor Stat4 is expressed in haploid male germ cells and is present in the perinuclear theca of spermatozoa. J Cell Sci. 1997;110:1543–53.PubMed Herrada G, Wolgemuth DJ. The mouse transcription factor Stat4 is expressed in haploid male germ cells and is present in the perinuclear theca of spermatozoa. J Cell Sci. 1997;110:1543–53.PubMed
48.
go back to reference Vitale ML, Akpovi CD, Pelletier R-M. Cortactin/tyrosine-phosphorylated cortactin interactions with F-actin and connexin 43 in mouse seminiferous tubules. Microsc Res Tech. 2009;72:856–67.CrossRefPubMed Vitale ML, Akpovi CD, Pelletier R-M. Cortactin/tyrosine-phosphorylated cortactin interactions with F-actin and connexin 43 in mouse seminiferous tubules. Microsc Res Tech. 2009;72:856–67.CrossRefPubMed
49.
go back to reference Moraes G, Choudhuri JV, Neto CS. Metabolic effects of exercise in the golden fish Salminus maxillosus “dourado” (Valenciennes 1849). Braz J Biol. 2001;64:655–60.CrossRef Moraes G, Choudhuri JV, Neto CS. Metabolic effects of exercise in the golden fish Salminus maxillosus “dourado” (Valenciennes 1849). Braz J Biol. 2001;64:655–60.CrossRef
50.
go back to reference Koya V, Lu S, Sun Y-P, Purich DL, Atkinson MA, Li S-W, et al. Reversal of streptozotocin-induced diabetes in mice by cellular transduction with recombinant pancreatic transcription factor pancreatic duodenal homeobox-1: a novel protein transduction domain-based therapy. Diabetes. 2008;57:757–69.CrossRefPubMed Koya V, Lu S, Sun Y-P, Purich DL, Atkinson MA, Li S-W, et al. Reversal of streptozotocin-induced diabetes in mice by cellular transduction with recombinant pancreatic transcription factor pancreatic duodenal homeobox-1: a novel protein transduction domain-based therapy. Diabetes. 2008;57:757–69.CrossRefPubMed
51.
go back to reference Schoeller EL, Albanna G, Frolova AI, Moley KH. Insulin rescues impaired spermatogenesis via the hypothalamic-pituitary-gonadal axis in Akita diabetic mice and restores male fertility. Diabetes. 2012;61:1869–78.CrossRefPubMedPubMedCentral Schoeller EL, Albanna G, Frolova AI, Moley KH. Insulin rescues impaired spermatogenesis via the hypothalamic-pituitary-gonadal axis in Akita diabetic mice and restores male fertility. Diabetes. 2012;61:1869–78.CrossRefPubMedPubMedCentral
52.
go back to reference Shirneshan K, Binder S, Böhm D, Wolf S, Sancken U, Meinhardt A, et al. Directed overexpression of insulin in Leydig cells causes a progresive loss of germ cells. Mol Cell Endocrinol. 2008;295:79–86.CrossRefPubMed Shirneshan K, Binder S, Böhm D, Wolf S, Sancken U, Meinhardt A, et al. Directed overexpression of insulin in Leydig cells causes a progresive loss of germ cells. Mol Cell Endocrinol. 2008;295:79–86.CrossRefPubMed
53.
go back to reference Grizard G, Fournet M, Rigaudière N, Lombard-Vigno N, Grizard J. Insulin binding to Leydig cells and insulin levels in testicular interstitial fluid at different stages of development in the rat. J Endocrinol. 1991;128:375–81.CrossRefPubMed Grizard G, Fournet M, Rigaudière N, Lombard-Vigno N, Grizard J. Insulin binding to Leydig cells and insulin levels in testicular interstitial fluid at different stages of development in the rat. J Endocrinol. 1991;128:375–81.CrossRefPubMed
54.
go back to reference Nakayama Y, Yamamoto T, Abé S-I. IGF-I, IGFF-II and insulin promote differentiation of spermatogonia to primary spermatocytes in organ culture of newt testes. Int J Dev Biol. 1999;43:343–7.PubMed Nakayama Y, Yamamoto T, Abé S-I. IGF-I, IGFF-II and insulin promote differentiation of spermatogonia to primary spermatocytes in organ culture of newt testes. Int J Dev Biol. 1999;43:343–7.PubMed
55.
go back to reference Garcia-Diez LC, Corrales Hernández JJ, Hernández-Diaz J, Pedraz MJ, Miralles JM. Semen characteristics and diabetes mellitus: significance of insulin in male infertility. Arch Androl. 1991;26:119–27.CrossRefPubMed Garcia-Diez LC, Corrales Hernández JJ, Hernández-Diaz J, Pedraz MJ, Miralles JM. Semen characteristics and diabetes mellitus: significance of insulin in male infertility. Arch Androl. 1991;26:119–27.CrossRefPubMed
56.
go back to reference Paz G, Homonnai ZT, Ayalon A, Cordova T, Kaicer PF. Immunoreactive insulin in serum and seminal plasma of diabetic and non-diabetic men and its role in regulation of spermatozoa activity. Fertil Steril. 1977;28:836–40.CrossRefPubMed Paz G, Homonnai ZT, Ayalon A, Cordova T, Kaicer PF. Immunoreactive insulin in serum and seminal plasma of diabetic and non-diabetic men and its role in regulation of spermatozoa activity. Fertil Steril. 1977;28:836–40.CrossRefPubMed
57.
go back to reference Pelletier R-M, Friend DS. Sertoli cell junctional complexes in gossypol treated neonatal and adult Guinea pigs. J Androl. 1986;7:127–39.CrossRefPubMed Pelletier R-M, Friend DS. Sertoli cell junctional complexes in gossypol treated neonatal and adult Guinea pigs. J Androl. 1986;7:127–39.CrossRefPubMed
58.
go back to reference Brüning JC, Gautman D, Burks DJ, Gillette J, Schubert M, Orban PC, et al. Role of brain insulin receptor in control of body weight and reproduction. Science. 2000;289:2122–5.CrossRefPubMed Brüning JC, Gautman D, Burks DJ, Gillette J, Schubert M, Orban PC, et al. Role of brain insulin receptor in control of body weight and reproduction. Science. 2000;289:2122–5.CrossRefPubMed
59.
go back to reference Lin T, Haskell J, Vinson N, Terracio L. Characterization of insulin and insulin-like growth factor I receptors of purified Leydig cells and their role in steroidogenesis in primary culture: a comparative study. Endocrinology. 1986;119:1641–67.CrossRefPubMed Lin T, Haskell J, Vinson N, Terracio L. Characterization of insulin and insulin-like growth factor I receptors of purified Leydig cells and their role in steroidogenesis in primary culture: a comparative study. Endocrinology. 1986;119:1641–67.CrossRefPubMed
60.
go back to reference Oonk RB, Grootegoed JA. Identification of insulin receptors on rat Sertoli cells. Mol Cell Endocrinol. 1987;49:51–62.CrossRefPubMed Oonk RB, Grootegoed JA. Identification of insulin receptors on rat Sertoli cells. Mol Cell Endocrinol. 1987;49:51–62.CrossRefPubMed
61.
go back to reference Carpino A, Rago V, Guido C, Casaburi I, Aquila S. Insulin and IR-b in pig spermatozoa: a role of the hormone in the acquisition of fertilizing ability. Int J Androl. 2010;33:554–62.CrossRefPubMed Carpino A, Rago V, Guido C, Casaburi I, Aquila S. Insulin and IR-b in pig spermatozoa: a role of the hormone in the acquisition of fertilizing ability. Int J Androl. 2010;33:554–62.CrossRefPubMed
62.
go back to reference Ahn SW, Gang G-T, Kim YD, Ahn R-N, Harris RA, Lee C-H, et al. Insulin directly regulates steroidogenesis via induction of the orphan nuclear receptor DAX-1 in testicular Leydig cells. J Biol Chem. 2013;288:15937–46.CrossRefPubMedPubMedCentral Ahn SW, Gang G-T, Kim YD, Ahn R-N, Harris RA, Lee C-H, et al. Insulin directly regulates steroidogenesis via induction of the orphan nuclear receptor DAX-1 in testicular Leydig cells. J Biol Chem. 2013;288:15937–46.CrossRefPubMedPubMedCentral
63.
go back to reference Haeusler RA, McGraw TE, Accili D. Biochemical and cellular properties of insulin receptor signalling. Nat Rev Mol Cell Biol. 2018;19:31–44.CrossRefPubMed Haeusler RA, McGraw TE, Accili D. Biochemical and cellular properties of insulin receptor signalling. Nat Rev Mol Cell Biol. 2018;19:31–44.CrossRefPubMed
64.
go back to reference Gorden P, Arakaki R, Collier E, Carpentier J-L. Biosynthesis and regulation of the insulin receptor. Yale J Biol Med. 1989;62:521–31.PubMedPubMedCentral Gorden P, Arakaki R, Collier E, Carpentier J-L. Biosynthesis and regulation of the insulin receptor. Yale J Biol Med. 1989;62:521–31.PubMedPubMedCentral
65.
go back to reference Authier F, Desbuquois B. Assessment of insulin proteolysis in rat liver endosomes: its relationship to intracellular insulin signaling. Methods Enzymol. 2014;535:3–23.CrossRefPubMed Authier F, Desbuquois B. Assessment of insulin proteolysis in rat liver endosomes: its relationship to intracellular insulin signaling. Methods Enzymol. 2014;535:3–23.CrossRefPubMed
66.
go back to reference Knutson VP. Proteolytic processing of the insulin receptor ß subunit is associated with insulin-induced receptor down-regulation. J Biol Chem. 1991;268:15656–62. Knutson VP. Proteolytic processing of the insulin receptor ß subunit is associated with insulin-induced receptor down-regulation. J Biol Chem. 1991;268:15656–62.
67.
go back to reference Amessou M, Tahiri K, Chauvet G, Desbuquois B. Age-related changes in insulin receptor mRNA and protein expression in genetically obese Zucker rats. Diabetes Metab. 2010;36:120–8.CrossRefPubMed Amessou M, Tahiri K, Chauvet G, Desbuquois B. Age-related changes in insulin receptor mRNA and protein expression in genetically obese Zucker rats. Diabetes Metab. 2010;36:120–8.CrossRefPubMed
68.
go back to reference The Soluble Insulin Receptor Study Group. Soluble insulin receptor ectodomain is elevated in the plasma of patients with diabetes. Diabetes. 2007;56:2028–35.CrossRef The Soluble Insulin Receptor Study Group. Soluble insulin receptor ectodomain is elevated in the plasma of patients with diabetes. Diabetes. 2007;56:2028–35.CrossRef
69.
go back to reference Hiriart M, Sánchez-Soto C, Díaz-García CM, Castanares DT, Avitia M, Velasco M, et al. Hyperinsulenemia is associated with increased soluble insulin receptors release from hepatocytes. Front Endocrinol. 2014;5(article 95):1–11. Hiriart M, Sánchez-Soto C, Díaz-García CM, Castanares DT, Avitia M, Velasco M, et al. Hyperinsulenemia is associated with increased soluble insulin receptors release from hepatocytes. Front Endocrinol. 2014;5(article 95):1–11.
70.
go back to reference Kahn CR, Neville DM Jr, Roth J. Insulin-receptor interaction in the obese-hyperglycemic mouse. A model of insulin resistance. J Biol Chem. 1973;248:244–50.PubMed Kahn CR, Neville DM Jr, Roth J. Insulin-receptor interaction in the obese-hyperglycemic mouse. A model of insulin resistance. J Biol Chem. 1973;248:244–50.PubMed
71.
go back to reference Gavin JB, Roth J, Neville DM Jr, de Meytis P, Buell DN. Insulin-dependent regulation of insulin receptor concentrations: a direct demonstration in cell culture. Proc Natl Acad Sci U S A. 1974;71:84–9.CrossRefPubMedPubMedCentral Gavin JB, Roth J, Neville DM Jr, de Meytis P, Buell DN. Insulin-dependent regulation of insulin receptor concentrations: a direct demonstration in cell culture. Proc Natl Acad Sci U S A. 1974;71:84–9.CrossRefPubMedPubMedCentral
72.
go back to reference Knutson VP, Donnelly PV, López-Reyes M. Insulin resistance is mediated by a proteolytic fragment of the insulin receptor. J Biol Chem. 1995;270:24972–81.CrossRefPubMed Knutson VP, Donnelly PV, López-Reyes M. Insulin resistance is mediated by a proteolytic fragment of the insulin receptor. J Biol Chem. 1995;270:24972–81.CrossRefPubMed
73.
go back to reference Kasuga K, Kaneko H, Nishizawa M, Onodera O, Ikeuchi T. Generation of intracellular domain of insulin receptor tyrosine kinase by γ-secretase. Biochem Biophys Res Commun. 2007;360:90–6.CrossRefPubMed Kasuga K, Kaneko H, Nishizawa M, Onodera O, Ikeuchi T. Generation of intracellular domain of insulin receptor tyrosine kinase by γ-secretase. Biochem Biophys Res Commun. 2007;360:90–6.CrossRefPubMed
74.
go back to reference DeLano FA, Schmid-Schönbein GW. Proteinase activity and receptor cleavage: mechanism for insulin resistance in spontaneously hypertensive rat. Hypertension. 2008;52:415–23.CrossRefPubMed DeLano FA, Schmid-Schönbein GW. Proteinase activity and receptor cleavage: mechanism for insulin resistance in spontaneously hypertensive rat. Hypertension. 2008;52:415–23.CrossRefPubMed
75.
go back to reference Yuasa T, Amo-Shiinoki K, Ishikura S, Takahara M, Matsuoka T, Kaneto H, et al. Sequential cleavage of insulin receptor by calpain 2 and γ-secretase impairs insulin signalling. Diabetologia. 2016;59:2711–21.CrossRefPubMed Yuasa T, Amo-Shiinoki K, Ishikura S, Takahara M, Matsuoka T, Kaneto H, et al. Sequential cleavage of insulin receptor by calpain 2 and γ-secretase impairs insulin signalling. Diabetologia. 2016;59:2711–21.CrossRefPubMed
76.
go back to reference Accorsi PA, Munno A, Gamberoni M, Viaggiani R, De Ambrogi A, Tamanini C, et al. Role of leptin on growth hormone and prolactin secretion by bovine pituitary explants. J Dary Sci. 2007;93:1685–91. Accorsi PA, Munno A, Gamberoni M, Viaggiani R, De Ambrogi A, Tamanini C, et al. Role of leptin on growth hormone and prolactin secretion by bovine pituitary explants. J Dary Sci. 2007;93:1685–91.
77.
go back to reference Tipsmark CK, Strom CN, Bailey ST, Borski RJ. Leptin stimulates pituitary prolactin release through an extracellular-regulated kinase-dependent pathway. J Endocrinol. 2008;196:275–81.CrossRefPubMed Tipsmark CK, Strom CN, Bailey ST, Borski RJ. Leptin stimulates pituitary prolactin release through an extracellular-regulated kinase-dependent pathway. J Endocrinol. 2008;196:275–81.CrossRefPubMed
Metadata
Title
Glucose, insulin, insulin receptor subunits α and β in normal and spontaneously diabetic and obese ob/ob and db/db infertile mouse testis and hypophysis
Authors
R.-Marc Pelletier
Hamed Layeghkhavidaki
María L. Vitale
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Reproductive Biology and Endocrinology / Issue 1/2020
Electronic ISSN: 1477-7827
DOI
https://doi.org/10.1186/s12958-020-00583-2

Other articles of this Issue 1/2020

Reproductive Biology and Endocrinology 1/2020 Go to the issue