Skip to main content
Top
Published in: Reproductive Biology and Endocrinology 1/2019

Open Access 01-12-2019 | Research

Segmental aneuploidy in human blastocysts: a qualitative and quantitative overview

Authors: María-José Escribà, Xavier Vendrell, Vanessa Peinado

Published in: Reproductive Biology and Endocrinology | Issue 1/2019

Login to get access

Abstract

Background

Microarray-based and next generation sequencing (NGS) technologies have revealed that segmental aneuploidy is frequently present in human oocytes, cleavage-stage embryos and blastocysts. However, very little research has analyzed the type, size, chromosomal distribution and topography of the chromosomal segments at the different stages of development.

Methods

This is a retrospective study of 822 PGT-A (preimplantation genetic test for aneuploidies) performed on trophectoderm samples from 3565 blastocysts biopsied between January 2016 and April 2017. The cycles in question had been initiated for varying clinical indications. Samples were analyzed by next generation sequencing-based technology. Segmental aneuploidies were evaluated when fragment size was > 5 Mb. Blastocysts presenting a single segmental aneuploidy (SSA), without any additional whole-chromosome gain/loss, were statistically analyzed for incidence, type, size and chromosomal emplacement. Segment sizes relative to the whole chromosome or arm (chromosome- and arm-ratios) were also studied.

Results

8.4% (299/3565) of blastocysts exhibited segmental aneuploidy for one or more chromosomes, some of which were associated with whole-chromosome aneuploidy while others were not. Nearly half of them (4.5%: 159/3565 of blastocysts) exhibited pure-SSA, meaning that a single chromosome was affected by a SSA. Segments were more frequent in medium-sized metacentric or submetacentric chromosomes and particularly in q-chrmosome arms, variables that were related to trophectoderm quality. SSA size was related to a greater extent to chromosome number and the arm affected than it was to SSA type. In absolute values (Mb), SSA size was larger in large chromosomes. However, the SSA:chromosome ratio was constant across all chromosomes and never exceeded 50% of the chromosome.

Conclusions

SSA frequency is chromosome- and topographically dependent, and its incidence is not related to clinical or embryological factors, but rather to trophectoderm quality. SSA might be originated by chromosome instability in response to chromothripsis, bias introduced by the biopsy and/or iatrogenic effects.

Trial registration

Retrospectively registered.
Appendix
Available only for authorised users
Literature
1.
go back to reference Munné S, Blazek J, Large M, Martinez-Ortiz PA, Nisson H, Liu E, Tarozzi N, Borini A, Becker A, Zhang J, et al. Detailed investigation into the cytogenetic constitutdeion and pregnancy outcome of replacing mosaic blastocysts detected with the use of high-resolution next-generation sequencing. Fertil Steril. 2017;108:62–71.CrossRef Munné S, Blazek J, Large M, Martinez-Ortiz PA, Nisson H, Liu E, Tarozzi N, Borini A, Becker A, Zhang J, et al. Detailed investigation into the cytogenetic constitutdeion and pregnancy outcome of replacing mosaic blastocysts detected with the use of high-resolution next-generation sequencing. Fertil Steril. 2017;108:62–71.CrossRef
2.
go back to reference Munné S, Wells D. Detection of mosaicism at blastocyst stage with the use of high-resolution next-generation sequencing. Fertil Steril. 2017;107:1085–91.CrossRef Munné S, Wells D. Detection of mosaicism at blastocyst stage with the use of high-resolution next-generation sequencing. Fertil Steril. 2017;107:1085–91.CrossRef
3.
go back to reference Treff N, Franasiak J. Detection of segmental aneuploidy and mosaicism in the human preimplantation embryo: technical considerations and limitations. Fertil Steril. 2017;107:27–31.CrossRef Treff N, Franasiak J. Detection of segmental aneuploidy and mosaicism in the human preimplantation embryo: technical considerations and limitations. Fertil Steril. 2017;107:27–31.CrossRef
4.
go back to reference Brezina P, Anchan R, Kearns W. Preimplantation genetic testing for aneuploidy: what technology should you use and what are the differences? J Assist Reprod Genet. 2016;33:823–32.CrossRef Brezina P, Anchan R, Kearns W. Preimplantation genetic testing for aneuploidy: what technology should you use and what are the differences? J Assist Reprod Genet. 2016;33:823–32.CrossRef
5.
go back to reference Vanneste E, Bittman L, Van der Aa N, Voet T, Vermeesch JR. New array approaches to explore single cells genomes. Front Genet. 2012;3:44.CrossRef Vanneste E, Bittman L, Van der Aa N, Voet T, Vermeesch JR. New array approaches to explore single cells genomes. Front Genet. 2012;3:44.CrossRef
6.
go back to reference Treff N, Northrop L, Kasabwala K, Su J, Levy B, Scott RT Jr. Single nucleotide polymorphism microarray-based concurrent screening of 24-chromosome aneuploidy and unbalanced translocations in preimplantation human embryos. Fertil Steril. 2011;95:1606–12.CrossRef Treff N, Northrop L, Kasabwala K, Su J, Levy B, Scott RT Jr. Single nucleotide polymorphism microarray-based concurrent screening of 24-chromosome aneuploidy and unbalanced translocations in preimplantation human embryos. Fertil Steril. 2011;95:1606–12.CrossRef
7.
go back to reference Colls P, Escudero T, Fischer J, Cekleniak N, Ben-Ozer S, Meyer B, Damien M, Grifo J, Hershlag A, Munné S. Validation of array comparative genome hybridization for diagnosis of translocations in preimplantation human embryos. Reprod BioMed Online. 2012;24:621–9.CrossRef Colls P, Escudero T, Fischer J, Cekleniak N, Ben-Ozer S, Meyer B, Damien M, Grifo J, Hershlag A, Munné S. Validation of array comparative genome hybridization for diagnosis of translocations in preimplantation human embryos. Reprod BioMed Online. 2012;24:621–9.CrossRef
8.
go back to reference Bono A, Biricik L. Spizzichino1 A, Nuccitelli MG, Minasi E, Greco F, Spinella F. Fiorentino F Validation of a semiconductor next-generation sequencing-based protocol for preimplantation genetic diagnosis of reciprocal translocations Prenatal Diagnosis. 2015;35:938–44.PubMed Bono A, Biricik L. Spizzichino1 A, Nuccitelli MG, Minasi E, Greco F, Spinella F. Fiorentino F Validation of a semiconductor next-generation sequencing-based protocol for preimplantation genetic diagnosis of reciprocal translocations Prenatal Diagnosis. 2015;35:938–44.PubMed
9.
go back to reference Fiorentino F, Biricik A, Bono S, Spizzichino L, Cotroneo E, Cottone G, Kokocinski F, Michel CE. Development and validation of a next-generation sequencing-based protocol for 24-chromosome aneuploidy screening of embryos. Fertil Steril. 2014;101:1375–82.CrossRef Fiorentino F, Biricik A, Bono S, Spizzichino L, Cotroneo E, Cottone G, Kokocinski F, Michel CE. Development and validation of a next-generation sequencing-based protocol for 24-chromosome aneuploidy screening of embryos. Fertil Steril. 2014;101:1375–82.CrossRef
10.
go back to reference Wells D, Kaur K, Grifo J, Glassner M, Taylor JC, Fragouli E, Munne S. Clinical utilisation of a rapid low-pass whole genome sequencing technique for the diagnosis of aneuploidy in human embryos prior to implantation. J Med Genet. 2014;51:553–62.CrossRef Wells D, Kaur K, Grifo J, Glassner M, Taylor JC, Fragouli E, Munne S. Clinical utilisation of a rapid low-pass whole genome sequencing technique for the diagnosis of aneuploidy in human embryos prior to implantation. J Med Genet. 2014;51:553–62.CrossRef
11.
go back to reference Fan J, Wang L, Wang H, Ma M, Wang S, Liu Z, Xu G, Zhang J, Cram DS, Yao Y. The clinical utility of next-generation sequencing for identifying chromosome disease syndromes in human embryos. Reprod BioMed Online. 2015;31:62–70.CrossRef Fan J, Wang L, Wang H, Ma M, Wang S, Liu Z, Xu G, Zhang J, Cram DS, Yao Y. The clinical utility of next-generation sequencing for identifying chromosome disease syndromes in human embryos. Reprod BioMed Online. 2015;31:62–70.CrossRef
12.
go back to reference Kung A, Munné S, Bankowski B, Coates A, Wells D. Validation of next-generation sequencing for comprehensive chromosome screening of embryos. Reprod BioMed Online. 2015;31:760–9.CrossRef Kung A, Munné S, Bankowski B, Coates A, Wells D. Validation of next-generation sequencing for comprehensive chromosome screening of embryos. Reprod BioMed Online. 2015;31:760–9.CrossRef
13.
go back to reference Huang J, Yan L, Lu S, Zhao N, Xie XS, Qiao J. Validation of a next-generation sequencing-based protocol for 24-chromosome aneuploidy screening of blastocysts. Fertil Steril. 2016;105:1532–6.CrossRef Huang J, Yan L, Lu S, Zhao N, Xie XS, Qiao J. Validation of a next-generation sequencing-based protocol for 24-chromosome aneuploidy screening of blastocysts. Fertil Steril. 2016;105:1532–6.CrossRef
14.
go back to reference Zheng H, Jin H, Liu L, Liu J, Wang W. Application of next-generation sequencing for 24-chromosome aneuploidy screening of human preimplantation embryos. Mol Cytogenet. 2015;8:38.CrossRef Zheng H, Jin H, Liu L, Liu J, Wang W. Application of next-generation sequencing for 24-chromosome aneuploidy screening of human preimplantation embryos. Mol Cytogenet. 2015;8:38.CrossRef
15.
go back to reference Vendrell X, Fernández-Pedrosa V, Triviño JC, Bautista-Llácer R, Collado C, Rodríguez O, García-Mengual E, Ferrer E, Calatayud C, Ruiz-Jorro M. New protocoll based on massive parallel sequencing for aneuploidy screening of preimplantation human embryos. Syst Biol Reprod Med. 2017;63:162–78.CrossRef Vendrell X, Fernández-Pedrosa V, Triviño JC, Bautista-Llácer R, Collado C, Rodríguez O, García-Mengual E, Ferrer E, Calatayud C, Ruiz-Jorro M. New protocoll based on massive parallel sequencing for aneuploidy screening of preimplantation human embryos. Syst Biol Reprod Med. 2017;63:162–78.CrossRef
16.
go back to reference Yin X, Tan K, Vajta G, Jiang H, Tan Y, Zhang C, Chen F, Chen S, Zhang C, Pan X, et al. Massively parallel sequencing for chromosomal abnormality testing in trophectoderm cells of human blastocysts. Biol Reprod. 2013;88:69.CrossRef Yin X, Tan K, Vajta G, Jiang H, Tan Y, Zhang C, Chen F, Chen S, Zhang C, Pan X, et al. Massively parallel sequencing for chromosomal abnormality testing in trophectoderm cells of human blastocysts. Biol Reprod. 2013;88:69.CrossRef
17.
go back to reference Fiorentino F, Bono S, Biricik A, Nuccitelli A, Cotroneo E, Cottone G, Kokocinski F, Michel CE, Minasi MG, Greco E. Application of next-generation sequencing technology for comprehensive aneuploidy screening of blastocysts in clinical preimplantation genetic screening cycles. Hum Reprod. 2014;29:2802–13.CrossRef Fiorentino F, Bono S, Biricik A, Nuccitelli A, Cotroneo E, Cottone G, Kokocinski F, Michel CE, Minasi MG, Greco E. Application of next-generation sequencing technology for comprehensive aneuploidy screening of blastocysts in clinical preimplantation genetic screening cycles. Hum Reprod. 2014;29:2802–13.CrossRef
18.
go back to reference Vera-Rodríguez M, Michel CE, Mercader A, Bladon AJ, Rodrigo L, Kokocinski F, Mateu E, Al-Asmar N, Blesa D, Simón C, Rubio C. Distribution patterns of segmental aneuploidies in human blastocysts identified by next-generation sequencing. Fertil Steril. 2016;105:1047–55.CrossRef Vera-Rodríguez M, Michel CE, Mercader A, Bladon AJ, Rodrigo L, Kokocinski F, Mateu E, Al-Asmar N, Blesa D, Simón C, Rubio C. Distribution patterns of segmental aneuploidies in human blastocysts identified by next-generation sequencing. Fertil Steril. 2016;105:1047–55.CrossRef
19.
go back to reference Sabina J, Leamon J. Whole Genome Amplification: Causes and Considerations Methods. Mol Biol. 2015;1347:15–41. Sabina J, Leamon J. Whole Genome Amplification: Causes and Considerations Methods. Mol Biol. 2015;1347:15–41.
20.
go back to reference Van der Aa N, Cheng J, Mateiu L, Zamani Esteki M, Kumar P, Dimitriadou E, Vanneste E, Moreau Y, Vermeesch JR, Voet T. Genome-wide copy number profiling of single cells in S-phase reveals DNA-replication domains. Nucleic Acids Res. 2013;41:e66.CrossRef Van der Aa N, Cheng J, Mateiu L, Zamani Esteki M, Kumar P, Dimitriadou E, Vanneste E, Moreau Y, Vermeesch JR, Voet T. Genome-wide copy number profiling of single cells in S-phase reveals DNA-replication domains. Nucleic Acids Res. 2013;41:e66.CrossRef
21.
go back to reference Martínez MC, Mendez C, Ferro J, Nicolas M, Serra V, Landeras J. Cytogenetic analysis of early nonviable pregnancies after assisted reproduction treatment. Fertil Steril. 2010;93:289–92.CrossRef Martínez MC, Mendez C, Ferro J, Nicolas M, Serra V, Landeras J. Cytogenetic analysis of early nonviable pregnancies after assisted reproduction treatment. Fertil Steril. 2010;93:289–92.CrossRef
22.
go back to reference Wellesley D, Dolk H, Boyd P, Greenlees R, Haeusler M, Nelen V, Garne E, Khoshnood B, Doray B, Rissmann A, et al. Rare chromosome abnormalities, prevalence and prenatal diagnosis rates from population-based congenital anomaly registers in Europe. Eur J Hum Genet. 2012;20:521–6.CrossRef Wellesley D, Dolk H, Boyd P, Greenlees R, Haeusler M, Nelen V, Garne E, Khoshnood B, Doray B, Rissmann A, et al. Rare chromosome abnormalities, prevalence and prenatal diagnosis rates from population-based congenital anomaly registers in Europe. Eur J Hum Genet. 2012;20:521–6.CrossRef
23.
go back to reference Babariya D, Fragouli E, Alfarawati S, Spath K, Wells D. The incidence and origin of segmental aneuploidy in human oocytes and preimplantation embryos. Hum Reprod. 2017;32:2549–60.CrossRef Babariya D, Fragouli E, Alfarawati S, Spath K, Wells D. The incidence and origin of segmental aneuploidy in human oocytes and preimplantation embryos. Hum Reprod. 2017;32:2549–60.CrossRef
24.
go back to reference Johnson D, Gemelos G, Baner J, Ryan A, Cinnioglu C, Banjevic M, Ross R, Alper M, Barrett B, Frederick J, et al. Preclinical validation of a microarray method for full molecular karyotyping of blastomeres in a 24-h protocol. Hum Reprod. 2010;25:1066–75.CrossRef Johnson D, Gemelos G, Baner J, Ryan A, Cinnioglu C, Banjevic M, Ross R, Alper M, Barrett B, Frederick J, et al. Preclinical validation of a microarray method for full molecular karyotyping of blastomeres in a 24-h protocol. Hum Reprod. 2010;25:1066–75.CrossRef
25.
go back to reference Fragouli E, Alfarawati S, Spath K, Jaroudi S, Sarasa J, Enciso M, Wells D. The origin and impact of embryonic aneuploidy. Hum Genet. 2013;132:1001–13.CrossRef Fragouli E, Alfarawati S, Spath K, Jaroudi S, Sarasa J, Enciso M, Wells D. The origin and impact of embryonic aneuploidy. Hum Genet. 2013;132:1001–13.CrossRef
26.
go back to reference de Los Santos MJ, Diez Juan A, Mifsud A, Mercader A, Meseguer M, Rubio C, Pellicer A. Variables associated with mitochondrial copy number in human blastocysts: what can we learn from trophectoderm biopsies? Fertil Steril. 2018;109(1):110–7.CrossRef de Los Santos MJ, Diez Juan A, Mifsud A, Mercader A, Meseguer M, Rubio C, Pellicer A. Variables associated with mitochondrial copy number in human blastocysts: what can we learn from trophectoderm biopsies? Fertil Steril. 2018;109(1):110–7.CrossRef
27.
go back to reference Cuevas I, Pons MC, Cuadros M, Delgado A, Rives N, Moragas M, Carrasco B, Teruel J, Busquets A. Hurtado de Mendoza MV. The embryology interest group: updating ASEBIR's morphological scoring system for early embryos, morulae and blastocysts. Medicina Reproductiva y Embriología Clínica. 2018;5:42–54.CrossRef Cuevas I, Pons MC, Cuadros M, Delgado A, Rives N, Moragas M, Carrasco B, Teruel J, Busquets A. Hurtado de Mendoza MV. The embryology interest group: updating ASEBIR's morphological scoring system for early embryos, morulae and blastocysts. Medicina Reproductiva y Embriología Clínica. 2018;5:42–54.CrossRef
28.
go back to reference Lejeune J, Levan A, Böök J, Chu E, Ford C, Fraccaro M, Harnden D, Hsu T, Hungerford D, Jacobs P, et al. A proposed standard system of nomenclature of human mitotic chromosomes. Lancet. 1960;275:1063–5.CrossRef Lejeune J, Levan A, Böök J, Chu E, Ford C, Fraccaro M, Harnden D, Hsu T, Hungerford D, Jacobs P, et al. A proposed standard system of nomenclature of human mitotic chromosomes. Lancet. 1960;275:1063–5.CrossRef
29.
go back to reference McGowan-Jordan J, Simons A, Schmid M. An International System for Human Cytogenomic Nomenclature: Karger Publishing; 2016, 139. McGowan-Jordan J, Simons A, Schmid M. An International System for Human Cytogenomic Nomenclature: Karger Publishing; 2016, 139.
30.
go back to reference Geigl J, Obenauf A, Schwarzbraun T, Speicher M. Defining 'chromosomal instability'. Trends Genet. 2008;24:64–99.CrossRef Geigl J, Obenauf A, Schwarzbraun T, Speicher M. Defining 'chromosomal instability'. Trends Genet. 2008;24:64–99.CrossRef
31.
go back to reference Vanneste E, Voet T, Le Caignec C, Ampe M, Konings P, Melotte C, Debrock S, Amyere M, Vikkula M, Schuit F, et al. Chromosome instability is common in human cleavage-stage embryos. Nat Med. 2009;15:577–83.CrossRef Vanneste E, Voet T, Le Caignec C, Ampe M, Konings P, Melotte C, Debrock S, Amyere M, Vikkula M, Schuit F, et al. Chromosome instability is common in human cleavage-stage embryos. Nat Med. 2009;15:577–83.CrossRef
32.
go back to reference Grimwood J, Gordon LA, Olsen A, Terry A, Schmutz J, Lamerdin J, Hellsten U, Goodstein D, Couronne O, Tran-Gyamfi M, et al. The DNA sequence and biology of human chromosome 19. Nature. 2004;428(9682):529–35.CrossRef Grimwood J, Gordon LA, Olsen A, Terry A, Schmutz J, Lamerdin J, Hellsten U, Goodstein D, Couronne O, Tran-Gyamfi M, et al. The DNA sequence and biology of human chromosome 19. Nature. 2004;428(9682):529–35.CrossRef
33.
go back to reference Castresana J. Genes on human chromosome 19 show extreme divergence from the mouse orthologs and a high GC content. Nucleic Acids Res. 2002;30:1751–6.CrossRef Castresana J. Genes on human chromosome 19 show extreme divergence from the mouse orthologs and a high GC content. Nucleic Acids Res. 2002;30:1751–6.CrossRef
34.
go back to reference Qi ST, Liang LF, Xian YX, Liu JQ, Wang W. Arrested human embryos are more likely to have abnormal chromosomes than developing embryos from women of advanced maternal age. J Ovarian Res. 2014;7:65.CrossRef Qi ST, Liang LF, Xian YX, Liu JQ, Wang W. Arrested human embryos are more likely to have abnormal chromosomes than developing embryos from women of advanced maternal age. J Ovarian Res. 2014;7:65.CrossRef
35.
go back to reference Rabinowitz M, Ryan A, Gemelos G, Hill M, Baner J, Cinnioglu C, Banjevic M, Potter D, Petrov D, Demko Z. Origins and rates of aneuploidy. Fertil Steril. 2012;97:395–401.CrossRef Rabinowitz M, Ryan A, Gemelos G, Hill M, Baner J, Cinnioglu C, Banjevic M, Potter D, Petrov D, Demko Z. Origins and rates of aneuploidy. Fertil Steril. 2012;97:395–401.CrossRef
36.
go back to reference Perry J, Slater H, Choo K. Centric fission-simple and complex mechanisms. Chromosom Res. 2004;12:627–40.CrossRef Perry J, Slater H, Choo K. Centric fission-simple and complex mechanisms. Chromosom Res. 2004;12:627–40.CrossRef
37.
go back to reference Ajduk A, Zernicka-Goetz M. Quality control of embryo development. Mol Asp Med. 2013;34:903–18.CrossRef Ajduk A, Zernicka-Goetz M. Quality control of embryo development. Mol Asp Med. 2013;34:903–18.CrossRef
38.
go back to reference Bolton H, Graham SJ, Van der Aa N, Kumar P, Theunis K, Fernandez E, Voet T, Zernicka-Goetz M. Mouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential. Nat Commun. 2016;7:11165.CrossRef Bolton H, Graham SJ, Van der Aa N, Kumar P, Theunis K, Fernandez E, Voet T, Zernicka-Goetz M. Mouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential. Nat Commun. 2016;7:11165.CrossRef
39.
go back to reference Pellestor F, Gatinois V, Puechberty J, Geneviève D, Lefort G. Chromothripsis: potential origin in gametogenesis and preimplantation cell divisions. A review Fertil Steril. 2014;102:1785–96.CrossRef Pellestor F, Gatinois V, Puechberty J, Geneviève D, Lefort G. Chromothripsis: potential origin in gametogenesis and preimplantation cell divisions. A review Fertil Steril. 2014;102:1785–96.CrossRef
40.
go back to reference Pellestor F. Chromothripsis: how does such a catastrophic event impact human reproduction? Hum Reprod. 2014;29:388–93.CrossRef Pellestor F. Chromothripsis: how does such a catastrophic event impact human reproduction? Hum Reprod. 2014;29:388–93.CrossRef
41.
go back to reference Kloosterman W, Guryev V, van Roosmalen M, Duran KJ, de Bruijn E, Bakker SC, Letteboer T, van Nesselrooij B, Hochstenbach R, Poot M, et al. Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline. Hum Mol Genet. 2011;20:1916–24.CrossRef Kloosterman W, Guryev V, van Roosmalen M, Duran KJ, de Bruijn E, Bakker SC, Letteboer T, van Nesselrooij B, Hochstenbach R, Poot M, et al. Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline. Hum Mol Genet. 2011;20:1916–24.CrossRef
42.
go back to reference Stephens P, Greenman C, Fu B, Yang F, Bignell G, Mudie L, Pleasance E, Lau K, Beare D, Stebbings L, et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell. 2011;144:27–40.CrossRef Stephens P, Greenman C, Fu B, Yang F, Bignell G, Mudie L, Pleasance E, Lau K, Beare D, Stebbings L, et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell. 2011;144:27–40.CrossRef
43.
go back to reference Ly P, Cleveland D. Rebuilding chromosomes after catastrophe: emerging mechanisms of chromothripsis. Trends Cell Biol. 2017;27:917–30.CrossRef Ly P, Cleveland D. Rebuilding chromosomes after catastrophe: emerging mechanisms of chromothripsis. Trends Cell Biol. 2017;27:917–30.CrossRef
44.
go back to reference Chavez S, Loewke K, Han J, Moussavi F, Colls P, Munne S, Behr B, Reijo RA. Dynamic blastomere behaviour reflects human embryo ploidy by the four-cell stage. Nat Commun. 2012;3:1251.CrossRef Chavez S, Loewke K, Han J, Moussavi F, Colls P, Munne S, Behr B, Reijo RA. Dynamic blastomere behaviour reflects human embryo ploidy by the four-cell stage. Nat Commun. 2012;3:1251.CrossRef
45.
go back to reference Carbone L, Chavez S. Mammalian preimplantation chromosomal instability: species comparison, evolutionary considerations, and pathological correlations. Syst Biol Reprod Med. 2015;61:321–35.CrossRef Carbone L, Chavez S. Mammalian preimplantation chromosomal instability: species comparison, evolutionary considerations, and pathological correlations. Syst Biol Reprod Med. 2015;61:321–35.CrossRef
46.
go back to reference Vázquez-Diez C, Yamagatab K, Trivedic S, Haverfielda J, Fitz-Harrisa G. Micronucleus formation causes perpetual unilateral chromosome inheritance in mouse embryos. PNAS. 2016;113:626–31.CrossRef Vázquez-Diez C, Yamagatab K, Trivedic S, Haverfielda J, Fitz-Harrisa G. Micronucleus formation causes perpetual unilateral chromosome inheritance in mouse embryos. PNAS. 2016;113:626–31.CrossRef
47.
go back to reference Musialek M, Rybaczek D. Behavior of replication origins in eukaryota – spatio-temporal dynamics of licensing and firing. Cell Cycle. 2015;14:2251–64.CrossRef Musialek M, Rybaczek D. Behavior of replication origins in eukaryota – spatio-temporal dynamics of licensing and firing. Cell Cycle. 2015;14:2251–64.CrossRef
48.
go back to reference Marks A, Smith O, Aladjem M. Replication origins: determinants or consequences of nuclear organization? Curr Opin Genet Dev. 2016;37:67–75.CrossRef Marks A, Smith O, Aladjem M. Replication origins: determinants or consequences of nuclear organization? Curr Opin Genet Dev. 2016;37:67–75.CrossRef
49.
go back to reference Pujol A, Benet J, Campillo M, Codina-Pascual M, Egozcue J, Navarro J. The use of a cell-cycle phase-marker may decrease the percentage of errors when using FISH in PGD. Cytogenet Genome Res. 2004;105:29–35.CrossRef Pujol A, Benet J, Campillo M, Codina-Pascual M, Egozcue J, Navarro J. The use of a cell-cycle phase-marker may decrease the percentage of errors when using FISH in PGD. Cytogenet Genome Res. 2004;105:29–35.CrossRef
50.
go back to reference Dimitriadou E, Van der Aa N, Cheng J, Voet T, Vermeesch JR. Single cell segmental aneuploidy detection is compromised by S phase. Mol Cytogenet. 2014;7:46.CrossRef Dimitriadou E, Van der Aa N, Cheng J, Voet T, Vermeesch JR. Single cell segmental aneuploidy detection is compromised by S phase. Mol Cytogenet. 2014;7:46.CrossRef
51.
go back to reference Wells D, Babariya D, Alfarawati S, Spath K, Kubikova N, Munne S, Fragouli E. Frequency and clinical relevance of mosaic segmental aneuploidy in blastocyst stage human embryos. Hum Reprod. 2017;2:i50. Wells D, Babariya D, Alfarawati S, Spath K, Kubikova N, Munne S, Fragouli E. Frequency and clinical relevance of mosaic segmental aneuploidy in blastocyst stage human embryos. Hum Reprod. 2017;2:i50.
52.
go back to reference Zore T, Kroener LL, Wang C, Liu L, Buyalos R, Hubert G, Shamonki M. Transfer of embryos with segmental mosaicism is associated with a significant reduction in live-birth rate. Fertil Steril 2019;111(1):69–76.CrossRef Zore T, Kroener LL, Wang C, Liu L, Buyalos R, Hubert G, Shamonki M. Transfer of embryos with segmental mosaicism is associated with a significant reduction in live-birth rate. Fertil Steril 2019;111(1):69–76.CrossRef
Metadata
Title
Segmental aneuploidy in human blastocysts: a qualitative and quantitative overview
Authors
María-José Escribà
Xavier Vendrell
Vanessa Peinado
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Reproductive Biology and Endocrinology / Issue 1/2019
Electronic ISSN: 1477-7827
DOI
https://doi.org/10.1186/s12958-019-0515-6

Other articles of this Issue 1/2019

Reproductive Biology and Endocrinology 1/2019 Go to the issue