Skip to main content
Top
Published in: Reproductive Biology and Endocrinology 1/2018

Open Access 01-12-2018 | Research

The relationship between gonadotropin releasing hormone and ovulation inducing factor/nerve growth factor receptors in the hypothalamus of the llama

Authors: Rodrigo A. Carrasco, Jaswant Singh, Gregg P. Adams

Published in: Reproductive Biology and Endocrinology | Issue 1/2018

Login to get access

Abstract

Background

A molecule identical to nerve growth factor, with ovulation-inducing properties has been discovered in the seminal plasma of South American camelids (ovulation-inducing factor/nerve growth factor; OIF/NGF). We hypothesize that the ovulatory effect of OIF/NGF is initiated at the level of the hypothalamus, presumably by GnRH neurons. The objective of the present study was to determine the structural relationship between GnRH neurons and neurons expressing high- and low-affinity receptors for NGF (i.e., TrkA and p75, respectively) in the hypothalamus.

Methods

Mature llamas (n = 4) were euthanized and their hypothalamic tissue was fixed, sectioned, and processed for immunohistochemistry on free-floating sections. Ten equidistant sections per brain were double stained for immunofluorescence detection of TrkA and GnRH, or p75 and GnRH.

Results

Cells immunoreactive to TrkA were detected in most hypothalamic areas, but the majority of cells were detected in the diagonal band of Broca (part of the ventral forebrain) and the supraoptic nuclei and periventricular area. The number of cells immunoreactive to p75 was highest in the diagonal band of Broca and lateral preoptic areas and least in more caudal areas of the hypothalamus (p < 0.05) in a pattern similar to that of TrkA. A low proportion of GnRH neurons were immunoreactive to TrkA (2.5% of total GnRH cells), and no co-localization between GnRH and p75 was detected. GnRH neuron fibers were detected only occasionally in proximity to TrkA immunopositive neurons.

Conclusions

Results do not support the hypothesis that the effect of OIF/NGF is driven by a direct interaction with GnRH neurons, but rather provide rationale for the hypothesis that interneurons exist in the hypothalamus that mediate OIF/NGF-induced ovulation.
Literature
1.
go back to reference England BG, Foot WC, Matthews DH, Cardozo AG, Riera S. Ovulation and corpus luteum function in the llama (Lama glama). J Endocrinol. 1969;45:505–13.CrossRefPubMed England BG, Foot WC, Matthews DH, Cardozo AG, Riera S. Ovulation and corpus luteum function in the llama (Lama glama). J Endocrinol. 1969;45:505–13.CrossRefPubMed
2.
go back to reference Fernandez-Baca S, Madden DHL, Novoa C. Effect of different mating stimuli on induction of ovulation in the alpaca. J Reprod Fert. 1970;22:261–7.CrossRef Fernandez-Baca S, Madden DHL, Novoa C. Effect of different mating stimuli on induction of ovulation in the alpaca. J Reprod Fert. 1970;22:261–7.CrossRef
3.
go back to reference Adams GP, Ratto MH, Silva ME, Carrasco RA. Ovulation-inducing factor (OIF/NGF) in seminal plasma: a review and update. Reprod Domest Anim. 2016;51(Suppl. 2):4–17.CrossRefPubMed Adams GP, Ratto MH, Silva ME, Carrasco RA. Ovulation-inducing factor (OIF/NGF) in seminal plasma: a review and update. Reprod Domest Anim. 2016;51(Suppl. 2):4–17.CrossRefPubMed
4.
go back to reference Adams GP, Ratto MH, Huanca W, Singh J. Ovulation - inducting factor in the seminal plasma of llamas and alpacas. Biol Reprod. 2005;73:452–7.CrossRefPubMed Adams GP, Ratto MH, Huanca W, Singh J. Ovulation - inducting factor in the seminal plasma of llamas and alpacas. Biol Reprod. 2005;73:452–7.CrossRefPubMed
5.
go back to reference Berland MA, Ulloa-Leal C, Barria M, Wright H, Dissen GA, Silva ME, Ojeda SR, Ratto MH. Seminal plasma induces ovulation in llamas in the absence of a copulatory stimulus: role of nerve growth factor as an ovulation-inducing factor. Endocrinology. 2016;157:3224–32.CrossRefPubMedPubMedCentral Berland MA, Ulloa-Leal C, Barria M, Wright H, Dissen GA, Silva ME, Ojeda SR, Ratto MH. Seminal plasma induces ovulation in llamas in the absence of a copulatory stimulus: role of nerve growth factor as an ovulation-inducing factor. Endocrinology. 2016;157:3224–32.CrossRefPubMedPubMedCentral
6.
go back to reference Ratto MH, Leduc YA, Valderrama XP, Van Straten KE, Delbaere LT, Pierson RA, Adams GP. The nerve of ovulation-inducing factor in semen. Proc Natl Acad Sci U S A. 2012;109:15042–7.CrossRefPubMedPubMedCentral Ratto MH, Leduc YA, Valderrama XP, Van Straten KE, Delbaere LT, Pierson RA, Adams GP. The nerve of ovulation-inducing factor in semen. Proc Natl Acad Sci U S A. 2012;109:15042–7.CrossRefPubMedPubMedCentral
7.
go back to reference Ratto MH, Delbaere LT, Leduc YA, Pierson RA, Adams GP. Biochemical isolation and purification of ovulation-inducing factor (OIF) in seminal plasma of llamas. Reprod Biol Endocrinol. 2011;10:9–24. Ratto MH, Delbaere LT, Leduc YA, Pierson RA, Adams GP. Biochemical isolation and purification of ovulation-inducing factor (OIF) in seminal plasma of llamas. Reprod Biol Endocrinol. 2011;10:9–24.
8.
go back to reference Tanco VM, Ratto MH, Lazzarotto M, Adams GP. Dose response of female llamas to ovulation-inducing factor (OIF) from seminal plasma. Biol Reprod. 2011;85:452–6.CrossRefPubMed Tanco VM, Ratto MH, Lazzarotto M, Adams GP. Dose response of female llamas to ovulation-inducing factor (OIF) from seminal plasma. Biol Reprod. 2011;85:452–6.CrossRefPubMed
9.
go back to reference Silva ME, Smulders JP, Guerra M, Valderrama XP, Letelier C, Adams GP, Ratto MH. Cetrorelix suppresses the preovulatory LH surge and ovulation induced by ovulation-inducing factor (OIF) present in llama seminal plasma. Reprod Biol Endocrinol. 2011;9:74.CrossRefPubMedPubMedCentral Silva ME, Smulders JP, Guerra M, Valderrama XP, Letelier C, Adams GP, Ratto MH. Cetrorelix suppresses the preovulatory LH surge and ovulation induced by ovulation-inducing factor (OIF) present in llama seminal plasma. Reprod Biol Endocrinol. 2011;9:74.CrossRefPubMedPubMedCentral
10.
go back to reference Bogle OA, Ratto MH, Adams GP. Ovulation-inducing factor induces LH secretion from pituitary cells. Anim Reprod Sci. 2012;133:117–22.CrossRefPubMed Bogle OA, Ratto MH, Adams GP. Ovulation-inducing factor induces LH secretion from pituitary cells. Anim Reprod Sci. 2012;133:117–22.CrossRefPubMed
11.
go back to reference Paolicchi F, Urquieta B, Del Valle L, Bustos-Obregon E. Biological activity of the seminal plasma of alpacas: stimulus for the production of LH by pituitary cells. Anim Reprod Sci. 1999;54:203–10.CrossRefPubMed Paolicchi F, Urquieta B, Del Valle L, Bustos-Obregon E. Biological activity of the seminal plasma of alpacas: stimulus for the production of LH by pituitary cells. Anim Reprod Sci. 1999;54:203–10.CrossRefPubMed
12.
go back to reference Adams GP, Sumar J, Ginther OJ. Effects of lactational status and reproductive status on ovarian follicular waves in llamas (Lama glama). J Reprod Fert. 1990;90:535–45.CrossRef Adams GP, Sumar J, Ginther OJ. Effects of lactational status and reproductive status on ovarian follicular waves in llamas (Lama glama). J Reprod Fert. 1990;90:535–45.CrossRef
13.
go back to reference Adams GP. Comparative patterns of follicle development and selection in ruminants. J Reprod Fert. 1999;54:17–32. Adams GP. Comparative patterns of follicle development and selection in ruminants. J Reprod Fert. 1999;54:17–32.
14.
go back to reference Draincourt MA. Regulation of ovarian follicular dynamics in farm animals: implications for manipulation of reproduction. Theriogenology. 2001;55:1211–39.CrossRef Draincourt MA. Regulation of ovarian follicular dynamics in farm animals: implications for manipulation of reproduction. Theriogenology. 2001;55:1211–39.CrossRef
15.
go back to reference Bravo PW, Stabenfeldt GH, Lasley BL, Fowler ME. The effect of ovarian follicle size on pituitary and ovarian responses to copulation in domesticated South American camelids. Biol Reprod. 1991;45:553–9.CrossRefPubMed Bravo PW, Stabenfeldt GH, Lasley BL, Fowler ME. The effect of ovarian follicle size on pituitary and ovarian responses to copulation in domesticated South American camelids. Biol Reprod. 1991;45:553–9.CrossRefPubMed
16.
go back to reference Fair T, Lonergan P. The role of progesterone in oocyte acquisition of developmental competence. Reprod Domest Anim. 2012;47:142–7.CrossRefPubMed Fair T, Lonergan P. The role of progesterone in oocyte acquisition of developmental competence. Reprod Domest Anim. 2012;47:142–7.CrossRefPubMed
17.
go back to reference Silva ME, Recabarren MP, Recabarren SE, Adams GP, Ratto MH. Ovarian estradiol modulates the stimulatory effect of ovulation-inducing factor (OIF) on pituitary LH secretion in llamas. Theriogenology. 2012;77:1873–82.CrossRefPubMed Silva ME, Recabarren MP, Recabarren SE, Adams GP, Ratto MH. Ovarian estradiol modulates the stimulatory effect of ovulation-inducing factor (OIF) on pituitary LH secretion in llamas. Theriogenology. 2012;77:1873–82.CrossRefPubMed
19.
go back to reference Conner JM, Muir D, Varon S, Hagg T, Manthorpe M. The localization of nerve growth factor-like immunoreactivity in the adult basal forebrain and hippocampal formation. J Comp Neurol. 1992;319:454–62.CrossRefPubMed Conner JM, Muir D, Varon S, Hagg T, Manthorpe M. The localization of nerve growth factor-like immunoreactivity in the adult basal forebrain and hippocampal formation. J Comp Neurol. 1992;319:454–62.CrossRefPubMed
20.
go back to reference Whitemore SR, Ebendal T, Larkfors L, Olson L, Seiger A, Stromberg I, Persson H. Developmental and regional expression of β nerve growth factor messenger RNA and protein in the rat central nervous system. Proc Natl Acad Sci U S A. 1986;83:817–21.CrossRef Whitemore SR, Ebendal T, Larkfors L, Olson L, Seiger A, Stromberg I, Persson H. Developmental and regional expression of β nerve growth factor messenger RNA and protein in the rat central nervous system. Proc Natl Acad Sci U S A. 1986;83:817–21.CrossRef
21.
go back to reference Richardson PM, Verge Issa VMK, Riopelle RJ. Distribution of neuronal receptors for nerve growth factor in the rat. J Neurosci. 1986;6:2312–21.CrossRefPubMed Richardson PM, Verge Issa VMK, Riopelle RJ. Distribution of neuronal receptors for nerve growth factor in the rat. J Neurosci. 1986;6:2312–21.CrossRefPubMed
22.
go back to reference Casaccia-Bonnefil P, Carter BD, Dobrowski RT, Chao MV. Death of oligodendrocites mediated by the interaction of nerve growth factor with its receptor p75. Nature. 1996;383:716–9.CrossRefPubMed Casaccia-Bonnefil P, Carter BD, Dobrowski RT, Chao MV. Death of oligodendrocites mediated by the interaction of nerve growth factor with its receptor p75. Nature. 1996;383:716–9.CrossRefPubMed
23.
go back to reference Yoon SO, Casaccia-Bonnefil P, Carter B, Chao MV. Competitive signaling between TrkA and p75 nerve growth factor receptors determines cell survival. Neuroscience. 1998;18:3273–81.CrossRefPubMed Yoon SO, Casaccia-Bonnefil P, Carter B, Chao MV. Competitive signaling between TrkA and p75 nerve growth factor receptors determines cell survival. Neuroscience. 1998;18:3273–81.CrossRefPubMed
24.
go back to reference Gibbs RB, Plaff DW. In situ hybridization detection of trka mRNA in brain: distribution, colocalization with p75NGFR and up-regulation by nerve growth factor. J Comp Neurol. 1994;341:324–39.CrossRefPubMed Gibbs RB, Plaff DW. In situ hybridization detection of trka mRNA in brain: distribution, colocalization with p75NGFR and up-regulation by nerve growth factor. J Comp Neurol. 1994;341:324–39.CrossRefPubMed
25.
go back to reference Sobreviela T, Clary DO, Reichardt LF, Brandabur MM, Kordower JH, Mufson EJ. TrkA-immunoreactive profiles in the central nervous system: Colocalization with neurons containing p75 nerve growth factor receptor, choline acetyltransferase, and serotonin. J Comp Neurol. 1994;350:587–611.CrossRefPubMedPubMedCentral Sobreviela T, Clary DO, Reichardt LF, Brandabur MM, Kordower JH, Mufson EJ. TrkA-immunoreactive profiles in the central nervous system: Colocalization with neurons containing p75 nerve growth factor receptor, choline acetyltransferase, and serotonin. J Comp Neurol. 1994;350:587–611.CrossRefPubMedPubMedCentral
26.
go back to reference Ohmichi M, Decker SJ, Pang L, Saltiel AR. Inhibition of the cellular actions of nerve growth factor by staurosporine and k252a from the attenuation of the activity of the trk tyrosine kinase. Biochemistry. 1992;31:4034–9.CrossRefPubMed Ohmichi M, Decker SJ, Pang L, Saltiel AR. Inhibition of the cellular actions of nerve growth factor by staurosporine and k252a from the attenuation of the activity of the trk tyrosine kinase. Biochemistry. 1992;31:4034–9.CrossRefPubMed
27.
go back to reference Chao MV. Neurotrophins and their receptors: a convergent point for many signaling pathways. Nat Rev Neurosci. 2003;4:299–309.CrossRefPubMed Chao MV. Neurotrophins and their receptors: a convergent point for many signaling pathways. Nat Rev Neurosci. 2003;4:299–309.CrossRefPubMed
28.
go back to reference Clarke IJ, Cummins JT. The relationship between gonadotropin releasing hormone (GnRH) and luteinizing hormone (LH) secretion in ovariectomized ewes. Endocrinology. 1982;111:1737–9.CrossRefPubMed Clarke IJ, Cummins JT. The relationship between gonadotropin releasing hormone (GnRH) and luteinizing hormone (LH) secretion in ovariectomized ewes. Endocrinology. 1982;111:1737–9.CrossRefPubMed
29.
go back to reference Hoffman GE, Le WW, Sita LV. The importance of titrating antibodies for immunocytochemical methods. Curr Protoc Neurosci. 2008;2:12.PubMed Hoffman GE, Le WW, Sita LV. The importance of titrating antibodies for immunocytochemical methods. Curr Protoc Neurosci. 2008;2:12.PubMed
30.
go back to reference Felix B, Léger ME, Fessard DA. Stereotaxic atlas of the pig brain. 1st ed. New York: Elsevier; 1999. Felix B, Léger ME, Fessard DA. Stereotaxic atlas of the pig brain. 1st ed. New York: Elsevier; 1999.
31.
go back to reference Girgis M, Shih-Cjang W. A new stereotaxic atlas of the rabbit brain. 1st ed. St. Louis: W.H. Green; 1981. Girgis M, Shih-Cjang W. A new stereotaxic atlas of the rabbit brain. 1st ed. St. Louis: W.H. Green; 1981.
32.
go back to reference Urban I, Richard P. A stereotaxic atlas of the New Zealand’s rabbit brain. 1st ed. Springfield: Charles C Thomas; 1972. Urban I, Richard P. A stereotaxic atlas of the New Zealand’s rabbit brain. 1st ed. Springfield: Charles C Thomas; 1972.
33.
go back to reference Fernald RD, White RB. Gonadotropin-releasing hormone genes: phylogeny, structure, and functions. Front Neuroendocrinol. 1999;20:224–40.CrossRefPubMed Fernald RD, White RB. Gonadotropin-releasing hormone genes: phylogeny, structure, and functions. Front Neuroendocrinol. 1999;20:224–40.CrossRefPubMed
34.
go back to reference Egginger J, Parmentier C, Garrel G, Cohen-Tannougji J, Camus A, Calas A, Hardin-Prouzet H, Grange-Messent V. Direct evidence for the co-expression of URP and GnRH in a sub-population of rat hypothalamic neurons: anatomical and functional correlation. PLoS One. 2011;6:e26611.CrossRefPubMedPubMedCentral Egginger J, Parmentier C, Garrel G, Cohen-Tannougji J, Camus A, Calas A, Hardin-Prouzet H, Grange-Messent V. Direct evidence for the co-expression of URP and GnRH in a sub-population of rat hypothalamic neurons: anatomical and functional correlation. PLoS One. 2011;6:e26611.CrossRefPubMedPubMedCentral
35.
go back to reference Tillet Y, Tourlet S, Picard S, Sizaret P, Caraty A. Morphofunctional interactions between galanin and GnRH-containing neurones in the diencephalon of the ewe. The effect of oestradiol. J Chem Neuroanat. 2012;43:14–9.CrossRefPubMed Tillet Y, Tourlet S, Picard S, Sizaret P, Caraty A. Morphofunctional interactions between galanin and GnRH-containing neurones in the diencephalon of the ewe. The effect of oestradiol. J Chem Neuroanat. 2012;43:14–9.CrossRefPubMed
36.
go back to reference Weskamp G, Reichardt LF. Evidence that biological activity of NGF is mediated through a novel subclass of high affinity receptors. Neuron. 1991;6:649–63.CrossRefPubMed Weskamp G, Reichardt LF. Evidence that biological activity of NGF is mediated through a novel subclass of high affinity receptors. Neuron. 1991;6:649–63.CrossRefPubMed
37.
go back to reference Lee WS, Smith MS, Hoffman GE. Luteinizing hormone-releasing hormone neurons express fos protein during the proestrus surge of luteinizing hormone. Proc Natl Acad Sci U S A. 1990;87:5163–7.CrossRefPubMedPubMedCentral Lee WS, Smith MS, Hoffman GE. Luteinizing hormone-releasing hormone neurons express fos protein during the proestrus surge of luteinizing hormone. Proc Natl Acad Sci U S A. 1990;87:5163–7.CrossRefPubMedPubMedCentral
38.
go back to reference Moenter SM, Karsch FJ, Lehman MN. Fos expression during the estradiol-induced gonadotrophin-releasing hormone (GnRH) surge of the ewe: induction in GnRH and other neurons. Endocrinology. 1993;133:896–903.CrossRefPubMed Moenter SM, Karsch FJ, Lehman MN. Fos expression during the estradiol-induced gonadotrophin-releasing hormone (GnRH) surge of the ewe: induction in GnRH and other neurons. Endocrinology. 1993;133:896–903.CrossRefPubMed
39.
go back to reference Wu TJ, Segal AZ, Miller GM, Gibson MJ, Silverman AJ. FOS expression in gonadotropin-releasing hormone neurons: enhancement by steroid treatment and mating. Endocrinology. 1992;131:2045–50.CrossRefPubMed Wu TJ, Segal AZ, Miller GM, Gibson MJ, Silverman AJ. FOS expression in gonadotropin-releasing hormone neurons: enhancement by steroid treatment and mating. Endocrinology. 1992;131:2045–50.CrossRefPubMed
40.
go back to reference Herbison A. Physiology of the gonadotropin-releasing hormone neuron network. In: Neil J, editor. Knobil and Neil’s physiology of reproduction. St Louis: Elsevier; 2005. p. 1415–82. Herbison A. Physiology of the gonadotropin-releasing hormone neuron network. In: Neil J, editor. Knobil and Neil’s physiology of reproduction. St Louis: Elsevier; 2005. p. 1415–82.
41.
go back to reference Holtzman DM, Kilbridge J, Li Y, Cunningham ETJ, Lenn NJ, Clary DO, Reichardt LF, Mobley WC. TrkA expression in the CNS: evidence for the existence of several novel NGF-responsive CNS neurons. J Neurosci. 1995;15:1567–76.CrossRefPubMedPubMedCentral Holtzman DM, Kilbridge J, Li Y, Cunningham ETJ, Lenn NJ, Clary DO, Reichardt LF, Mobley WC. TrkA expression in the CNS: evidence for the existence of several novel NGF-responsive CNS neurons. J Neurosci. 1995;15:1567–76.CrossRefPubMedPubMedCentral
42.
go back to reference Ferguson IA, Schweitzer JB, Bartlett PF, Johnson EM Jr. Receptor mediated retrograde transport in CNS neurons after intraventricular administration or NGF and growth factors. J Comp Neurol. 1991;313:680–92.CrossRefPubMed Ferguson IA, Schweitzer JB, Bartlett PF, Johnson EM Jr. Receptor mediated retrograde transport in CNS neurons after intraventricular administration or NGF and growth factors. J Comp Neurol. 1991;313:680–92.CrossRefPubMed
43.
go back to reference Pan W, Banks WA, Kastin AJ. Permeability of the blood–brain barrier to neurotrophins. Brain Res. 1998;788:87–94.CrossRefPubMed Pan W, Banks WA, Kastin AJ. Permeability of the blood–brain barrier to neurotrophins. Brain Res. 1998;788:87–94.CrossRefPubMed
45.
go back to reference Rodriguez EM, Blazquez JL, Guerra M. The design of barriers in the hypothalamus allows the median eminence and the arcuate nucleus to enjoy private milieus: the former opens to the portal blood and the latter to the cerebrospinal fluid. Peptides. 2010;31:757–76.CrossRefPubMed Rodriguez EM, Blazquez JL, Guerra M. The design of barriers in the hypothalamus allows the median eminence and the arcuate nucleus to enjoy private milieus: the former opens to the portal blood and the latter to the cerebrospinal fluid. Peptides. 2010;31:757–76.CrossRefPubMed
46.
go back to reference Herde MK, Geist K, Campbell RE, Herbison AE. Gonadotrophin-releasing hormone neurons extend complex highly branched dendritic trees outside the blood brain barrier. Endocrinology. 2012;152:3832–41.CrossRef Herde MK, Geist K, Campbell RE, Herbison AE. Gonadotrophin-releasing hormone neurons extend complex highly branched dendritic trees outside the blood brain barrier. Endocrinology. 2012;152:3832–41.CrossRef
47.
go back to reference Cowley MA, Smart JL, Rubinstein M, Gerdán MG, Diano S, Horvath TL, Cone RD, Low MJ. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature. 2001;411:480–4.CrossRefPubMed Cowley MA, Smart JL, Rubinstein M, Gerdán MG, Diano S, Horvath TL, Cone RD, Low MJ. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature. 2001;411:480–4.CrossRefPubMed
48.
go back to reference Zlokovic BV, Jovanovic S, Miao W, Samara S, Verma S, Farrel CL. Differential regulation of leptin transport by the choroid plexus and blood-brain barrier and high affinity transport systems for entry into the hypothalamus and across the blood-cerebrospinal fluid barrier. Endocrinology. 2001;141:1434–41.CrossRef Zlokovic BV, Jovanovic S, Miao W, Samara S, Verma S, Farrel CL. Differential regulation of leptin transport by the choroid plexus and blood-brain barrier and high affinity transport systems for entry into the hypothalamus and across the blood-cerebrospinal fluid barrier. Endocrinology. 2001;141:1434–41.CrossRef
49.
50.
go back to reference Timmusk T, Mudó G, Metis M, Belluardo N. Expression of mRNAs for neurotrophin and their receptors in the rat choroid plexus and dura mater. Neuroreport. 1995;15:1997–2000.CrossRef Timmusk T, Mudó G, Metis M, Belluardo N. Expression of mRNAs for neurotrophin and their receptors in the rat choroid plexus and dura mater. Neuroreport. 1995;15:1997–2000.CrossRef
51.
go back to reference Ferreira G, Meurisse M, Tillet Y, Lévy F. Distribution and co-localization of choline acetyltransferase and p75 neurotrophin receptors in the sheep basal forebrain: implications for the use of a specific cholinergic immunotoxin. Neuroscience. 2001;104:419–39.CrossRefPubMed Ferreira G, Meurisse M, Tillet Y, Lévy F. Distribution and co-localization of choline acetyltransferase and p75 neurotrophin receptors in the sheep basal forebrain: implications for the use of a specific cholinergic immunotoxin. Neuroscience. 2001;104:419–39.CrossRefPubMed
52.
go back to reference Balland E, Dam J, Langlet F, Caron E, Steculorum S, Messina A, Rasika S, Falluel-morel A, Anouar Y, Dehouck B, Trinquet E, Jockers R, Bouret S, Prevot V. Hypothalamic tanycytes area an ERK- gated conduit for leptin into the brain. Cell Metab. 2014;19:293–301.CrossRefPubMedPubMedCentral Balland E, Dam J, Langlet F, Caron E, Steculorum S, Messina A, Rasika S, Falluel-morel A, Anouar Y, Dehouck B, Trinquet E, Jockers R, Bouret S, Prevot V. Hypothalamic tanycytes area an ERK- gated conduit for leptin into the brain. Cell Metab. 2014;19:293–301.CrossRefPubMedPubMedCentral
53.
go back to reference Roux PP, Barker PA. Neurotrophin signaling through the p75 neurotrophin receptor. Prog Neurobiol. 2002;67:203–33.CrossRefPubMed Roux PP, Barker PA. Neurotrophin signaling through the p75 neurotrophin receptor. Prog Neurobiol. 2002;67:203–33.CrossRefPubMed
54.
go back to reference Bronfman FC, Tcherpakov M, Jovin TM, Fainzilber M. Ligand-induced internalization of the p75 neurotrophic receptor: a slow route to the signaling endosome. J Neurosci. 2003;23:3209–20.CrossRefPubMed Bronfman FC, Tcherpakov M, Jovin TM, Fainzilber M. Ligand-induced internalization of the p75 neurotrophic receptor: a slow route to the signaling endosome. J Neurosci. 2003;23:3209–20.CrossRefPubMed
55.
go back to reference Gottsch ML, Cunningham MJ, Smith JT, Popa SM, Acohido BV, Crowley WF, Seminara S, Clifton DK, Steiner RA. A role for Kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology. 2004;145:4073–7.CrossRefPubMed Gottsch ML, Cunningham MJ, Smith JT, Popa SM, Acohido BV, Crowley WF, Seminara S, Clifton DK, Steiner RA. A role for Kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology. 2004;145:4073–7.CrossRefPubMed
56.
go back to reference Messager S, Chatzidaki EE, Ma D, Hendrick AG, Zahn D, Dixon J, Thresher RR, Malinge I, Lomet D, Carlton MB, Colledge WH, Caraty A, Aparicio SA. Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54. Proc Natl Acad Sci U S A. 2005;102:1761–6.CrossRefPubMedPubMedCentral Messager S, Chatzidaki EE, Ma D, Hendrick AG, Zahn D, Dixon J, Thresher RR, Malinge I, Lomet D, Carlton MB, Colledge WH, Caraty A, Aparicio SA. Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54. Proc Natl Acad Sci U S A. 2005;102:1761–6.CrossRefPubMedPubMedCentral
57.
go back to reference Plant TM, Ramaswamy S, Dipietro MJ. Repetitive activation of hypothalamic G protein-coupled receptor 54 with intravenous pulses of kisspeptin in the juvenile monkey (Macaca mulatta) elicits a sustained train of gonadotropin-releasing hormone discharges. Endocrinology. 2006;147:1007–13.CrossRefPubMed Plant TM, Ramaswamy S, Dipietro MJ. Repetitive activation of hypothalamic G protein-coupled receptor 54 with intravenous pulses of kisspeptin in the juvenile monkey (Macaca mulatta) elicits a sustained train of gonadotropin-releasing hormone discharges. Endocrinology. 2006;147:1007–13.CrossRefPubMed
58.
go back to reference Inoue N, Sasaqawa K, Ikai K, Sasaki Y, Tomikawa J, Oishi S, Fuji N, Uenoyama Y, Ohmori Y, Yamamoto N, Hondo E, Maeda K, Tsukamura H. Kisspeptin neurons mediate reflex ovulation in the musk shrew (Suncus murinus). Proc Natl Acad Sci U S A. 2011;108:17527–32.CrossRefPubMedPubMedCentral Inoue N, Sasaqawa K, Ikai K, Sasaki Y, Tomikawa J, Oishi S, Fuji N, Uenoyama Y, Ohmori Y, Yamamoto N, Hondo E, Maeda K, Tsukamura H. Kisspeptin neurons mediate reflex ovulation in the musk shrew (Suncus murinus). Proc Natl Acad Sci U S A. 2011;108:17527–32.CrossRefPubMedPubMedCentral
59.
go back to reference El Allali K, El Bousmaki N, Ainani H, Simonneaux V. Effect of Camelid’s seminal plasma ovulation-inducing factor/ β-NGF: a kisspeptin target hypothesis. Front Vet Sci. 2017;4:99.CrossRefPubMedPubMedCentral El Allali K, El Bousmaki N, Ainani H, Simonneaux V. Effect of Camelid’s seminal plasma ovulation-inducing factor/ β-NGF: a kisspeptin target hypothesis. Front Vet Sci. 2017;4:99.CrossRefPubMedPubMedCentral
Metadata
Title
The relationship between gonadotropin releasing hormone and ovulation inducing factor/nerve growth factor receptors in the hypothalamus of the llama
Authors
Rodrigo A. Carrasco
Jaswant Singh
Gregg P. Adams
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Reproductive Biology and Endocrinology / Issue 1/2018
Electronic ISSN: 1477-7827
DOI
https://doi.org/10.1186/s12958-018-0402-6

Other articles of this Issue 1/2018

Reproductive Biology and Endocrinology 1/2018 Go to the issue