Skip to main content
Top
Published in: Reproductive Biology and Endocrinology 1/2016

Open Access 01-12-2016 | Research

Efficient generation of GGTA1-null Diannan miniature pigs using TALENs combined with somatic cell nuclear transfer

Authors: Wenmin Cheng, Heng Zhao, Honghao Yu, Jige Xin, Jia Wang, Luyao Zeng, Zaimei Yuan, Yubo Qing, Honghui Li, Baoyu Jia, Cejun Yang, Youfeng Shen, Lu Zhao, Weirong Pan, Hong-Ye Zhao, Wei Wang, Hong-Jiang Wei

Published in: Reproductive Biology and Endocrinology | Issue 1/2016

Login to get access

Abstract

Background

α1,3-Galactosyltransferase (GGTA1) is essential for the biosynthesis of glycoproteins and therefore a simple and effective target for disrupting the expression of galactose α-1,3-galactose epitopes, which mediate hyperacute rejection (HAR) in xenotransplantation. Miniature pigs are considered to have the greatest potential as xenotransplantation donors. A GGTA1-knockout (GTKO) miniature pig might mitigate or prevent HAR in xenotransplantation.

Methods

Transcription activator-like effector nucleases (TALENs) were designed to target exon 6 of porcine GGTA1 gene. The targeting activity was evaluated using a luciferase SSA recombination assay. Biallelic GTKO cell lines were established from single-cell colonies of fetal fibroblasts derived from Diannan miniature pigs following transfection by electroporation with TALEN plasmids. One cell line was selected as donor cell line for somatic cell nuclear transfer (SCNT) for the generation of GTKO pigs. GTKO aborted fetuses, stillborn fetuses and live piglets were obtained. Genotyping of the collected cloned individuals was performed. The Gal expression in the fibroblasts and one piglet was analyzed by fluorescence activated cell sorting (FACS), confocal microscopy, immunohistochemical (IHC) staining and western blotting.

Results

The luciferase SSA recombination assay revealed that the targeting activities of the designed TALENs were 17.1-fold higher than those of the control. Three cell lines (3/126) showed GGTA1 biallelic knockout after modification by the TALENs. The GGTA1 biallelic modified C99# cell line enabled high-quality SCNT, as evidenced by the 22.3 % (458/2068) blastocyst developmental rate of the reconstructed embryos. The reconstructed GTKO embryos were subsequently transferred into 18 recipient gilts, of which 12 became pregnant, and six miscarried. Eight aborted fetuses were collected from the gilts that miscarried. One live fetus was obtained from one surrogate by caesarean after 33 d of gestation for genotyping. In total, 12 live and two stillborn piglets were collected from six surrogates by either caesarean or natural birth. Sequencing analyses of the target site confirmed the homozygous GGTA1-null mutation in all fetuses and piglets, consistent with the genotype of the donor cells. Furthermore, FACS, confocal microscopy, IHC and western blotting analyses demonstrated that Gal epitopes were completely absent from the fibroblasts, kidneys and pancreas of one GTKO piglet.

Conclusions

TALENs combined with SCNT were successfully used to generate GTKO Diannan miniature piglets.
Appendix
Available only for authorised users
Literature
1.
go back to reference Klymiuk N, Aigner B, Brem G, Wolf E. Genetic modification of pigs as organ donors for xenotransplantation. Mol Reprod Dev. 2010;77(3):209–21.PubMed Klymiuk N, Aigner B, Brem G, Wolf E. Genetic modification of pigs as organ donors for xenotransplantation. Mol Reprod Dev. 2010;77(3):209–21.PubMed
2.
go back to reference Ekser B, Ezzelarab M, Hara H, van der Windt DJ, Wijkstrom M, Bottino R, et al. Clinical xenotransplantation: the next medical revolution? The lancet. 2012;379(9816):672–83.CrossRef Ekser B, Ezzelarab M, Hara H, van der Windt DJ, Wijkstrom M, Bottino R, et al. Clinical xenotransplantation: the next medical revolution? The lancet. 2012;379(9816):672–83.CrossRef
3.
go back to reference Yang YG, Sykes M. Xenotransplantation: current status and a perspective on the future. Nat Rev Immunol. 2007;7(7):519–31.CrossRefPubMed Yang YG, Sykes M. Xenotransplantation: current status and a perspective on the future. Nat Rev Immunol. 2007;7(7):519–31.CrossRefPubMed
4.
go back to reference Pan W, Zhang G, Qing Y, Li H, Cheng W, Wang X, et al. Evaluation of cloning efficiency based on the production of cloned Diannan miniature pigs. RRJMB. 2015;4:1–7. Pan W, Zhang G, Qing Y, Li H, Cheng W, Wang X, et al. Evaluation of cloning efficiency based on the production of cloned Diannan miniature pigs. RRJMB. 2015;4:1–7.
5.
go back to reference Michel SG, Madariaga MLL, Villani V, Shanmugarajah K. Current progress in xenotransplantation and organ bioengineering. Int J Surg. 2015;13:239–44.CrossRefPubMed Michel SG, Madariaga MLL, Villani V, Shanmugarajah K. Current progress in xenotransplantation and organ bioengineering. Int J Surg. 2015;13:239–44.CrossRefPubMed
6.
go back to reference Dai Y, Vaught TD, Boone J, Chen SH, Phelps CJ, Ball S, et al. Targeted disruption of the α1, 3-galactosyltransferase gene in cloned pigs. Nat Biotechnol. 2002;20(3):251–5.CrossRefPubMed Dai Y, Vaught TD, Boone J, Chen SH, Phelps CJ, Ball S, et al. Targeted disruption of the α1, 3-galactosyltransferase gene in cloned pigs. Nat Biotechnol. 2002;20(3):251–5.CrossRefPubMed
7.
go back to reference Lai L, Kolber-Simonds D, Park KW, Cheong HT, Greenstein JL, Im GS, et al. Production of α-1, 3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science. 2002;295(5557):1089–92.CrossRefPubMed Lai L, Kolber-Simonds D, Park KW, Cheong HT, Greenstein JL, Im GS, et al. Production of α-1, 3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science. 2002;295(5557):1089–92.CrossRefPubMed
8.
go back to reference Phelps CJ, Koike C, Vaught TD, Boone J, Wells KD, Chen S-H, et al. Production of α1, 3-galactosyltransferase-deficient pigs. Science. 2003;299(5605):411–4.CrossRefPubMed Phelps CJ, Koike C, Vaught TD, Boone J, Wells KD, Chen S-H, et al. Production of α1, 3-galactosyltransferase-deficient pigs. Science. 2003;299(5605):411–4.CrossRefPubMed
9.
go back to reference Bao L, Chen H, Jong U, Rim C, Li W, Lin X, et al. Generation of GGTA1 biallelic knockout pigs via zinc-finger nucleases and somatic cell nuclear transfer. Sci China Life Sci. 2014;57(2):263–8.CrossRefPubMed Bao L, Chen H, Jong U, Rim C, Li W, Lin X, et al. Generation of GGTA1 biallelic knockout pigs via zinc-finger nucleases and somatic cell nuclear transfer. Sci China Life Sci. 2014;57(2):263–8.CrossRefPubMed
10.
go back to reference Hauschild J, Petersen B, Santiago Y, Queisser AL, Carnwath JW, Lucas-Hahn A, et al. Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc Natl Acad Sci U S A. 2011;108(29):12013–7.CrossRefPubMedPubMedCentral Hauschild J, Petersen B, Santiago Y, Queisser AL, Carnwath JW, Lucas-Hahn A, et al. Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc Natl Acad Sci U S A. 2011;108(29):12013–7.CrossRefPubMedPubMedCentral
11.
go back to reference Petersen B. Update on “molecular scissors” for transgenic farm animal production. Reprod Fertil Dev. 2012;25(1):317–8.CrossRef Petersen B. Update on “molecular scissors” for transgenic farm animal production. Reprod Fertil Dev. 2012;25(1):317–8.CrossRef
13.
go back to reference Carlson DF, Tan W, Lillico SG, Stverakova D, Proudfoot C, Christian M, et al. Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci U S A. 2012;109(43):17382–7.CrossRefPubMedPubMedCentral Carlson DF, Tan W, Lillico SG, Stverakova D, Proudfoot C, Christian M, et al. Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci U S A. 2012;109(43):17382–7.CrossRefPubMedPubMedCentral
14.
go back to reference Tan W, Carlson DF, Lancto CA, Garbe JR, Webster DA, Hackett PB, et al. Efficient nonmeiotic allele introgression in livestock using custom endonucleases. Proc Natl Acad Sci U S A. 2013;110(41):16526–31.CrossRefPubMedPubMedCentral Tan W, Carlson DF, Lancto CA, Garbe JR, Webster DA, Hackett PB, et al. Efficient nonmeiotic allele introgression in livestock using custom endonucleases. Proc Natl Acad Sci U S A. 2013;110(41):16526–31.CrossRefPubMedPubMedCentral
15.
go back to reference Lillico SG, Proudfoot C, Carlson DF, Stverakova D, Neil C, Blain C, et al. Live pigs produced from genome edited zygotes. Sci Rep. 2013;3:2847.CrossRefPubMed Lillico SG, Proudfoot C, Carlson DF, Stverakova D, Neil C, Blain C, et al. Live pigs produced from genome edited zygotes. Sci Rep. 2013;3:2847.CrossRefPubMed
16.
go back to reference Moon J, Lee C, Kim SJ, Choi JY, Lee BC, Kim JS, et al. Production of CMAH knockout preimplantation embryos derived from immortalized porcine cells via TALE nucleases. Mol Ther Nucleic acids. 2014;3(5):e166.CrossRefPubMedPubMedCentral Moon J, Lee C, Kim SJ, Choi JY, Lee BC, Kim JS, et al. Production of CMAH knockout preimplantation embryos derived from immortalized porcine cells via TALE nucleases. Mol Ther Nucleic acids. 2014;3(5):e166.CrossRefPubMedPubMedCentral
17.
18.
19.
go back to reference Ma Y, Zhang X, Shen B, Lu Y, Chen W, Ma J, et al. Generating rats with conditional alleles using CRISPR/Cas9. Cell Res. 2014;24(1):122.CrossRefPubMed Ma Y, Zhang X, Shen B, Lu Y, Chen W, Ma J, et al. Generating rats with conditional alleles using CRISPR/Cas9. Cell Res. 2014;24(1):122.CrossRefPubMed
20.
go back to reference Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang L, et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell. 2014;156(4):836–43.CrossRefPubMed Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang L, et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell. 2014;156(4):836–43.CrossRefPubMed
21.
go back to reference Wang Y, Du Y, Shen B, Zhou X, Li J, Liu Y, et al. Efficient generation of gene-modified pigs via injection of zygote with Cas9/sgRNA. Sci Rep. 2015;5:8256.CrossRefPubMedPubMedCentral Wang Y, Du Y, Shen B, Zhou X, Li J, Liu Y, et al. Efficient generation of gene-modified pigs via injection of zygote with Cas9/sgRNA. Sci Rep. 2015;5:8256.CrossRefPubMedPubMedCentral
22.
go back to reference Wang X, Wang Y, Wu X, Wang J, Wang Y, Qiu Z, et al. Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors. Nat Biotechnol. 2015;33(2):175–8.CrossRefPubMed Wang X, Wang Y, Wu X, Wang J, Wang Y, Qiu Z, et al. Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors. Nat Biotechnol. 2015;33(2):175–8.CrossRefPubMed
23.
go back to reference Huang P, Xiao A, Zhou M, Zhu Z, Lin S, Zhang B. Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol. 2011;29(8):699–700.CrossRefPubMed Huang P, Xiao A, Zhou M, Zhu Z, Lin S, Zhang B. Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol. 2011;29(8):699–700.CrossRefPubMed
24.
go back to reference Wei H, Qing Y, Pan W, Zhao H, Li H, Cheng W, et al. Comparison of the efficiency of Banna miniature inbred pig somatic cell nuclear transfer among different donor cells. PLoS One. 2013;8(2):e57728.CrossRefPubMedPubMedCentral Wei H, Qing Y, Pan W, Zhao H, Li H, Cheng W, et al. Comparison of the efficiency of Banna miniature inbred pig somatic cell nuclear transfer among different donor cells. PLoS One. 2013;8(2):e57728.CrossRefPubMedPubMedCentral
25.
go back to reference Li H, Wang G, Zhang G, Qing Y, Liu S, Qing L, et al. Generation of biallelic knock-out sheep via gene-editing and somatic cell nuclear transfer. Sci Rep. 2016;6:33675.CrossRefPubMedPubMedCentral Li H, Wang G, Zhang G, Qing Y, Liu S, Qing L, et al. Generation of biallelic knock-out sheep via gene-editing and somatic cell nuclear transfer. Sci Rep. 2016;6:33675.CrossRefPubMedPubMedCentral
27.
go back to reference Ahn YK, Ryu JM, Jeong HC, Kim YH, Jeong MH, Lee MY, et al. Comparison of cardiac function and coronary angiography between conventional pigs and micropigs as measured by multidetector row computed tomography. J Vet Sci. 2008;9(2):121–6.CrossRefPubMedPubMedCentral Ahn YK, Ryu JM, Jeong HC, Kim YH, Jeong MH, Lee MY, et al. Comparison of cardiac function and coronary angiography between conventional pigs and micropigs as measured by multidetector row computed tomography. J Vet Sci. 2008;9(2):121–6.CrossRefPubMedPubMedCentral
28.
go back to reference Lian L, Wang H, Xu J, Hu W. Biological characteristics of Banna minipig. Shanghai Laboratory Animal Science (China). 1993;13:185–91. Lian L, Wang H, Xu J, Hu W. Biological characteristics of Banna minipig. Shanghai Laboratory Animal Science (China). 1993;13:185–91.
29.
go back to reference Liu Y. A novel porcine gene, MAPKAPK3, is differentially expressed in the pituitary gland from mini-type Diannan small-ear pigs and large-type Diannan small-ear pigs. Mol Biol Rep. 2010;37(7):3345–9.CrossRef Liu Y. A novel porcine gene, MAPKAPK3, is differentially expressed in the pituitary gland from mini-type Diannan small-ear pigs and large-type Diannan small-ear pigs. Mol Biol Rep. 2010;37(7):3345–9.CrossRef
30.
go back to reference Kobayashi E, Hishikawa S, Teratani T, Lefor AT. The pig as a model for translational research: overview of porcine animal models at Jichi Medical University. Transplant Res. 2012;1(1):8.CrossRefPubMedPubMedCentral Kobayashi E, Hishikawa S, Teratani T, Lefor AT. The pig as a model for translational research: overview of porcine animal models at Jichi Medical University. Transplant Res. 2012;1(1):8.CrossRefPubMedPubMedCentral
31.
go back to reference Xin J, Yang H, Fan N, Zhao B, Ouyang Z, Liu Z, et al. Highly efficient generation of GGTA1 biallelic knockout inbred mini-pigs with TALENs. PLoS One. 2013;8(12):e84250.CrossRefPubMedPubMedCentral Xin J, Yang H, Fan N, Zhao B, Ouyang Z, Liu Z, et al. Highly efficient generation of GGTA1 biallelic knockout inbred mini-pigs with TALENs. PLoS One. 2013;8(12):e84250.CrossRefPubMedPubMedCentral
32.
go back to reference Feng C, Li X, Cui H, Long C, Liu X, Tian X, et al. Highly efficient generation of GGTA1 knockout pigs using a combination of TALEN mRNA and magnetic beads with somatic cell nuclear transfer. J Integr Agr. 2016;15(7):1540–9.CrossRef Feng C, Li X, Cui H, Long C, Liu X, Tian X, et al. Highly efficient generation of GGTA1 knockout pigs using a combination of TALEN mRNA and magnetic beads with somatic cell nuclear transfer. J Integr Agr. 2016;15(7):1540–9.CrossRef
33.
go back to reference Sanjana NE, Cong L, Zhou Y, Cunniff MM, Feng G, Zhang F. A transcription activator-like effector toolbox for genome engineering. Nat Protoc. 2012;7(1):171–92.CrossRefPubMedPubMedCentral Sanjana NE, Cong L, Zhou Y, Cunniff MM, Feng G, Zhang F. A transcription activator-like effector toolbox for genome engineering. Nat Protoc. 2012;7(1):171–92.CrossRefPubMedPubMedCentral
34.
go back to reference Veres A, Gosis BS, Ding Q, Collins R, Ragavendran A, Brand H, et al. Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing. Cell Stem Cell. 2014;15(1):27–30.CrossRefPubMedPubMedCentral Veres A, Gosis BS, Ding Q, Collins R, Ragavendran A, Brand H, et al. Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing. Cell Stem Cell. 2014;15(1):27–30.CrossRefPubMedPubMedCentral
35.
go back to reference Yao J, Huang J, Hai T, Wang X, Qin G, Zhang H, et al. Efficient bi-allelic gene knockout and site-specific knock-in mediated by TALENs in pigs. Sci Rep. 2014;4:6926.CrossRefPubMedPubMedCentral Yao J, Huang J, Hai T, Wang X, Qin G, Zhang H, et al. Efficient bi-allelic gene knockout and site-specific knock-in mediated by TALENs in pigs. Sci Rep. 2014;4:6926.CrossRefPubMedPubMedCentral
36.
go back to reference Sung YH, Baek IJ, Kim DH, Jeon J, Lee J, Lee K, et al. Knockout mice created by TALEN-mediated gene targeting. Nat Biotechnol. 2013;31(1):23–4.CrossRefPubMed Sung YH, Baek IJ, Kim DH, Jeon J, Lee J, Lee K, et al. Knockout mice created by TALEN-mediated gene targeting. Nat Biotechnol. 2013;31(1):23–4.CrossRefPubMed
37.
go back to reference Liu H, Chen Y, Niu Y, Zhang K, Kang Y, Ge W, et al. TALEN-mediated gene mutagenesis in rhesus and cynomolgus monkeys. Cell Stem Cell. 2014;14(3):323–8.CrossRefPubMedPubMedCentral Liu H, Chen Y, Niu Y, Zhang K, Kang Y, Ge W, et al. TALEN-mediated gene mutagenesis in rhesus and cynomolgus monkeys. Cell Stem Cell. 2014;14(3):323–8.CrossRefPubMedPubMedCentral
38.
go back to reference Gock H, Nottle M, Lew AM, d’Apice AJ, Cowan P, et al. Genetic modification of pigs for solid organ xenotransplantation. Transplant Rev. 2011;25(1):9–20.CrossRef Gock H, Nottle M, Lew AM, d’Apice AJ, Cowan P, et al. Genetic modification of pigs for solid organ xenotransplantation. Transplant Rev. 2011;25(1):9–20.CrossRef
39.
go back to reference Ibrahim Z, Busch J, Awwad M, Wagner R, Wells K, Cooper DK. Selected physiologic compatibilities and incompatibilities between human and porcine organ systems. Xenotransplantation. 2006;13(6):488–99.CrossRefPubMed Ibrahim Z, Busch J, Awwad M, Wagner R, Wells K, Cooper DK. Selected physiologic compatibilities and incompatibilities between human and porcine organ systems. Xenotransplantation. 2006;13(6):488–99.CrossRefPubMed
40.
go back to reference Saethre M, Schneider MK, Lambris JD, Magotti P, Haraldsen G, Seebach JD, Mollnes TE, et al. Cytokine secretion depends on Galα (1, 3) Gal expression in a pig-to-human whole blood model. J Immunology. 2008;180(9):6346–53.CrossRef Saethre M, Schneider MK, Lambris JD, Magotti P, Haraldsen G, Seebach JD, Mollnes TE, et al. Cytokine secretion depends on Galα (1, 3) Gal expression in a pig-to-human whole blood model. J Immunology. 2008;180(9):6346–53.CrossRef
Metadata
Title
Efficient generation of GGTA1-null Diannan miniature pigs using TALENs combined with somatic cell nuclear transfer
Authors
Wenmin Cheng
Heng Zhao
Honghao Yu
Jige Xin
Jia Wang
Luyao Zeng
Zaimei Yuan
Yubo Qing
Honghui Li
Baoyu Jia
Cejun Yang
Youfeng Shen
Lu Zhao
Weirong Pan
Hong-Ye Zhao
Wei Wang
Hong-Jiang Wei
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Reproductive Biology and Endocrinology / Issue 1/2016
Electronic ISSN: 1477-7827
DOI
https://doi.org/10.1186/s12958-016-0212-7

Other articles of this Issue 1/2016

Reproductive Biology and Endocrinology 1/2016 Go to the issue