Skip to main content
Top
Published in: Reproductive Biology and Endocrinology 1/2016

Open Access 01-12-2016 | Research

Relaxin deficiency results in increased expression of angiogenesis- and remodelling-related genes in the uterus of early pregnant mice but does not affect endometrial angiogenesis prior to implantation

Authors: Sarah A. Marshall, Leelee Ng, Elaine N. Unemori, Jane E. Girling, Laura J. Parry

Published in: Reproductive Biology and Endocrinology | Issue 1/2016

Login to get access

Abstract

Background

Extensive uterine adaptations, including angiogenesis, occur prior to implantation in early pregnancy and are potentially regulated by the peptide hormone relaxin. This was investigated in two studies. First, we took a microarray approach using human endometrial stromal (HES) cells treated with relaxin in vitro to screen for target genes. Then we aimed to investigate whether or not relaxin deficiency in mice affected uterine expression of representative genes associated with angiogenesis and uterine remodeling, and also blood vessel proliferation in the pre-implantation mouse endometrium.

Methods

Normal HES cells were isolated and treated with recombinant human relaxin (10 ng/ml) for 24 h before microarray analysis. Reverse transcriptase PCR was used to analyze gene expression of relaxin and its receptor (Rxfp1) in ovaries and uteri; quantitative PCR was used to analyze steroid receptor, angiogenesis and extracellular matrix remodeling genes in the uteri of wild type (Rln+/+) and Rln-/- mice on days 1-4 of pregnancy. Immunohistochemistry localized endometrial endothelial cell proliferation and mass spectrometry measured steroid hormones in the plasma.

Results

Microarray analysis identified 63 well-characterized genes that were differentially regulated in HES cells after relaxin treatment. Expression of some of these genes was increased in the uterus of Rln+/+ mice by day 4 of pregnancy. There was significantly higher vascular endothelial growth factor A (VegfA), estrogen receptor 1 (Esr1), progesterone receptor (Pgr), Rxfp1, egl-9 family hypoxia-inducible factor 1 (Egln1), hypoxia inducible factor 1 alpha (Hif1α), matrix metalloproteinase 14 (Mmp14) and ankryn repeat domain 37 (Ankrd37) in Rln-/- compared to Rln+/+ mice on day 1. Progesterone receptor expression and plasma progesterone levels were higher in Rln-/- mice compared to Rln+/+ mice. However, endometrial angiogenesis was not advanced as pre-implantation endothelial cell proliferation did not differ between genotypes.

Conclusions

Relaxin treatment modulates expression of a variety of angiogenesis-related genes in HES cells. However, despite accelerated uterine gene expression of steroid receptor, progesterone and angiogenesis and extracellular matrix remodeling genes in Rln-/- mice, there was no impact on angiogenesis. We conclude that although relaxin deficiency results in phenotypic changes in the pre-implantation uterus, endogenous relaxin does not play a major role in pre-implantation angiogenesis in the mouse uterus.
Appendix
Available only for authorised users
Literature
1.
go back to reference Demir R, Yaba A, Huppertz B. Vasculogenesis and angiogenesis in the endometrium during menstrual cycle and implantation. Acta Histochem. 2010;112(3):203–14.CrossRefPubMed Demir R, Yaba A, Huppertz B. Vasculogenesis and angiogenesis in the endometrium during menstrual cycle and implantation. Acta Histochem. 2010;112(3):203–14.CrossRefPubMed
2.
go back to reference Girling JE, Rogers PAW. Regulation of endometrial vascular remodelling: role of the vascular endothelial growth factor family and the angiopoietin–TIE signalling system. Reproduction. 2009;138(6):883–93.CrossRefPubMed Girling JE, Rogers PAW. Regulation of endometrial vascular remodelling: role of the vascular endothelial growth factor family and the angiopoietin–TIE signalling system. Reproduction. 2009;138(6):883–93.CrossRefPubMed
3.
go back to reference Ball E, Bulmer JN, Ayis S, Lyall F, Robson SC. Late sporadic miscarriage is associated with abnormalities in spiral artery transformation and trophoblast invasion. J Pathol. 2006;208(4):535–42.CrossRefPubMed Ball E, Bulmer JN, Ayis S, Lyall F, Robson SC. Late sporadic miscarriage is associated with abnormalities in spiral artery transformation and trophoblast invasion. J Pathol. 2006;208(4):535–42.CrossRefPubMed
4.
go back to reference Aardema MW, Oosterhof H, Timmer A, van Rooy I, Aarnoudse JG. Uterine artery Doppler flow and uteroplacental vascular pathology in normal pregnancies and pregnancies complicated by pre-eclampsia and small for gestational age fetuses. Placenta. 2001;22(5):405–11.CrossRefPubMed Aardema MW, Oosterhof H, Timmer A, van Rooy I, Aarnoudse JG. Uterine artery Doppler flow and uteroplacental vascular pathology in normal pregnancies and pregnancies complicated by pre-eclampsia and small for gestational age fetuses. Placenta. 2001;22(5):405–11.CrossRefPubMed
5.
go back to reference Girling JE, Rogers PAW. Recent advances in endometrial angiogenesis research. Angiogenesis. 2005;8(2):89–99.CrossRefPubMed Girling JE, Rogers PAW. Recent advances in endometrial angiogenesis research. Angiogenesis. 2005;8(2):89–99.CrossRefPubMed
6.
go back to reference Walter LM, Rogers PAW, Girling JE. The role of progesterone in endometrial angiogenesis in pregnant and ovariectomised mice. Reproduction. 2005;129(6):765–77.CrossRefPubMed Walter LM, Rogers PAW, Girling JE. The role of progesterone in endometrial angiogenesis in pregnant and ovariectomised mice. Reproduction. 2005;129(6):765–77.CrossRefPubMed
7.
go back to reference Parry LJ, Vodstrcil LA. Relaxin physiology in the female reproductive tract during pregnancy. Adv Exp Med Biol. 2007;612:34-48. Parry LJ, Vodstrcil LA. Relaxin physiology in the female reproductive tract during pregnancy. Adv Exp Med Biol. 2007;612:34-48.
8.
go back to reference Bryant-Greenwood GD, Rutanen E-M, Partanen S, Coelho TK, Yamamoto SY. Sequential appearance of relaxin, prolactin and IGFBP-1 during growth and differentiation of the human endometrium. Mol Cell Endocrinol. 1993;95(1–2):23–9.CrossRefPubMed Bryant-Greenwood GD, Rutanen E-M, Partanen S, Coelho TK, Yamamoto SY. Sequential appearance of relaxin, prolactin and IGFBP-1 during growth and differentiation of the human endometrium. Mol Cell Endocrinol. 1993;95(1–2):23–9.CrossRefPubMed
9.
go back to reference Goldsmith LT, Weiss G, Palejwala S, Plant TM, Wojtczuk A, Lambert WC, et al. Relaxin regulation of endometrial structure and function in the rhesus monkey. Proc Natl Acad Sci U S A. 2004;101(13):4685–9.CrossRefPubMedPubMedCentral Goldsmith LT, Weiss G, Palejwala S, Plant TM, Wojtczuk A, Lambert WC, et al. Relaxin regulation of endometrial structure and function in the rhesus monkey. Proc Natl Acad Sci U S A. 2004;101(13):4685–9.CrossRefPubMedPubMedCentral
10.
go back to reference Dallenbach-Hellweg G, Dawson AB, Hisaw FL. The effect of relaxin on the endometrium of monkeys histological and histochemical studies. J Anat. 1966;119(1):61–77.CrossRef Dallenbach-Hellweg G, Dawson AB, Hisaw FL. The effect of relaxin on the endometrium of monkeys histological and histochemical studies. J Anat. 1966;119(1):61–77.CrossRef
11.
go back to reference Hisaw FL, Hisaw Jr FL, Dawson AB. Effects of relaxin on the endothelium of endometrial blood vessels in monkeys (Macaca mulatta). Endocrinology. 1967;81(2):375-85.CrossRefPubMed Hisaw FL, Hisaw Jr FL, Dawson AB. Effects of relaxin on the endothelium of endometrial blood vessels in monkeys (Macaca mulatta). Endocrinology. 1967;81(2):375-85.CrossRefPubMed
12.
go back to reference Vasilenko P, Mead JP, Weidmann JE. Uterine growth-promoting effects of relaxin: a morphometric and histological analysis. Biol Reprod. 1986;35(4):987–95.CrossRefPubMed Vasilenko P, Mead JP, Weidmann JE. Uterine growth-promoting effects of relaxin: a morphometric and histological analysis. Biol Reprod. 1986;35(4):987–95.CrossRefPubMed
13.
go back to reference Einspanier A, Lieder K, Husen B, Ebert K, Lier S, Einspanier R, et al. Relaxin supports implantation and early pregnancy in the marmoset monkey. Ann N Y Acad Sci. 2009;1160:140–6.CrossRefPubMed Einspanier A, Lieder K, Husen B, Ebert K, Lier S, Einspanier R, et al. Relaxin supports implantation and early pregnancy in the marmoset monkey. Ann N Y Acad Sci. 2009;1160:140–6.CrossRefPubMed
14.
go back to reference Hayes ES, Curnow EC, Trounson AO, Danielson LA, Unemori EN. Implantation and pregnancy following in vitro fertilization and the effect of recombinant human relaxin administration in macaca fascicularis. Biol Reprod. 2004;71(5):1591–7.CrossRefPubMed Hayes ES, Curnow EC, Trounson AO, Danielson LA, Unemori EN. Implantation and pregnancy following in vitro fertilization and the effect of recombinant human relaxin administration in macaca fascicularis. Biol Reprod. 2004;71(5):1591–7.CrossRefPubMed
15.
go back to reference Unemori EN, Erikson ME, Rocco SE, Sutherland KM, Parsell DA, Mak J, et al. Relaxin stimulates expression of vascular endothelial growth factor in normal human endometrial cells in vitro and is associated with menometrorrhagia in women. Hum Reprod. 1999;14(3):800–6.CrossRefPubMed Unemori EN, Erikson ME, Rocco SE, Sutherland KM, Parsell DA, Mak J, et al. Relaxin stimulates expression of vascular endothelial growth factor in normal human endometrial cells in vitro and is associated with menometrorrhagia in women. Hum Reprod. 1999;14(3):800–6.CrossRefPubMed
16.
go back to reference Seibold JR, Korn JH, Simms R, Clements PJ, Moreland LW, Mayes MD, et al. Recombinant human relaxin in the treatment of scleroderma. A randomized, double-blind, placebo-controlled trial. Ann Intern Med. 2000;132(11):871–9.CrossRefPubMed Seibold JR, Korn JH, Simms R, Clements PJ, Moreland LW, Mayes MD, et al. Recombinant human relaxin in the treatment of scleroderma. A randomized, double-blind, placebo-controlled trial. Ann Intern Med. 2000;132(11):871–9.CrossRefPubMed
17.
go back to reference Ivell R, Balvers M, Pohnke Y, Telgmann R, Bartsch O, Milde-Langosch K, et al. Immunoexpression of the relaxin receptor LGR7 in breast and uterine tissues of humans and primates. Reprod Biol Endocrinol. 2003;1:114.CrossRefPubMedPubMedCentral Ivell R, Balvers M, Pohnke Y, Telgmann R, Bartsch O, Milde-Langosch K, et al. Immunoexpression of the relaxin receptor LGR7 in breast and uterine tissues of humans and primates. Reprod Biol Endocrinol. 2003;1:114.CrossRefPubMedPubMedCentral
18.
go back to reference Luna JJ, Riesewijk A, Horcajadas JA, van Os R, Domínguez F, Mosselman S, et al. Gene expression pattern and immunoreactive protein localization of LGR7 receptor in human endometrium throughout the menstrual cycle. Mol Hum Reprod. 2004;10(2):85–90.CrossRefPubMed Luna JJ, Riesewijk A, Horcajadas JA, van Os R, Domínguez F, Mosselman S, et al. Gene expression pattern and immunoreactive protein localization of LGR7 receptor in human endometrium throughout the menstrual cycle. Mol Hum Reprod. 2004;10(2):85–90.CrossRefPubMed
19.
go back to reference Bond CP, Parry LJ, Samuel CS, Gehring HM, Lederman FL, Rogers PAW, et al. Increased expression of the relaxin receptor (LGR7) in human endometrium during the secretory phase of the menstrual cycle. Ann N Y Acad Sci. 2005;1041(1):136–43.CrossRefPubMed Bond CP, Parry LJ, Samuel CS, Gehring HM, Lederman FL, Rogers PAW, et al. Increased expression of the relaxin receptor (LGR7) in human endometrium during the secretory phase of the menstrual cycle. Ann N Y Acad Sci. 2005;1041(1):136–43.CrossRefPubMed
20.
go back to reference Mazella J, Tang M, Tseng L. Disparate effects of relaxin and TGFβ1: relaxin increases, but TGFβ1 inhibits, the relaxin receptor and the production of IGFBP‐1 in human endometrial stromal/decidual cells. Hum Reprod. 2004;19(7):1513–8.CrossRefPubMed Mazella J, Tang M, Tseng L. Disparate effects of relaxin and TGFβ1: relaxin increases, but TGFβ1 inhibits, the relaxin receptor and the production of IGFBP‐1 in human endometrial stromal/decidual cells. Hum Reprod. 2004;19(7):1513–8.CrossRefPubMed
21.
go back to reference Palejwala S, Tseng L, Wojtczuk A, Weiss G, Goldsmith LT. Relaxin gene and protein expression and its regulation of procollagenase and vascular endothelial growth factor in human endometrial cells. Biol Reprod. 2002;66(6):1743–8.CrossRefPubMed Palejwala S, Tseng L, Wojtczuk A, Weiss G, Goldsmith LT. Relaxin gene and protein expression and its regulation of procollagenase and vascular endothelial growth factor in human endometrial cells. Biol Reprod. 2002;66(6):1743–8.CrossRefPubMed
22.
go back to reference Pillai SB, Rockwell LC, Sherwood OD, Koos RD. Relaxin stimulates uterine edema via activation of estrogen receptors: blockade of its effects using ICI 182,780, a specific estrogen receptor antagonist. Endocrinology. 1999;140(5):2426–9.CrossRefPubMed Pillai SB, Rockwell LC, Sherwood OD, Koos RD. Relaxin stimulates uterine edema via activation of estrogen receptors: blockade of its effects using ICI 182,780, a specific estrogen receptor antagonist. Endocrinology. 1999;140(5):2426–9.CrossRefPubMed
23.
go back to reference Parry LJ, Vodstrcil LA, Madden A, Amir SH, Baldwin K, Wlodek ME, et al. Normal mammary gland growth and lactation capacity in pregnant relaxin-deficient mice. Reprod Fertil Dev. 2009;21(4):549–60.CrossRefPubMed Parry LJ, Vodstrcil LA, Madden A, Amir SH, Baldwin K, Wlodek ME, et al. Normal mammary gland growth and lactation capacity in pregnant relaxin-deficient mice. Reprod Fertil Dev. 2009;21(4):549–60.CrossRefPubMed
24.
go back to reference Gooi JH, Richardson ML, Jelinic M, Girling JE, Wlodek ME, Tare M, et al. Enhanced uterine artery stiffness in aged pregnant relaxin mutant mice is reversed with exogenous relaxin treatment. Biol Reprod. 2013;89(1):1–11.CrossRef Gooi JH, Richardson ML, Jelinic M, Girling JE, Wlodek ME, Tare M, et al. Enhanced uterine artery stiffness in aged pregnant relaxin mutant mice is reversed with exogenous relaxin treatment. Biol Reprod. 2013;89(1):1–11.CrossRef
25.
go back to reference Zhao L, Roche PJ, Gunnersen JM, Hammond VE, Tregear GW, Wintour EM, et al. Mice without a functional relaxin gene are unable to deliver milk to their pups. Endocrinology. 1999;140(1):445–53.PubMed Zhao L, Roche PJ, Gunnersen JM, Hammond VE, Tregear GW, Wintour EM, et al. Mice without a functional relaxin gene are unable to deliver milk to their pups. Endocrinology. 1999;140(1):445–53.PubMed
26.
go back to reference Kamat AA, Feng S, Bogatcheva NV, Truong A, Bishop CE, Agoulnik AI. Genetic targeting of relaxin and insulin-like factor 3 receptors in mice. Endocrinology. 2004;145(10):4712–20.CrossRefPubMed Kamat AA, Feng S, Bogatcheva NV, Truong A, Bishop CE, Agoulnik AI. Genetic targeting of relaxin and insulin-like factor 3 receptors in mice. Endocrinology. 2004;145(10):4712–20.CrossRefPubMed
27.
go back to reference Fei DTW, Gross MC, Lofgren JL, Mora-Worms M, Chen AB. Cyclic AMP response to recombinant human relaxin by cultured human endometrial cells—A specific and high throughput in vitro bioassay. Biochem Biophys Res Commun. 1990;170(1):214–22.CrossRefPubMed Fei DTW, Gross MC, Lofgren JL, Mora-Worms M, Chen AB. Cyclic AMP response to recombinant human relaxin by cultured human endometrial cells—A specific and high throughput in vitro bioassay. Biochem Biophys Res Commun. 1990;170(1):214–22.CrossRefPubMed
28.
go back to reference Schena M, Shalon D, Heller R, Chai A, Brown PO, Davis RW. Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. Proc Natl Acad Sci U S A. 1996;93(20):10614–9.CrossRefPubMedPubMedCentral Schena M, Shalon D, Heller R, Chai A, Brown PO, Davis RW. Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. Proc Natl Acad Sci U S A. 1996;93(20):10614–9.CrossRefPubMedPubMedCentral
29.
go back to reference Yue H, Eastman PS, Wang BB, Minor J, Doctolero MH, Nuttall Rachel L, et al. An evaluation of the performance of cDNA microarrays for detecting changes in global mRNA expression. Nucleic Acids Res. 2001;29(8):e41.CrossRefPubMedPubMedCentral Yue H, Eastman PS, Wang BB, Minor J, Doctolero MH, Nuttall Rachel L, et al. An evaluation of the performance of cDNA microarrays for detecting changes in global mRNA expression. Nucleic Acids Res. 2001;29(8):e41.CrossRefPubMedPubMedCentral
30.
go back to reference Craythorn RG, Girling JE, Hedger MP, Rogers PAW, Winnall WR. An RNA spiking method demonstrates that 18S rRNA is regulated by progesterone in the mouse uterus. Mol Hum Reprod. 2009;15(11):757–61.CrossRefPubMed Craythorn RG, Girling JE, Hedger MP, Rogers PAW, Winnall WR. An RNA spiking method demonstrates that 18S rRNA is regulated by progesterone in the mouse uterus. Mol Hum Reprod. 2009;15(11):757–61.CrossRefPubMed
31.
go back to reference Durrer S, Maerkel K, Schlumpf M, Lichtensteiger W. Estrogen target gene regulation and coactivator expression in rat uterus after developmental exposure to the ultraviolet filter 4-methylbenzylidene camphor. Endocrinology. 2005;146(5):2130–9.CrossRefPubMed Durrer S, Maerkel K, Schlumpf M, Lichtensteiger W. Estrogen target gene regulation and coactivator expression in rat uterus after developmental exposure to the ultraviolet filter 4-methylbenzylidene camphor. Endocrinology. 2005;146(5):2130–9.CrossRefPubMed
32.
go back to reference Craythorn RG, Winnall WR, Lederman F, Gold EJ, O’Connor AE, de Kretser DM, et al. Progesterone stimulates expression of follistatin splice variants Fst288 and Fst315 in the mouse uterus. Reprod Biomed Online. 2012;24(3):364–74.CrossRefPubMed Craythorn RG, Winnall WR, Lederman F, Gold EJ, O’Connor AE, de Kretser DM, et al. Progesterone stimulates expression of follistatin splice variants Fst288 and Fst315 in the mouse uterus. Reprod Biomed Online. 2012;24(3):364–74.CrossRefPubMed
33.
go back to reference Dawson DW, Pearce SFA, Zhong R, Silverstein RL, Frazier WA, Bouck NP. CD36 mediates the in vitro inhibitory effects of thrombospondin-1 on endothelial cells. J Cell Biol. 1997;138(3):707–17.CrossRefPubMedPubMedCentral Dawson DW, Pearce SFA, Zhong R, Silverstein RL, Frazier WA, Bouck NP. CD36 mediates the in vitro inhibitory effects of thrombospondin-1 on endothelial cells. J Cell Biol. 1997;138(3):707–17.CrossRefPubMedPubMedCentral
34.
go back to reference Chakraborty I, Das SK, Dey SK. Differential expression of vascular endothelial growth factor and its receptor mRNAs in the mouse uterus around the time of implantation. J Endocrinol. 1995;147(2):339–52.CrossRefPubMed Chakraborty I, Das SK, Dey SK. Differential expression of vascular endothelial growth factor and its receptor mRNAs in the mouse uterus around the time of implantation. J Endocrinol. 1995;147(2):339–52.CrossRefPubMed
35.
go back to reference Ng SP, Steinetz BG, Lasano SG, Zelikoff JT. Hormonal changes accompanying cigarette smoke-induced preterm births in a mouse model. Exp Biol Med. 2006;231(8):1403–9. Ng SP, Steinetz BG, Lasano SG, Zelikoff JT. Hormonal changes accompanying cigarette smoke-induced preterm births in a mouse model. Exp Biol Med. 2006;231(8):1403–9.
36.
go back to reference Bagnell CA, Zhang Q, Downey B, Ainsworth L. Sources and biological actions of relaxin in pigs. J Reprod Fertil Suppl. 1993;48:127–38.PubMed Bagnell CA, Zhang Q, Downey B, Ainsworth L. Sources and biological actions of relaxin in pigs. J Reprod Fertil Suppl. 1993;48:127–38.PubMed
37.
go back to reference Parry LJ, McGuane JT, Gehring HM, Kostic IGT, Siebela AL. Mechanisms of relaxin action in the reproductive tract: studies in the relaxin-deficient (Rlx-/-) mouse. Ann N Y Acad Sci. 2005;1041(1):91–103.CrossRefPubMed Parry LJ, McGuane JT, Gehring HM, Kostic IGT, Siebela AL. Mechanisms of relaxin action in the reproductive tract: studies in the relaxin-deficient (Rlx-/-) mouse. Ann N Y Acad Sci. 2005;1041(1):91–103.CrossRefPubMed
38.
go back to reference Siebel AL, Gehring HM, Reytomas IGT, Parry LJ. Inhibition of oxytocin receptor and estrogen receptor-α expression, but not relaxin receptors (LGR7), in the myometrium of late pregnant relaxin gene knockout mice. Endocrinology. 2003;144(10):4272–5.CrossRefPubMed Siebel AL, Gehring HM, Reytomas IGT, Parry LJ. Inhibition of oxytocin receptor and estrogen receptor-α expression, but not relaxin receptors (LGR7), in the myometrium of late pregnant relaxin gene knockout mice. Endocrinology. 2003;144(10):4272–5.CrossRefPubMed
39.
go back to reference Vodstrcil LA, Shynlova O, Verlander JW, Wlodek ME, Parry LJ. Decreased expression of the rat myometrial relaxin receptor (RXFP1) in late pregnancy is partially mediated by the presence of the conceptus. Biol Reprod. 2010;83(5):818–24.CrossRefPubMed Vodstrcil LA, Shynlova O, Verlander JW, Wlodek ME, Parry LJ. Decreased expression of the rat myometrial relaxin receptor (RXFP1) in late pregnancy is partially mediated by the presence of the conceptus. Biol Reprod. 2010;83(5):818–24.CrossRefPubMed
40.
go back to reference Kohsaka T, Min G, Lukas G, Trupin S, Campbell ET, Sherwood OD. Identification of specific relaxin-binding cells in the human female. Biol Reprod. 1998;59(4):991–9.CrossRefPubMed Kohsaka T, Min G, Lukas G, Trupin S, Campbell ET, Sherwood OD. Identification of specific relaxin-binding cells in the human female. Biol Reprod. 1998;59(4):991–9.CrossRefPubMed
41.
go back to reference Jelinic M, Leo C-H, Uiterweer EDP, Sandow SL, Gooi JH, Wlodek ME, et al. Localization of relaxin receptors in arteries and veins, and region-specific increases in compliance and bradykinin-mediated relaxation after in vivo serelaxin treatment. FASEB J. 2014;28(1):275–87.CrossRefPubMedPubMedCentral Jelinic M, Leo C-H, Uiterweer EDP, Sandow SL, Gooi JH, Wlodek ME, et al. Localization of relaxin receptors in arteries and veins, and region-specific increases in compliance and bradykinin-mediated relaxation after in vivo serelaxin treatment. FASEB J. 2014;28(1):275–87.CrossRefPubMedPubMedCentral
42.
go back to reference Vodstrcil LA, Tare M, Novak J, Dragomir N, Ramirez RJ, Wlodek ME, et al. Relaxin mediates uterine artery compliance during pregnancy and increases uterine blood flow. FASEB J. 2012;26(10):4035–44.CrossRefPubMedPubMedCentral Vodstrcil LA, Tare M, Novak J, Dragomir N, Ramirez RJ, Wlodek ME, et al. Relaxin mediates uterine artery compliance during pregnancy and increases uterine blood flow. FASEB J. 2012;26(10):4035–44.CrossRefPubMedPubMedCentral
43.
go back to reference Tan J, Paria BC, Dey SK, Das SK. Differential uterine expression of estrogen and progesterone receptors correlates with uterine preparation for implantation and decidualization in the mouse. Endocrinology. 1999;140(11):5310–21.PubMedPubMedCentral Tan J, Paria BC, Dey SK, Das SK. Differential uterine expression of estrogen and progesterone receptors correlates with uterine preparation for implantation and decidualization in the mouse. Endocrinology. 1999;140(11):5310–21.PubMedPubMedCentral
44.
go back to reference Walter LM, Rogers PAW, Girling JE. Differential expression of vascular endothelial growth factor-A isoforms in the mouse uterus during early pregnancy. Reprod Biomed Online. 2010;21(6):803–11.CrossRefPubMed Walter LM, Rogers PAW, Girling JE. Differential expression of vascular endothelial growth factor-A isoforms in the mouse uterus during early pregnancy. Reprod Biomed Online. 2010;21(6):803–11.CrossRefPubMed
45.
go back to reference Das SK, Yano S, Wang J, Edwards DR, Nagase H, Dey SK. Expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in the mouse uterus during the peri-implantation period. Dev Genet. 1997;21(1):44–54.CrossRefPubMed Das SK, Yano S, Wang J, Edwards DR, Nagase H, Dey SK. Expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in the mouse uterus during the peri-implantation period. Dev Genet. 1997;21(1):44–54.CrossRefPubMed
46.
go back to reference Daikoku T, Matsumoto H, Gupta RA, Das SK, Gassmann M, DuBois RN, et al. Expression of hypoxia-inducible factors in the peri-implantation mouse uterus is regulated in a cell-specific and ovarian steroid hormone-dependent manner: evidence for differential function of HIFs during early pregnancy. J Biol Chem. 2003;278(9):7683–91.CrossRefPubMed Daikoku T, Matsumoto H, Gupta RA, Das SK, Gassmann M, DuBois RN, et al. Expression of hypoxia-inducible factors in the peri-implantation mouse uterus is regulated in a cell-specific and ovarian steroid hormone-dependent manner: evidence for differential function of HIFs during early pregnancy. J Biol Chem. 2003;278(9):7683–91.CrossRefPubMed
47.
go back to reference Sato H, Takino T, Okada Y, Cao J, Shinagawa A, Yamamoto E, et al. A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature. 1994;370(6484):61–5.CrossRefPubMed Sato H, Takino T, Okada Y, Cao J, Shinagawa A, Yamamoto E, et al. A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature. 1994;370(6484):61–5.CrossRefPubMed
48.
go back to reference Bell RJ, Eddie LW, Lester AR, Wood EC, Johnston PD, Niall HD. Relaxin in human pregnancy serum measured with an homologous radioimmunoassay. Obstet Gynecol. 1987;69(4):585–9.PubMed Bell RJ, Eddie LW, Lester AR, Wood EC, Johnston PD, Niall HD. Relaxin in human pregnancy serum measured with an homologous radioimmunoassay. Obstet Gynecol. 1987;69(4):585–9.PubMed
49.
go back to reference Sherwood OD, Crnekovic VE, Gordon WL, Rutherford JE. Radioimmunoassay of relaxin throughout pregnancy and during parturition in the rat. Endocrinology. 1980;107(3):691–8.CrossRefPubMed Sherwood OD, Crnekovic VE, Gordon WL, Rutherford JE. Radioimmunoassay of relaxin throughout pregnancy and during parturition in the rat. Endocrinology. 1980;107(3):691–8.CrossRefPubMed
Metadata
Title
Relaxin deficiency results in increased expression of angiogenesis- and remodelling-related genes in the uterus of early pregnant mice but does not affect endometrial angiogenesis prior to implantation
Authors
Sarah A. Marshall
Leelee Ng
Elaine N. Unemori
Jane E. Girling
Laura J. Parry
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Reproductive Biology and Endocrinology / Issue 1/2016
Electronic ISSN: 1477-7827
DOI
https://doi.org/10.1186/s12958-016-0148-y

Other articles of this Issue 1/2016

Reproductive Biology and Endocrinology 1/2016 Go to the issue