Skip to main content
Top
Published in: Reproductive Biology and Endocrinology 1/2015

Open Access 01-12-2015 | Research

Very small embryonic-like stem cells (VSELs) detected in azoospermic testicular biopsies of adult survivors of childhood cancer

Authors: Purna Kurkure, Maya Prasad, Vandana Dhamankar, Ganesh Bakshi

Published in: Reproductive Biology and Endocrinology | Issue 1/2015

Login to get access

Abstract

Background

Infertility is a known side-effect of oncotherapy in cancer survivors, and often compromises the quality of life. The present study was undertaken to detect very small embryonic-like stem cells (VSELs) in testicular biopsies from young adult survivors of childhood cancer who had azoospermia. VSELs have been earlier reported in human and mouse testes. They resist busulphan treatment in mice and potentially restore spermatogenesis when the somatic niche is restored by transplanting Sertoli or mesenchymal cells. VSELs also have the potential to differentiate into sperm in vitro.

Methods

The study had clearance from Institutional review board (IRB). Seven azoospermic survivors of childhood cancer were included in the study after obtaining their informed consent. Semen analysis was done to confirm azoospermia prior to inclusion in the study. Testicular biopsies were performed at the Uro-oncology Unit of the hospital and then used for various studies to detect VSELs.

Results

Hematoxylin and Eosin stained tubular sections confirmed azoospermia and smears revealed the presence of very small, spherical VSELs with high nucleo-cytoplasmic ratio, in addition to the Sertoli cells. Immuno-localization studies on testicular smears showed that the VSELs were CD133+/CD45-/LIN-, expressed nuclear OCT-4, STELLA and cell surface SSEA-4. Pluripotent transcripts Oct-4A, Nanog and Sox-2 were detected in azoospermic samples whereas marked reduction was observed in germ cell markers Oct-4 and Boule.

Conclusions

The present study demonstrates the presence of pluripotent VSELs in the testicular biopsy of azoospermic adult survivors of childhood cancer. It is likely that these persisting VSELs can restore spermatogenesis as demonstrated in mice studies. Therefore, pilot studies need to be undertaken using autologous mesenchymal cells with a hope to restore testicular function and fertility in cancer survivors. The results of this study assume a great significance in the current era, where cryopreservation of testicular tissue in young pre-pubertal boys for restoring spermatogenesis in adulthood is still in experimental stages.
Literature
1.
go back to reference Howlader N, Noone AM, Krapcho M, Garshell J, Miller D, Altekruse SF et al. SEER Cancer Statistics Review, 1975–2011, National Cancer Institute. Bethesda, MD, http://seer.cancer.gov/csr/1975_2011/, based on November 2013 SEER data submission, posted to the SEER web site, April 2014 Howlader N, Noone AM, Krapcho M, Garshell J, Miller D, Altekruse SF et al. SEER Cancer Statistics Review, 1975–2011, National Cancer Institute. Bethesda, MD, http://​seer.​cancer.​gov/​csr/​1975_​2011/​, based on November 2013 SEER data submission, posted to the SEER web site, April 2014
2.
go back to reference Hudson MM, Oeffinger KC, Jones K, Brinkman TM, Krull KR, Mulrooney DA, et al. Age-dependent changes in health status in the childhood cancer survivor cohort. J Clin Oncol. 2015;33:479–91.CrossRefPubMed Hudson MM, Oeffinger KC, Jones K, Brinkman TM, Krull KR, Mulrooney DA, et al. Age-dependent changes in health status in the childhood cancer survivor cohort. J Clin Oncol. 2015;33:479–91.CrossRefPubMed
3.
go back to reference Wasilewski-Masker K, Seidel KD, Leisenring W, Mertens AC, Shnorhavorian M, Ritenour CW, et al. Male infertility in long-term survivors of pediatric cancer: a report from the childhood cancer survivor study. J Cancer Surviv. 2014;8:437–47.PubMedCentralCrossRefPubMed Wasilewski-Masker K, Seidel KD, Leisenring W, Mertens AC, Shnorhavorian M, Ritenour CW, et al. Male infertility in long-term survivors of pediatric cancer: a report from the childhood cancer survivor study. J Cancer Surviv. 2014;8:437–47.PubMedCentralCrossRefPubMed
4.
go back to reference Tromp K, Claessens JJ, Knijnenburg SL, van der Pal HJ, van Leeuwen FE, Caron HN, et al. Reproductive status in adult male long-term survivors of childhood cancer Hum. Reprod. 2011;26:1775–83. Tromp K, Claessens JJ, Knijnenburg SL, van der Pal HJ, van Leeuwen FE, Caron HN, et al. Reproductive status in adult male long-term survivors of childhood cancer Hum. Reprod. 2011;26:1775–83.
5.
go back to reference Byrne J, Mulvihill JJ, Myers MH, Connelly RR, Naughton MD, Krauss MR, et al. Effects of treatment on fertility in long-term survivors of childhood or adolescent cancer. N Engl J Med. 1987;317:1315–21.CrossRefPubMed Byrne J, Mulvihill JJ, Myers MH, Connelly RR, Naughton MD, Krauss MR, et al. Effects of treatment on fertility in long-term survivors of childhood or adolescent cancer. N Engl J Med. 1987;317:1315–21.CrossRefPubMed
6.
go back to reference Kenney LB, Laufer MR, Grant FD, Grier H, Diller L. High risk of infertility and long term gonadal damage in males treated with high dose cyclophosphamide for sarcoma during childhood. Cancer. 2001;91:613–21.CrossRefPubMed Kenney LB, Laufer MR, Grant FD, Grier H, Diller L. High risk of infertility and long term gonadal damage in males treated with high dose cyclophosphamide for sarcoma during childhood. Cancer. 2001;91:613–21.CrossRefPubMed
7.
go back to reference Jahnukainen K, Heikkinen R, Henriksson M, et al. Semen quality and fertility in adult long-term survivors of childhood acute lymphoblastic leukemia. Fertil Steril. 2011;96(4):837–42.CrossRefPubMed Jahnukainen K, Heikkinen R, Henriksson M, et al. Semen quality and fertility in adult long-term survivors of childhood acute lymphoblastic leukemia. Fertil Steril. 2011;96(4):837–42.CrossRefPubMed
8.
go back to reference Green DM, Nolan VG, Goodman PJ, Whitton JA, Srivastava D, Leisenring WM, et al. The cyclophosphamide equivalent dose as an approach for quantifying alkylating agent exposure: a report from the Childhood Cancer Survivor Study. Pediatr Blood Cancer. 2014;61:53–67.PubMedCentralCrossRefPubMed Green DM, Nolan VG, Goodman PJ, Whitton JA, Srivastava D, Leisenring WM, et al. The cyclophosphamide equivalent dose as an approach for quantifying alkylating agent exposure: a report from the Childhood Cancer Survivor Study. Pediatr Blood Cancer. 2014;61:53–67.PubMedCentralCrossRefPubMed
9.
go back to reference Wallace WHB. Oncofertility and preservation of reproductive capacity in children and young adults. Cancer. 2011;117:2301–10.CrossRefPubMed Wallace WHB. Oncofertility and preservation of reproductive capacity in children and young adults. Cancer. 2011;117:2301–10.CrossRefPubMed
10.
go back to reference Brougham MF, Kelnar CJ, Sharpe RM, Wallace HB. Male fertility following childhood cancer: current concepts and future therapies. Asian J Androl. 2003;5:325–37.PubMed Brougham MF, Kelnar CJ, Sharpe RM, Wallace HB. Male fertility following childhood cancer: current concepts and future therapies. Asian J Androl. 2003;5:325–37.PubMed
11.
go back to reference Wallace WH, Anderson RA, Irvine DS. Fertility preservation for young patients with cancer: Who is at risk and what can be offered? Lancet Oncol. 2005;6:209–18.CrossRefPubMed Wallace WH, Anderson RA, Irvine DS. Fertility preservation for young patients with cancer: Who is at risk and what can be offered? Lancet Oncol. 2005;6:209–18.CrossRefPubMed
12.
go back to reference Loren AW1, Mangu PB, Beck LN, Brennan L, Magdalinski AJ, Partridge AH, et al. Fertility preservation for patients with cancer: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol. 2013;31:2500–10.CrossRefPubMed Loren AW1, Mangu PB, Beck LN, Brennan L, Magdalinski AJ, Partridge AH, et al. Fertility preservation for patients with cancer: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol. 2013;31:2500–10.CrossRefPubMed
13.
go back to reference Legro RS, Adashi EY. Introduction: Germline stem cell therapy in humans: two are not enough. Fert Steril. 2014;101:1–2.CrossRef Legro RS, Adashi EY. Introduction: Germline stem cell therapy in humans: two are not enough. Fert Steril. 2014;101:1–2.CrossRef
14.
go back to reference Bhartiya D, Kasiviswanathan S, Unni SK, Pethe P, Dhabalia JV, et al. Newer insights into premeiotic development of germ cells in adult human testis using Oct-4 as a stem cell marker. J Histochem Cytochem. 2010;58:1093–106.PubMedCentralCrossRefPubMed Bhartiya D, Kasiviswanathan S, Unni SK, Pethe P, Dhabalia JV, et al. Newer insights into premeiotic development of germ cells in adult human testis using Oct-4 as a stem cell marker. J Histochem Cytochem. 2010;58:1093–106.PubMedCentralCrossRefPubMed
15.
go back to reference Parte S, Bhartiya D, Telang J, Daithankar V, Salvi V, et al. Detection, characterization, and spontaneous differentiation in vitro of very small embryonic-like putative stem cells in adult mammalian ovary. Stem Cells Dev. 2011;20:1451–64.PubMedCentralCrossRefPubMed Parte S, Bhartiya D, Telang J, Daithankar V, Salvi V, et al. Detection, characterization, and spontaneous differentiation in vitro of very small embryonic-like putative stem cells in adult mammalian ovary. Stem Cells Dev. 2011;20:1451–64.PubMedCentralCrossRefPubMed
16.
go back to reference Bhartiya D, Sriraman K, Parte S. Stem cell interaction with somatic niche may hold the key to fertility restoration in cancer patients. Obstet Gynecol Int. 2012;921082. Bhartiya D, Sriraman K, Parte S. Stem cell interaction with somatic niche may hold the key to fertility restoration in cancer patients. Obstet Gynecol Int. 2012;921082.
17.
go back to reference Parte S, Patel H, Sriraman K, Bhartiya D. Isolation and characterization of stem cells in the adult mammalian ovary. Methods Mol Biol. 2015;1235:203–29.CrossRefPubMed Parte S, Patel H, Sriraman K, Bhartiya D. Isolation and characterization of stem cells in the adult mammalian ovary. Methods Mol Biol. 2015;1235:203–29.CrossRefPubMed
18.
go back to reference Bhartiya D, Unni S, Parte S, Anand S. Very small embryonic-like stem cells: implications in reproductive biology. Bio Med Research Intl. 2013. doi:10.1155/2013/682326 Bhartiya D, Unni S, Parte S, Anand S. Very small embryonic-like stem cells: implications in reproductive biology. Bio Med Research Intl. 2013. doi:10.​1155/​2013/​682326
19.
go back to reference Bhartiya D, Hinduja I, Patel H, Bhilawadikar R. Making gametes from pluripotent stem cells – a promising role for very small embryonic-like stem cells. Reprod Biol Endocrinol. 2014;12:114.PubMedCentralCrossRefPubMed Bhartiya D, Hinduja I, Patel H, Bhilawadikar R. Making gametes from pluripotent stem cells – a promising role for very small embryonic-like stem cells. Reprod Biol Endocrinol. 2014;12:114.PubMedCentralCrossRefPubMed
20.
go back to reference Ratajczak J, Wysoczynski M, Zuba-Surma E, Wan W, Kucia M, Yoder MC, et al. Adult murine bone marrow-derived very small embryonic-like stem cells differentiate into the hematopoietic lineage after co-culture over OP9 stromal cells. Exp Hematol. 2011;39:225–37.PubMedCentralCrossRefPubMed Ratajczak J, Wysoczynski M, Zuba-Surma E, Wan W, Kucia M, Yoder MC, et al. Adult murine bone marrow-derived very small embryonic-like stem cells differentiate into the hematopoietic lineage after co-culture over OP9 stromal cells. Exp Hematol. 2011;39:225–37.PubMedCentralCrossRefPubMed
21.
go back to reference Anand S, Bhartiya D, Sriraman K, Patel H, Manjramkar DD. Very small embryonic-like stem cells survive and restore spermatogenesis after busulphan treatment in mouse testis. J Stem Cell Res Ther. 2014;4:216. doi:10.4172/2157-7633.1000216. Anand S, Bhartiya D, Sriraman K, Patel H, Manjramkar DD. Very small embryonic-like stem cells survive and restore spermatogenesis after busulphan treatment in mouse testis. J Stem Cell Res Ther. 2014;4:216. doi:10.​4172/​2157-7633.​1000216.
22.
go back to reference Sriraman K, Bhartiya D, Anand S, Bhutda S. Mouse ovarian very small embryonic-like stem cells resist chemotherapy and retain ability to initiate oocyte-specific differentiation. Rep Sci. 2015;22:884–903.CrossRef Sriraman K, Bhartiya D, Anand S, Bhutda S. Mouse ovarian very small embryonic-like stem cells resist chemotherapy and retain ability to initiate oocyte-specific differentiation. Rep Sci. 2015;22:884–903.CrossRef
23.
go back to reference Ratajczak MZ, Zuba-Surma EK, Wysoczynski M, Ratajczak J, Kucia M. Very small embryonic-like stem cells: characterization, developmental origin, and biological significance. Exp Hematol. 2008;36:742–51.PubMedCentralCrossRefPubMed Ratajczak MZ, Zuba-Surma EK, Wysoczynski M, Ratajczak J, Kucia M. Very small embryonic-like stem cells: characterization, developmental origin, and biological significance. Exp Hematol. 2008;36:742–51.PubMedCentralCrossRefPubMed
24.
go back to reference Paczkowska E, Kucia M, Koziarska D, Halasa M, Safranow K, et al. Clinical evidence that very small embryonic-like stem cells are mobilized into peripheral blood inpatients after stroke. Stroke. 2009;40:1237–44.CrossRefPubMed Paczkowska E, Kucia M, Koziarska D, Halasa M, Safranow K, et al. Clinical evidence that very small embryonic-like stem cells are mobilized into peripheral blood inpatients after stroke. Stroke. 2009;40:1237–44.CrossRefPubMed
26.
go back to reference Mascre’ G, Dekoninck S, Drogat B, Youssef KK, Brohee’ S, et al. Distinct contribution of stem and progenitor cells to epidermal maintenance. Nature. 2012;489:257–62.CrossRef Mascre’ G, Dekoninck S, Drogat B, Youssef KK, Brohee’ S, et al. Distinct contribution of stem and progenitor cells to epidermal maintenance. Nature. 2012;489:257–62.CrossRef
27.
go back to reference De Rosa L, De Luca M. Cell biology: dormant and restless skin stem cells. Nature. 2012;489:215–7.CrossRefPubMed De Rosa L, De Luca M. Cell biology: dormant and restless skin stem cells. Nature. 2012;489:215–7.CrossRefPubMed
29.
go back to reference Armenian SH, Landier W, Hudson MM, Robison LL, On behalf of the COG survivorship and outcomes committee. Children’s Oncology Group’s 2013 Blueprint for Research: Survivorship and Outcomes. Pediatr Blood Cancer. 2013;60(6):1063–8. doi:10.1002/pbc.24422.PubMedCentralCrossRefPubMed Armenian SH, Landier W, Hudson MM, Robison LL, On behalf of the COG survivorship and outcomes committee. Children’s Oncology Group’s 2013 Blueprint for Research: Survivorship and Outcomes. Pediatr Blood Cancer. 2013;60(6):1063–8. doi:10.​1002/​pbc.​24422.PubMedCentralCrossRefPubMed
30.
go back to reference Hudson MM, Neglia JP, Woods WG, Sandlund JT, Ching-Hon P, Kun LE, et al. Lessons from the Past: Opportunities to Improve Childhood Cancer Survivor Care through Outcomes Investigations of Historical Therapeutic Approaches for Pediatric Hematological Malignancies. Pediatr Blood Cancer. 2012;58(3):334–43. doi:10.1002/pbc.23385.PubMedCentralCrossRefPubMed Hudson MM, Neglia JP, Woods WG, Sandlund JT, Ching-Hon P, Kun LE, et al. Lessons from the Past: Opportunities to Improve Childhood Cancer Survivor Care through Outcomes Investigations of Historical Therapeutic Approaches for Pediatric Hematological Malignancies. Pediatr Blood Cancer. 2012;58(3):334–43. doi:10.​1002/​pbc.​23385.PubMedCentralCrossRefPubMed
31.
go back to reference Kurkure PA, Achrekar S, Uparkar U, Dalvi N, Goswami S. Surviving childhood cancer: what next? Issues under consideration at the After Completion of Therapy (ACT) clinic in India. Med Pediatr Oncol. 2003;41:588–9.CrossRefPubMed Kurkure PA, Achrekar S, Uparkar U, Dalvi N, Goswami S. Surviving childhood cancer: what next? Issues under consideration at the After Completion of Therapy (ACT) clinic in India. Med Pediatr Oncol. 2003;41:588–9.CrossRefPubMed
32.
go back to reference Dhamankar V, Kurkure P, Goswami S, Dalvi N, Bhartiya D, Vora T. Reproductive outcome in married young adult survivors of childhood cancers attending after completion of therapy (ACT) clinic. Pediatr Blood Cancer. 2011;57:830. Dhamankar V, Kurkure P, Goswami S, Dalvi N, Bhartiya D, Vora T. Reproductive outcome in married young adult survivors of childhood cancers attending after completion of therapy (ACT) clinic. Pediatr Blood Cancer. 2011;57:830.
33.
34.
go back to reference Dimmeler S, Ding S, Rando TA, Trounson A. Translational strategies and challenges in regenerative medicine. Nature Med. 2014;20:814–21.CrossRefPubMed Dimmeler S, Ding S, Rando TA, Trounson A. Translational strategies and challenges in regenerative medicine. Nature Med. 2014;20:814–21.CrossRefPubMed
Metadata
Title
Very small embryonic-like stem cells (VSELs) detected in azoospermic testicular biopsies of adult survivors of childhood cancer
Authors
Purna Kurkure
Maya Prasad
Vandana Dhamankar
Ganesh Bakshi
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Reproductive Biology and Endocrinology / Issue 1/2015
Electronic ISSN: 1477-7827
DOI
https://doi.org/10.1186/s12958-015-0121-1

Other articles of this Issue 1/2015

Reproductive Biology and Endocrinology 1/2015 Go to the issue