Skip to main content
Top
Published in: Reproductive Biology and Endocrinology 1/2015

Open Access 01-12-2015 | Research

Profiling of relaxin and its receptor proteins in boar reproductive tissues and spermatozoa

Authors: Jean M Feugang, Jonathan M Greene, Hector L Sanchez-Rodríguez, John V Stokes, Mark A Crenshaw, Scott T Willard, Peter L Ryan

Published in: Reproductive Biology and Endocrinology | Issue 1/2015

Login to get access

Abstract

Background

Relaxin levels in seminal plasma have been associated with positive effects on sperm motility and quality, and thus having potential roles in male fertility. However, the origin of seminal relaxin, within the male reproductive tract, and the moment of its release in the vicinity of spermatozoa remain unclear. Here, we assessed the longitudinal distribution of relaxin and its receptors RXFP1 and RXFP2 in the reproductive tract, sex accessory glands, and spermatozoa of adult boars.

Methods

Spermatozoa were harvested from three fertile boars and reproductive tract (testes and epididymis) and sex accessory gland (prostate and seminal vesicles) tissues were collected post-mortem from each boar. Epididymis ducts were sectioned into caput, corpus, and cauda regions, and spermatozoa were mechanically collected. All samples were subjected to immunofluorescence and/or western immunoblotting for relaxin, RXFP1, and RXFP2 detection. Immunolabeled-spermatozoa were submitted to flow cytometry analyses and data were statistically analyzed with ANOVA.

Results

Both receptors were detected in all tissues, with a predominance of mature and immature isoforms of RXFP1 and RXFP2, respectively. Relaxin signals were found in the testes, with Leydig cells displaying the highest intensity compared to other testicular cells. The testicular immunofluorescence intensity of relaxin was greater than that of other tissues. Epithelial basal cells exhibited the highest relaxin immunofluorescence intensity within the epididymis and the vas deferens. The luminal immunoreactivity to relaxin was detected in the seminiferous tubule, epididymis, and vas deferens ducts. Epididymal and ejaculated spermatozoa were immunopositive to relaxin, RXFP1, and RXFP2, and epididymal corpus-derived spermatozoa had the highest immunoreactivities across epididymal sections. Both vas deferens-collected and ejaculated spermatozoa displayed comparable, but lowest immunofluorescence signals among groups. The entire sperm length was immunopositive to both relaxin and receptors, with relaxin signal being robust in the acrosome area and RXFP2, homogeneously distributed than RXFP1 on the head of ejaculated spermatozoa.

Conclusions

Immunolocalization indicates that relaxin-receptor complexes may have important roles in boar reproduction and that spermatozoa are already exposed to relaxin upon their production. The findings suggest autocrine and/or paracrine actions of relaxin on spermatozoa, either before or after ejaculation, which have possible roles on the fertilizing potential of spermatozoa.
Literature
1.
go back to reference Dacheux J-L, Dacheux F. New insights into epididymal function in relation to sperm maturation. Reproduction. 2014;147(2):R27–42.CrossRefPubMed Dacheux J-L, Dacheux F. New insights into epididymal function in relation to sperm maturation. Reproduction. 2014;147(2):R27–42.CrossRefPubMed
2.
go back to reference Kohane AC, Gonzalez Echeverria FM, Pineiro L, Blaquier JA. Interaction of proteins of epididymal origin with spermatozoa. Biol Reprod. 1980;23(4):737–42.CrossRefPubMed Kohane AC, Gonzalez Echeverria FM, Pineiro L, Blaquier JA. Interaction of proteins of epididymal origin with spermatozoa. Biol Reprod. 1980;23(4):737–42.CrossRefPubMed
3.
go back to reference Gatti JL, Castella S, Dacheux F, Ecroyd H, Metayer S, Thimon V, et al. Post-testicular sperm environment and fertility. Anim Reprod Sci. 2004;82–83:321–39. doi:10.1016/j.anireprosci.2004.05.011.CrossRefPubMed Gatti JL, Castella S, Dacheux F, Ecroyd H, Metayer S, Thimon V, et al. Post-testicular sperm environment and fertility. Anim Reprod Sci. 2004;82–83:321–39. doi:10.1016/j.anireprosci.2004.05.011.CrossRefPubMed
4.
go back to reference Kohane AC, Cameo MS, Pineiro L, Garberi JC, Blaquier JA. Distribution and site of production of specific proteins in the rat epididymis. Biol Reprod. 1980;23(1):181–7.CrossRefPubMed Kohane AC, Cameo MS, Pineiro L, Garberi JC, Blaquier JA. Distribution and site of production of specific proteins in the rat epididymis. Biol Reprod. 1980;23(1):181–7.CrossRefPubMed
5.
go back to reference Syntin P, Dacheux F, Druart X, Gatti JL, Okamura N, Dacheux JL. Characterization and identification of proteins secreted in the various regions of the adult boar epididymis. Biol Reprod. 1996;55(5):956–74.CrossRefPubMed Syntin P, Dacheux F, Druart X, Gatti JL, Okamura N, Dacheux JL. Characterization and identification of proteins secreted in the various regions of the adult boar epididymis. Biol Reprod. 1996;55(5):956–74.CrossRefPubMed
6.
go back to reference Caballero I, Parrilla I, Almiñana C, del Olmo D, Roca J, Martínez EA, et al. Seminal Plasma Proteins as Modulators of the Sperm Function and Their Application in Sperm Biotechnologies. Reprod Domest Anim. 2012;47:12–21. doi:10.1111/j.1439-0531.2012.02028.x.CrossRefPubMed Caballero I, Parrilla I, Almiñana C, del Olmo D, Roca J, Martínez EA, et al. Seminal Plasma Proteins as Modulators of the Sperm Function and Their Application in Sperm Biotechnologies. Reprod Domest Anim. 2012;47:12–21. doi:10.1111/j.1439-0531.2012.02028.x.CrossRefPubMed
7.
go back to reference Juang HH, Musah AI, Schwabe C, Ford JJ, Anderson LL. Relaxin in peripheral plasma of boars during development, copulation, after administration of hCG and after castration. J Reprod Fertil. 1996;107(1):1–6.CrossRefPubMed Juang HH, Musah AI, Schwabe C, Ford JJ, Anderson LL. Relaxin in peripheral plasma of boars during development, copulation, after administration of hCG and after castration. J Reprod Fertil. 1996;107(1):1–6.CrossRefPubMed
8.
go back to reference Kohsaka T, Hamano K, Sasada H, Watanabe S, Ogine T, Suzuki E. Seminal immunoreactive relaxin in domestic animals and its relationship to sperm motility as a possible index for predicting the fertilizing ability of sires. Int J Androl. 2003;26(2):115–20. doi:409.CrossRefPubMed Kohsaka T, Hamano K, Sasada H, Watanabe S, Ogine T, Suzuki E. Seminal immunoreactive relaxin in domestic animals and its relationship to sperm motility as a possible index for predicting the fertilizing ability of sires. Int J Androl. 2003;26(2):115–20. doi:409.CrossRefPubMed
9.
go back to reference Loumaye E, De Cooman S, Thomas K. Immunoreactive relaxin-like substance in human seminal plasma. J Clin Endocrinol Metab. 1980;50(6):1142–3. doi:10.1210/jcem-50-6-1142.CrossRefPubMed Loumaye E, De Cooman S, Thomas K. Immunoreactive relaxin-like substance in human seminal plasma. J Clin Endocrinol Metab. 1980;50(6):1142–3. doi:10.1210/jcem-50-6-1142.CrossRefPubMed
10.
go back to reference Sasaki Y, Kohsaka T, Kawarasaki T, Sasada H, Ogine T, Bamba K. Immunoreactive relaxin in seminal plasma of fertile boars and its correlation with sperm motility characteristics determined by computer-assisted digital image analysis. Int J Andro. 2001;24(1):24–30. doi:ija259.CrossRef Sasaki Y, Kohsaka T, Kawarasaki T, Sasada H, Ogine T, Bamba K. Immunoreactive relaxin in seminal plasma of fertile boars and its correlation with sperm motility characteristics determined by computer-assisted digital image analysis. Int J Andro. 2001;24(1):24–30. doi:ija259.CrossRef
11.
go back to reference Sherwood OD. Relaxin’s physiological roles and other diverse actions. Endocr Rev. 2004;25(2):205–34.CrossRefPubMed Sherwood OD. Relaxin’s physiological roles and other diverse actions. Endocr Rev. 2004;25(2):205–34.CrossRefPubMed
12.
go back to reference Hisaw F. Experimental relaxation of the pubic ligament of the guinea pig. Proc Soc Exp Biol Med. 1926;23:661–3.CrossRef Hisaw F. Experimental relaxation of the pubic ligament of the guinea pig. Proc Soc Exp Biol Med. 1926;23:661–3.CrossRef
13.
go back to reference Bagnell CA, Zhang Q, Downey B, Ainsworth L. Sources and biological actions of relaxin in pigs. J Reprod Fertil Suppl. 1993;48:127–38.PubMed Bagnell CA, Zhang Q, Downey B, Ainsworth L. Sources and biological actions of relaxin in pigs. J Reprod Fertil Suppl. 1993;48:127–38.PubMed
14.
go back to reference Einspanier A, Zarreh-Hoshyari-Khah M, Balvers M, Kerr L, Fuhrmann K, Ivell R. Local relaxin biosynthesis in the ovary and uterus through the oestrous cycle and early pregnancy in the female marmoset monkey (Callithrix jacchus). Hum Reprod. 1997;12(6):1325–37. doi:10.1093/humrep/12.6.1325.CrossRefPubMed Einspanier A, Zarreh-Hoshyari-Khah M, Balvers M, Kerr L, Fuhrmann K, Ivell R. Local relaxin biosynthesis in the ovary and uterus through the oestrous cycle and early pregnancy in the female marmoset monkey (Callithrix jacchus). Hum Reprod. 1997;12(6):1325–37. doi:10.1093/humrep/12.6.1325.CrossRefPubMed
15.
go back to reference Sanborn BM, Kuo HS, Weisbrodt NW, Sherwood OD. The interaction of relaxin with the rat uterus. I. Effect on cyclic nucleotide levels and spontaneous contractile activity. Endocrinology. 1980;106(4):1210–5. doi:10.1210/endo-106-4-1210.CrossRefPubMed Sanborn BM, Kuo HS, Weisbrodt NW, Sherwood OD. The interaction of relaxin with the rat uterus. I. Effect on cyclic nucleotide levels and spontaneous contractile activity. Endocrinology. 1980;106(4):1210–5. doi:10.​1210/​endo-106-4-1210.CrossRefPubMed
16.
go back to reference Hsu SY, Nakabayashi K, Nishi S, Kumagai J, Kudo M, Sherwood OD, et al. Activation of orphan receptors by the hormone relaxin. Science. 2002;295(5555):671–4. doi:10.1126/science.1065654.CrossRefPubMed Hsu SY, Nakabayashi K, Nishi S, Kumagai J, Kudo M, Sherwood OD, et al. Activation of orphan receptors by the hormone relaxin. Science. 2002;295(5555):671–4. doi:10.1126/science.1065654.CrossRefPubMed
17.
go back to reference Dschietzig T, Bartsch C, Baumann G, Stangl K. Relaxin-a pleiotropic hormone and its emerging role for experimental and clinical therapeutics. Pharmacol Ther. 2006;112(1):38–56. doi:10.1016/j.pharmthera.2006.03.004. S0163-7258(06)00041-6.CrossRefPubMed Dschietzig T, Bartsch C, Baumann G, Stangl K. Relaxin-a pleiotropic hormone and its emerging role for experimental and clinical therapeutics. Pharmacol Ther. 2006;112(1):38–56. doi:10.1016/j.pharmthera.2006.03.004. S0163-7258(06)00041-6.CrossRefPubMed
18.
go back to reference Stewart DR, Overstreet JW, Celniker AC, Hess DL, Cragun JR, Boyers SP, et al. The relationship between hCG and relaxin secretion in normal pregnancies vs peri-implantation spontaneous abortions. Clin Endocrinol (Oxf). 1993;38(4):379–85.CrossRef Stewart DR, Overstreet JW, Celniker AC, Hess DL, Cragun JR, Boyers SP, et al. The relationship between hCG and relaxin secretion in normal pregnancies vs peri-implantation spontaneous abortions. Clin Endocrinol (Oxf). 1993;38(4):379–85.CrossRef
19.
go back to reference Feugang JM, Rodriguez-Munoz JC, Willard ST, Bathgate RA, Ryan PL. Examination of relaxin and its receptors expression in pig gametes and embryos. Reprod Biol Endocrinol. 2011;9:10. doi:10.1186/1477-7827-9-10 1477-7827-9-10.CrossRefPubMedCentralPubMed Feugang JM, Rodriguez-Munoz JC, Willard ST, Bathgate RA, Ryan PL. Examination of relaxin and its receptors expression in pig gametes and embryos. Reprod Biol Endocrinol. 2011;9:10. doi:10.1186/1477-7827-9-10 1477-7827-9-10.CrossRefPubMedCentralPubMed
20.
go back to reference Gunnersen JM, Crawford RJ, Tregear GW. Expression of the relaxin gene in rat tissues. Mol Cell Endocrinol. 1995;110(1–2):55–64.CrossRefPubMed Gunnersen JM, Crawford RJ, Tregear GW. Expression of the relaxin gene in rat tissues. Mol Cell Endocrinol. 1995;110(1–2):55–64.CrossRefPubMed
21.
go back to reference Ivell R, Kotula-Balak M, Glynn D, Heng K, Anand-Ivell R. Relaxin family peptides in the male reproductive system--a critical appraisal. Mol Hum Reprod. 2011;17(2):71–84. doi:10.1093/molehr/gaq086.CrossRefPubMed Ivell R, Kotula-Balak M, Glynn D, Heng K, Anand-Ivell R. Relaxin family peptides in the male reproductive system--a critical appraisal. Mol Hum Reprod. 2011;17(2):71–84. doi:10.1093/molehr/gaq086.CrossRefPubMed
22.
go back to reference Kohsaka T, Takahara H, Sasada H, Kawarasaki T, Bamba K, Masaki J, et al. Evidence for immunoreactive relaxin in boar seminal vesicles using combined light and electron microscope immunocytochemistry. J Reprod Fertil. 1992;95(2):397–408.CrossRefPubMed Kohsaka T, Takahara H, Sasada H, Kawarasaki T, Bamba K, Masaki J, et al. Evidence for immunoreactive relaxin in boar seminal vesicles using combined light and electron microscope immunocytochemistry. J Reprod Fertil. 1992;95(2):397–408.CrossRefPubMed
23.
go back to reference Arakaki RF, Kleinfeld RG, Bryant-Greenwood GD. Immunofluorescence studies using antisera to crude and to purified porcine relaxin. Biol Reprod. 1980;23(1):153–9.CrossRefPubMed Arakaki RF, Kleinfeld RG, Bryant-Greenwood GD. Immunofluorescence studies using antisera to crude and to purified porcine relaxin. Biol Reprod. 1980;23(1):153–9.CrossRefPubMed
24.
go back to reference Kato S, Siqin, Minagawa I, Aoshima T, Sagata D, Konishi H. Evidence for expression of relaxin hormone-receptor system in the boar testis. J Endocrinol. 2010;207(2):135–49. doi:10.1677/JOE-10-0149.CrossRefPubMed Kato S, Siqin, Minagawa I, Aoshima T, Sagata D, Konishi H. Evidence for expression of relaxin hormone-receptor system in the boar testis. J Endocrinol. 2010;207(2):135–49. doi:10.1677/JOE-10-0149.CrossRefPubMed
25.
go back to reference Min G, Sherwood OD. Localization of specific relaxin-binding cells in the ovary and testis of pigs. Biol Reprod. 1998;59(2):401–8.CrossRefPubMed Min G, Sherwood OD. Localization of specific relaxin-binding cells in the ovary and testis of pigs. Biol Reprod. 1998;59(2):401–8.CrossRefPubMed
27.
go back to reference Nascimento AR, Pimenta MT, Lucas TF, Royer C, Porto CS, Lazari MF. Intracellular signaling pathways involved in the relaxin-induced proliferation of rat Sertoli cells. Eur J Pharmacol. 2012;691(1–3):283–91. doi:10.1016/j.ejphar.2012.07.021 S0014-2999(12)00614-0.CrossRefPubMed Nascimento AR, Pimenta MT, Lucas TF, Royer C, Porto CS, Lazari MF. Intracellular signaling pathways involved in the relaxin-induced proliferation of rat Sertoli cells. Eur J Pharmacol. 2012;691(1–3):283–91. doi:10.1016/j.ejphar.2012.07.021 S0014-2999(12)00614-0.CrossRefPubMed
28.
go back to reference Brenner SH, Lessing JB, Schoenfeld C, Amelar RD, Dubin L, Weiss G. Stimulation of human sperm cervical mucus penetration in vitro by relaxin. Fertil Steril. 1984;42(1):92–6.PubMed Brenner SH, Lessing JB, Schoenfeld C, Amelar RD, Dubin L, Weiss G. Stimulation of human sperm cervical mucus penetration in vitro by relaxin. Fertil Steril. 1984;42(1):92–6.PubMed
29.
go back to reference Ferlin A, Menegazzo M, Gianesello L, Selice R, Foresta C. Effect of relaxin on human sperm functions. J Androl. 2012;33(3):474–82. doi:10.2164/jandrol.110.012625.CrossRefPubMed Ferlin A, Menegazzo M, Gianesello L, Selice R, Foresta C. Effect of relaxin on human sperm functions. J Androl. 2012;33(3):474–82. doi:10.2164/jandrol.110.012625.CrossRefPubMed
30.
go back to reference Miah AG, Tareq KM, Hamano K, Kohsaka T, Tsujii H. Effect of relaxin on acrosome reaction and utilization of glucose in boar spermatozoa. J Reprod Dev. 2006;52(6):773–9. doi: JST. JSTAGE/jrd/18037.CrossRefPubMed Miah AG, Tareq KM, Hamano K, Kohsaka T, Tsujii H. Effect of relaxin on acrosome reaction and utilization of glucose in boar spermatozoa. J Reprod Dev. 2006;52(6):773–9. doi: JST. JSTAGE/jrd/18037.CrossRefPubMed
31.
go back to reference Feugang JM, Greene JM, Willard ST, Ryan PL. In vitro effects of relaxin on gene expression in porcine cumulus-oocyte complexes and developing embryos. Reprod Biol Endocrinol. 2011;9:15. doi:10.1186/1477-7827-9-15.CrossRefPubMedCentralPubMed Feugang JM, Greene JM, Willard ST, Ryan PL. In vitro effects of relaxin on gene expression in porcine cumulus-oocyte complexes and developing embryos. Reprod Biol Endocrinol. 2011;9:15. doi:10.1186/1477-7827-9-15.CrossRefPubMedCentralPubMed
32.
go back to reference Feugang JM, Youngblood RC, Greene JM, Fahad AS, Monroe WA, Willard ST. Application of quantum dot nanoparticles for potential non-invasive bio-imaging of mammalian spermatozoa. J Nanobiotechnology. 2012;10:45. doi:10.1186/1477-3155-10-45.CrossRefPubMedCentralPubMed Feugang JM, Youngblood RC, Greene JM, Fahad AS, Monroe WA, Willard ST. Application of quantum dot nanoparticles for potential non-invasive bio-imaging of mammalian spermatozoa. J Nanobiotechnology. 2012;10:45. doi:10.1186/1477-3155-10-45.CrossRefPubMedCentralPubMed
33.
go back to reference Krajnc-Franken MA, van Disseldorp AJ, Koenders JE, Mosselman S, van Duin M, Gossen JA. Impaired nipple development and parturition in LGR7 knockout mice. Mol Cell Biol. 2004;24(2):687–96.CrossRefPubMedCentralPubMed Krajnc-Franken MA, van Disseldorp AJ, Koenders JE, Mosselman S, van Duin M, Gossen JA. Impaired nipple development and parturition in LGR7 knockout mice. Mol Cell Biol. 2004;24(2):687–96.CrossRefPubMedCentralPubMed
34.
go back to reference Samuel CS, Tian H, Zhao L, Amento EP. Relaxin Is a Key Mediator of Prostate Growth and Male Reproductive Tract Development. Lab Invest. 2003;83(7):1055–67.CrossRefPubMed Samuel CS, Tian H, Zhao L, Amento EP. Relaxin Is a Key Mediator of Prostate Growth and Male Reproductive Tract Development. Lab Invest. 2003;83(7):1055–67.CrossRefPubMed
35.
go back to reference Samuel CS, Lin F, Hossain MA, Zhao C, Ferraro T, Bathgate RA, et al. Improved chemical synthesis and demonstration of the relaxin receptor binding affinity and biological activity of mouse relaxin. Biochemistry. 2007;46(18):5374–81. doi:10.1021/bi700238h.CrossRefPubMed Samuel CS, Lin F, Hossain MA, Zhao C, Ferraro T, Bathgate RA, et al. Improved chemical synthesis and demonstration of the relaxin receptor binding affinity and biological activity of mouse relaxin. Biochemistry. 2007;46(18):5374–81. doi:10.1021/bi700238h.CrossRefPubMed
36.
go back to reference Benoit AM, LaVoie HA, McCoy GL, Blake CA. Expression of sperm protein 22 (SP22) in the rat ovary during different reproductive states. Exp Biol Med (Maywood). 2007;232(7):910–20. doi:232/7/910. Benoit AM, LaVoie HA, McCoy GL, Blake CA. Expression of sperm protein 22 (SP22) in the rat ovary during different reproductive states. Exp Biol Med (Maywood). 2007;232(7):910–20. doi:232/7/910.
37.
go back to reference Bagnell CA, Baker NK, McMurtry JP, Brocht DM, Lewis GS. Control of luteal relaxin release by prostaglandin F2 alpha: differences in the sow cycle and pregnancy. Proc Soc Exp Biol Med. 1990;194(2):125–30.CrossRefPubMed Bagnell CA, Baker NK, McMurtry JP, Brocht DM, Lewis GS. Control of luteal relaxin release by prostaglandin F2 alpha: differences in the sow cycle and pregnancy. Proc Soc Exp Biol Med. 1990;194(2):125–30.CrossRefPubMed
38.
go back to reference Fields PA, Lee AB, Haab LM, Hwang JJ, Sherwood OD. Evidence for a dual source of relaxin in the pregnant rat: immunolocalization in the corpora lutea and endometrium. Endocrinology. 1992;130(5):2985–90.PubMed Fields PA, Lee AB, Haab LM, Hwang JJ, Sherwood OD. Evidence for a dual source of relaxin in the pregnant rat: immunolocalization in the corpora lutea and endometrium. Endocrinology. 1992;130(5):2985–90.PubMed
39.
go back to reference Kohsaka T, Singh U, Yogo K, Sasada H, Taya K, Hashizume K. Expression and cellular pattern of relaxin mRNA in porcine corpora lutea during pregnancy. Cell Tissue Res. 2007;330(2):303–12.CrossRefPubMed Kohsaka T, Singh U, Yogo K, Sasada H, Taya K, Hashizume K. Expression and cellular pattern of relaxin mRNA in porcine corpora lutea during pregnancy. Cell Tissue Res. 2007;330(2):303–12.CrossRefPubMed
40.
go back to reference Yki-Jarvinen H, Wahlstrom T, Seppala M. Immunohistochemical Demonstration of Relaxin in the Genital Tract of Pregnant and Nonpregnant Women. J Clin Endocrinol Metab. 1983;57(3):451–4. doi:10.1210/jcem-57-3-451.CrossRefPubMed Yki-Jarvinen H, Wahlstrom T, Seppala M. Immunohistochemical Demonstration of Relaxin in the Genital Tract of Pregnant and Nonpregnant Women. J Clin Endocrinol Metab. 1983;57(3):451–4. doi:10.1210/jcem-57-3-451.CrossRefPubMed
41.
go back to reference Ali SM, McMurtry JP, Bagnell CA, Bryant-Greenwood GD. Immunocytochemical localization of relaxin in corpora lutea of sows throughout the estrous cycle. Biol Reprod. 1986;34(1):139–43.CrossRefPubMed Ali SM, McMurtry JP, Bagnell CA, Bryant-Greenwood GD. Immunocytochemical localization of relaxin in corpora lutea of sows throughout the estrous cycle. Biol Reprod. 1986;34(1):139–43.CrossRefPubMed
42.
go back to reference Yan W, Wiley AA, Bathgate RA, Frankshun AL, Lasano S, Crean BD. Expression of LGR7 and LGR8 by neonatal porcine uterine tissues and transmission of milk-borne relaxin into the neonatal circulation by suckling. Endocrinology. 2006;147(9):4303–10. doi:10.1210/en.2006-0397.CrossRefPubMed Yan W, Wiley AA, Bathgate RA, Frankshun AL, Lasano S, Crean BD. Expression of LGR7 and LGR8 by neonatal porcine uterine tissues and transmission of milk-borne relaxin into the neonatal circulation by suckling. Endocrinology. 2006;147(9):4303–10. doi:10.1210/en.2006-0397.CrossRefPubMed
43.
go back to reference Dubois MP, Dacheux JL. Relaxin, a male hormone? Immunocytological localization of a related antigen in the boar testis. Cell Tissue Res. 1978;187(2):201–14.CrossRefPubMed Dubois MP, Dacheux JL. Relaxin, a male hormone? Immunocytological localization of a related antigen in the boar testis. Cell Tissue Res. 1978;187(2):201–14.CrossRefPubMed
44.
go back to reference Steinetz BG, Beach VL, Tripp LV, Defalco RJ. Reactions of Antisera to Porcine Relaxin with Relaxin-Containing Tissues of Other Species in Vivo and in Vitro. Acta Endocrinol (Copenh). 1964;47:371–84. Steinetz BG, Beach VL, Tripp LV, Defalco RJ. Reactions of Antisera to Porcine Relaxin with Relaxin-Containing Tissues of Other Species in Vivo and in Vitro. Acta Endocrinol (Copenh). 1964;47:371–84.
45.
go back to reference Steinetz BG, Schwabe C, Callard IP, Goldsmith LT. Dogfish shark (Squalus acanthias) testes contain a relaxin. J Androl. 1998;19(1):110–5.PubMed Steinetz BG, Schwabe C, Callard IP, Goldsmith LT. Dogfish shark (Squalus acanthias) testes contain a relaxin. J Androl. 1998;19(1):110–5.PubMed
46.
go back to reference Cardoso LC, Nascimento AR, Royer C, Porto CS, Lazari MFM. Locally produced relaxin may affect testis and vas deferens function in rats. Reproduction. 2010;139(1):185–96. doi:10.1530/rep-09-0146.CrossRefPubMed Cardoso LC, Nascimento AR, Royer C, Porto CS, Lazari MFM. Locally produced relaxin may affect testis and vas deferens function in rats. Reproduction. 2010;139(1):185–96. doi:10.1530/rep-09-0146.CrossRefPubMed
47.
go back to reference Kern A, Bryant-Greenwood GD. Characterization of relaxin receptor (RXFP1) desensitization and internalization in primary human decidual cells and RXFP1-transfected HEK293 cells. Endocrinology. 2009;150(5):2419–28. doi:10.1210/en.2008-1385.CrossRefPubMedCentralPubMed Kern A, Bryant-Greenwood GD. Characterization of relaxin receptor (RXFP1) desensitization and internalization in primary human decidual cells and RXFP1-transfected HEK293 cells. Endocrinology. 2009;150(5):2419–28. doi:10.1210/en.2008-1385.CrossRefPubMedCentralPubMed
48.
go back to reference Kumagai J, Hsu SY, Matsumi H, Roh JS, Fu P, Wade JD, et al. INSL3/Leydig insulin-like peptide activates the LGR8 receptor important in testis descent. J Biol Chem. 2002;277(35):31283–6. doi:10.1074/jbc.C200398200.CrossRefPubMed Kumagai J, Hsu SY, Matsumi H, Roh JS, Fu P, Wade JD, et al. INSL3/Leydig insulin-like peptide activates the LGR8 receptor important in testis descent. J Biol Chem. 2002;277(35):31283–6. doi:10.1074/jbc.C200398200.CrossRefPubMed
49.
go back to reference Muda M, He C, Martini PGV, Ferraro T, Layfield S, Taylor D, et al. Splice variants of the relaxin and INSL3 receptors reveal unanticipated molecular complexity. Mol Hum Reprod. 2005;11(8):591–600. doi:10.1093/molehr/gah205.CrossRefPubMed Muda M, He C, Martini PGV, Ferraro T, Layfield S, Taylor D, et al. Splice variants of the relaxin and INSL3 receptors reveal unanticipated molecular complexity. Mol Hum Reprod. 2005;11(8):591–600. doi:10.1093/molehr/gah205.CrossRefPubMed
50.
go back to reference Scott DJ, Layfield S, Yan Y, Sudo S, Hsueh AJ, Tregear GW. Characterization of novel splice variants of LGR7 and LGR8 reveals that receptor signaling is mediated by their unique low density lipoprotein class A modules. J Biol Chem. 2006;281(46):34942–54. doi:10.1074/jbc.M602728200.CrossRefPubMed Scott DJ, Layfield S, Yan Y, Sudo S, Hsueh AJ, Tregear GW. Characterization of novel splice variants of LGR7 and LGR8 reveals that receptor signaling is mediated by their unique low density lipoprotein class A modules. J Biol Chem. 2006;281(46):34942–54. doi:10.1074/jbc.M602728200.CrossRefPubMed
51.
go back to reference Kern A, Agoulnik AI, Bryant-Greenwood GD. The low-density lipoprotein class A module of the relaxin receptor (leucine-rich repeat containing G-protein coupled receptor 7): its role in signaling and trafficking to the cell membrane. Endocrinology. 2007;148(3):1181–94. doi:10.1210/en.2006-1086.CrossRefPubMed Kern A, Agoulnik AI, Bryant-Greenwood GD. The low-density lipoprotein class A module of the relaxin receptor (leucine-rich repeat containing G-protein coupled receptor 7): its role in signaling and trafficking to the cell membrane. Endocrinology. 2007;148(3):1181–94. doi:10.1210/en.2006-1086.CrossRefPubMed
52.
go back to reference Kern A, Hubbard D, Amano A, Bryant-Greenwood GD. Cloning, expression, and functional characterization of relaxin receptor (leucine-rich repeat-containing g protein-coupled receptor 7) splice variants from human fetal membranes. Endocrinology. 2008;149(3):1277–94. doi:10.1210/en.2007-1348.CrossRefPubMedCentralPubMed Kern A, Hubbard D, Amano A, Bryant-Greenwood GD. Cloning, expression, and functional characterization of relaxin receptor (leucine-rich repeat-containing g protein-coupled receptor 7) splice variants from human fetal membranes. Endocrinology. 2008;149(3):1277–94. doi:10.1210/en.2007-1348.CrossRefPubMedCentralPubMed
53.
go back to reference Filonzi M, Cardoso LC, Pimenta MT, Queiroz DB, Avellar MC, Porto CS. Relaxin family peptide receptors Rxfp1 and Rxfp2: mapping of the mRNA and protein distribution in the reproductive tract of the male rat. Reprod Biol Endocrinol. 2007;5:29. doi:10.1186/1477-7827-5-29.CrossRefPubMedCentralPubMed Filonzi M, Cardoso LC, Pimenta MT, Queiroz DB, Avellar MC, Porto CS. Relaxin family peptide receptors Rxfp1 and Rxfp2: mapping of the mRNA and protein distribution in the reproductive tract of the male rat. Reprod Biol Endocrinol. 2007;5:29. doi:10.1186/1477-7827-5-29.CrossRefPubMedCentralPubMed
55.
56.
go back to reference Gorlov IP, Kamat A, Bogatcheva NV, Jones E, Lamb DJ, Truong A, et al. Mutations of the GREAT gene cause cryptorchidism. Hum Mol Genet. 2002;11(19):2309–18.CrossRefPubMed Gorlov IP, Kamat A, Bogatcheva NV, Jones E, Lamb DJ, Truong A, et al. Mutations of the GREAT gene cause cryptorchidism. Hum Mol Genet. 2002;11(19):2309–18.CrossRefPubMed
57.
go back to reference Overbeek PA, Gorlov IP, Sutherland RW, Houston JB, Harrison WR, Boettger-Tong HL. A transgenic insertion causing cryptorchidism in mice. Genesis. 2001;30(1):26–35. doi:10.1002/gene.1029.CrossRefPubMed Overbeek PA, Gorlov IP, Sutherland RW, Houston JB, Harrison WR, Boettger-Tong HL. A transgenic insertion causing cryptorchidism in mice. Genesis. 2001;30(1):26–35. doi:10.1002/gene.1029.CrossRefPubMed
58.
go back to reference Kawamura K, Kumagai J, Sudo S, Chun SY, Pisarska M, Morita H, et al. Paracrine regulation of mammalian oocyte maturation and male germ cell survival. Proc Natl Acad Sci U S A. 2004;101(19):7323–8. doi:10.1073/pnas.0307061101.CrossRefPubMedCentralPubMed Kawamura K, Kumagai J, Sudo S, Chun SY, Pisarska M, Morita H, et al. Paracrine regulation of mammalian oocyte maturation and male germ cell survival. Proc Natl Acad Sci U S A. 2004;101(19):7323–8. doi:10.1073/pnas.0307061101.CrossRefPubMedCentralPubMed
59.
go back to reference Achour L, Labbe-Jullie C, Scott MG, Marullo S. An escort for GPCRs: implications for regulation of receptor density at the cell surface. Trends Pharmacol Sci. 2008;29(10):528–35. doi:10.1016/j.tips.2008.07.009. S0165-6147(08)00169-7.CrossRefPubMed Achour L, Labbe-Jullie C, Scott MG, Marullo S. An escort for GPCRs: implications for regulation of receptor density at the cell surface. Trends Pharmacol Sci. 2008;29(10):528–35. doi:10.1016/j.tips.2008.07.009. S0165-6147(08)00169-7.CrossRefPubMed
60.
go back to reference Dacheux J-L, Gatti JL, Dacheux F. Contribution of epididymal secretory proteins for spermatozoa maturation. Microsc Res Tech. 2003;61(1):7–17.CrossRefPubMed Dacheux J-L, Gatti JL, Dacheux F. Contribution of epididymal secretory proteins for spermatozoa maturation. Microsc Res Tech. 2003;61(1):7–17.CrossRefPubMed
61.
go back to reference Robertson SA. Seminal fluid signaling in the female reproductive tract: lessons from rodents and pigs. J Anim Sci. 2007;85(13):E36–44. doi:10.2527/jas.2006-578.CrossRefPubMed Robertson SA. Seminal fluid signaling in the female reproductive tract: lessons from rodents and pigs. J Anim Sci. 2007;85(13):E36–44. doi:10.2527/jas.2006-578.CrossRefPubMed
62.
go back to reference Bathgate RAD, Halls ML, van der Westhuizen ET, Callander GE, Kocan M, Summers RJ. Relaxin Family Peptides and Their Receptors. Physiol Rev. 2013;93(1):405–80. doi:10.1152/physrev.00001.2012.CrossRefPubMed Bathgate RAD, Halls ML, van der Westhuizen ET, Callander GE, Kocan M, Summers RJ. Relaxin Family Peptides and Their Receptors. Physiol Rev. 2013;93(1):405–80. doi:10.1152/physrev.00001.2012.CrossRefPubMed
Metadata
Title
Profiling of relaxin and its receptor proteins in boar reproductive tissues and spermatozoa
Authors
Jean M Feugang
Jonathan M Greene
Hector L Sanchez-Rodríguez
John V Stokes
Mark A Crenshaw
Scott T Willard
Peter L Ryan
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Reproductive Biology and Endocrinology / Issue 1/2015
Electronic ISSN: 1477-7827
DOI
https://doi.org/10.1186/s12958-015-0043-y

Other articles of this Issue 1/2015

Reproductive Biology and Endocrinology 1/2015 Go to the issue