Skip to main content
Top
Published in: Reproductive Biology and Endocrinology 1/2015

Open Access 01-12-2015 | Research

Exposure to di(2-ethylhexyl) phthalate inhibits luteal function via dysregulation of CD31 and prostaglandin F2alpha in pregnant mice

Authors: Meijun Guo, Lidan Lai, Teng Zong, Yan Lin, Bei Yang, Lu Zhang, Mo Li, Haibin Kuang

Published in: Reproductive Biology and Endocrinology | Issue 1/2015

Login to get access

Abstract

Background

Di(2-ethylhexyl) phthalate (DEHP) exposure reduces embryo implantations, increases embryonic loss, and decreases fetal body weights. However, whether it is associated with the alteration of luteal function remains unknown. Thus, our aim in this study was to explore the effect and mechanism of DEHP on luteal function in pregnant mice in vivo.

Methods

Mice were administered DEHP by gavage at 125, 250, 500 mg/kg/day from gestational days (GD) 1 to 9 or 13. Levels of serum progesterone and estradiol were measured by radioimmunoassay. The numbers and sizes of corpora lutea were calculated by ovarian histomorphology. Steroidogenic enzymes were assessed by qRT-PCR. CD31 protein was detected by immunocytochemistry, and prostaglandin F2alpha (PGF2alpha) levels were evaluated by enzyme immunoassay.

Results

Treatment with DEHP significantly inhibited progesterone secretion in pregnant mice in a dose-dependent manner but did not inhibit estradiol production on GD 9 and 13. Treatment also showed concomitant decreases in transcript levels for key steroidogenic enzymes (CYP11A, 3β-HSD, and StAR) on GD 13. Furthermore, DEHP administration significantly reduced the numbers and sizes of corpora lutea on GD 13. No significant changes in the ratio of ovary weight vs. body weight were observed between the control group and treated animals on GD 9 and 13. In addition, treatment with DEHP significantly inhibited CD31 expression of corpora lutea, whereas plasma PGF2alpha levels in DEHP treatment groups were significantly higher compared with the control groups on GD 9 and 13.

Conclusions

The results show DEHP significantly inhibits luteal function of pregnant mice in vivo, with a mechanism that seems to involve the down-regulation of progesterone and steroidogenic enzymes message RNA, the decrease in CD31 expression, and the increase in PGF2alpha secretion.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kamrin MA. Phthalate risks, phthalate regulation, and public health: a review. J Toxicol Environ Health B Crit Rev. 2009;12:157–74.CrossRefPubMed Kamrin MA. Phthalate risks, phthalate regulation, and public health: a review. J Toxicol Environ Health B Crit Rev. 2009;12:157–74.CrossRefPubMed
2.
go back to reference Andrade AJ, Grande SW, Talsness CE, Gericke C, Grote K, Golombiewski A, et al. A dose response study following in utero and lactational exposure to di-(2-ethylhexyl) phthalate (DEHP): reproductive effects on adult male offspring rats. Toxicology. 2006;228:85–97.CrossRefPubMed Andrade AJ, Grande SW, Talsness CE, Gericke C, Grote K, Golombiewski A, et al. A dose response study following in utero and lactational exposure to di-(2-ethylhexyl) phthalate (DEHP): reproductive effects on adult male offspring rats. Toxicology. 2006;228:85–97.CrossRefPubMed
3.
go back to reference Shin IS, Lee MY, Cho ES, Choi EY, Son HY, Lee KY. Effects of maternal exposure to di(2-ethylhexyl)phthalate (DEHP) during pregnancy on susceptibility to neonatal asthma. Toxicol Appl Pharmacol. 2014;274:402–7.CrossRefPubMed Shin IS, Lee MY, Cho ES, Choi EY, Son HY, Lee KY. Effects of maternal exposure to di(2-ethylhexyl)phthalate (DEHP) during pregnancy on susceptibility to neonatal asthma. Toxicol Appl Pharmacol. 2014;274:402–7.CrossRefPubMed
4.
5.
go back to reference Becker K, Seiwert M, Angerer J, Heger W, Koch HM, Nagorka R, et al. DEHP metabolites in urine of children and DEHP in house dust. Int J Hyg Environ Health. 2004;207:409–17.CrossRefPubMed Becker K, Seiwert M, Angerer J, Heger W, Koch HM, Nagorka R, et al. DEHP metabolites in urine of children and DEHP in house dust. Int J Hyg Environ Health. 2004;207:409–17.CrossRefPubMed
6.
go back to reference Vo TT, Jung EM, Dang VH, Yoo YM, Choi KC, Yu FH, et al. Di-(2 ethylhexyl) phthalate and flutamide alter gene expression in the testis of immature male rats. Reprod Biol Endocrinol. 2009;7:104.CrossRefPubMedCentralPubMed Vo TT, Jung EM, Dang VH, Yoo YM, Choi KC, Yu FH, et al. Di-(2 ethylhexyl) phthalate and flutamide alter gene expression in the testis of immature male rats. Reprod Biol Endocrinol. 2009;7:104.CrossRefPubMedCentralPubMed
7.
go back to reference Chen X, Liu YN, Zhou QH, Leng L, Chang Y, Tang NJ. Effects of low concentrations of di-(2-ethylhexyl) and mono-(2-ethylhexyl) phthalate on steroidogenesis pathways and apoptosis in the murine leydig tumor cell line MLTC-1. Biomed Environ Sci. 2013;26:986–9.PubMed Chen X, Liu YN, Zhou QH, Leng L, Chang Y, Tang NJ. Effects of low concentrations of di-(2-ethylhexyl) and mono-(2-ethylhexyl) phthalate on steroidogenesis pathways and apoptosis in the murine leydig tumor cell line MLTC-1. Biomed Environ Sci. 2013;26:986–9.PubMed
8.
go back to reference Doyle TJ, Bowman JL, Windell VL, McLean DJ, Kim KH. Transgenerational effects of di-(2-ethylhexyl) phthalate on testicular germ cell associations and spermatogonial stem cells in mice. Biol Reprod. 2013;88:112.CrossRefPubMedCentralPubMed Doyle TJ, Bowman JL, Windell VL, McLean DJ, Kim KH. Transgenerational effects of di-(2-ethylhexyl) phthalate on testicular germ cell associations and spermatogonial stem cells in mice. Biol Reprod. 2013;88:112.CrossRefPubMedCentralPubMed
9.
go back to reference Huang LP, Lee CC, Hsu PC, Shih TS. The association between semen quality in workers and the concentration of di(2-ethylhexyl) phthalate in polyvinyl chloride pellet plant air. Fertil Steril. 2011;96:90–4.CrossRefPubMed Huang LP, Lee CC, Hsu PC, Shih TS. The association between semen quality in workers and the concentration of di(2-ethylhexyl) phthalate in polyvinyl chloride pellet plant air. Fertil Steril. 2011;96:90–4.CrossRefPubMed
10.
go back to reference Hannon PR, Peretz J, Flaws JA. Daily exposure to Di(2-ethylhexyl) phthalate alters estrous cyclicity and accelerates primordial follicle recruitment potentially via dysregulation of the phosphatidylinositol 3-kinase signaling pathway in adult mice. Biol Reprod. 2014;90:136.CrossRefPubMed Hannon PR, Peretz J, Flaws JA. Daily exposure to Di(2-ethylhexyl) phthalate alters estrous cyclicity and accelerates primordial follicle recruitment potentially via dysregulation of the phosphatidylinositol 3-kinase signaling pathway in adult mice. Biol Reprod. 2014;90:136.CrossRefPubMed
11.
go back to reference Davis BJ, Maronpot RR, Heindel JJ. Di-(2-ethylhexyl) phthalate suppresses estradiol and ovulation in cycling rats. Toxicol Appl Pharmacol. 1994;128:216–23.CrossRefPubMed Davis BJ, Maronpot RR, Heindel JJ. Di-(2-ethylhexyl) phthalate suppresses estradiol and ovulation in cycling rats. Toxicol Appl Pharmacol. 1994;128:216–23.CrossRefPubMed
12.
go back to reference Heudorf U, Mersch-Sundermann V, Angerer J. Phthalates: toxicology and exposure. Int J Hyg Environ Health. 2007;210:623–34.CrossRefPubMed Heudorf U, Mersch-Sundermann V, Angerer J. Phthalates: toxicology and exposure. Int J Hyg Environ Health. 2007;210:623–34.CrossRefPubMed
13.
go back to reference Kim SH, Chun S, Jang JY, Chae HD, Kim CH, Kang BM. Increased plasma levels of phthalate esters in women with advanced-stage endometriosis: a prospective case–control study. Fertil Steril. 2011;95:357–9.CrossRefPubMed Kim SH, Chun S, Jang JY, Chae HD, Kim CH, Kang BM. Increased plasma levels of phthalate esters in women with advanced-stage endometriosis: a prospective case–control study. Fertil Steril. 2011;95:357–9.CrossRefPubMed
14.
go back to reference Li R, Yu C, Gao R, Liu X, Lu J, Zhao L, et al. Effects of DEHP on endometrial receptivity and embryo implantation in pregnant mice. J Hazard Mater. 2012;241–242:231–40.CrossRefPubMed Li R, Yu C, Gao R, Liu X, Lu J, Zhao L, et al. Effects of DEHP on endometrial receptivity and embryo implantation in pregnant mice. J Hazard Mater. 2012;241–242:231–40.CrossRefPubMed
15.
go back to reference Kaul AF, Souney PF, Osathanondh R. A review of possible toxicity of di-2-ethylhexylphthalate (DEHP) in plastic intravenous containers: effects on reproduction. Drug Intell Clin Pharm. 1982;16:689–92.PubMed Kaul AF, Souney PF, Osathanondh R. A review of possible toxicity of di-2-ethylhexylphthalate (DEHP) in plastic intravenous containers: effects on reproduction. Drug Intell Clin Pharm. 1982;16:689–92.PubMed
16.
go back to reference Ema M, Miyawaki E. Effects of monobutyl phthalate on reproductive function in pregnant and pseudopregnant rats. Reprod Toxicol. 2001;15:261–7.CrossRefPubMed Ema M, Miyawaki E. Effects of monobutyl phthalate on reproductive function in pregnant and pseudopregnant rats. Reprod Toxicol. 2001;15:261–7.CrossRefPubMed
17.
go back to reference Yochim JM, De Feo VJ. Hormonal control of the onset, magnitude and duration of uterine sensitivity in the rat by steroid hormones of the ovary. Endocrinology. 1963;72:317–26.CrossRefPubMed Yochim JM, De Feo VJ. Hormonal control of the onset, magnitude and duration of uterine sensitivity in the rat by steroid hormones of the ovary. Endocrinology. 1963;72:317–26.CrossRefPubMed
18.
go back to reference Parillo F, Maranesi M, Brecchia G, Gobbetti A, Boiti C, Zerani M. In vivo chronic and in vitro acute effects of di(2-ethylhexyl) phthalate on pseudopregnant rabbit corpora lutea: possible involvement of peroxisome proliferator-activated receptor gamma. Biol Reprod. 2014;90:41.CrossRefPubMed Parillo F, Maranesi M, Brecchia G, Gobbetti A, Boiti C, Zerani M. In vivo chronic and in vitro acute effects of di(2-ethylhexyl) phthalate on pseudopregnant rabbit corpora lutea: possible involvement of peroxisome proliferator-activated receptor gamma. Biol Reprod. 2014;90:41.CrossRefPubMed
19.
go back to reference Romani F, Tropea A, Scarinci E, Federico A, Dello Russo C, Lisi L, et al. Endocrine disruptors and human reproductive failure: the in vitro effect of phthalates on human luteal cells. Fertil Steril. 2014;102:831–7.CrossRefPubMed Romani F, Tropea A, Scarinci E, Federico A, Dello Russo C, Lisi L, et al. Endocrine disruptors and human reproductive failure: the in vitro effect of phthalates on human luteal cells. Fertil Steril. 2014;102:831–7.CrossRefPubMed
20.
go back to reference Li N, Liu T, Zhou L, He J, Ye L. Di-(2-ethylhcxyl) phthalate reduces progesterone levels and induces apoptosis of ovarian granulosa cell in adult female ICR mice. Environ Toxicol Pharmacol. 2012;34:869–75.CrossRefPubMed Li N, Liu T, Zhou L, He J, Ye L. Di-(2-ethylhcxyl) phthalate reduces progesterone levels and induces apoptosis of ovarian granulosa cell in adult female ICR mice. Environ Toxicol Pharmacol. 2012;34:869–75.CrossRefPubMed
21.
go back to reference Herreros MA, Gonzalez-Bulnes A, Inigo-Nunez S, Contreras-Solis I, Ros JM, Encinas T. Toxicokinetics of di(2-ethylhexyl) phthalate (DEHP) and its effects on luteal function in sheep. Reprod Biol. 2013;13:66–74.CrossRefPubMed Herreros MA, Gonzalez-Bulnes A, Inigo-Nunez S, Contreras-Solis I, Ros JM, Encinas T. Toxicokinetics of di(2-ethylhexyl) phthalate (DEHP) and its effects on luteal function in sheep. Reprod Biol. 2013;13:66–74.CrossRefPubMed
22.
go back to reference Herreros MA, Encinas T, Torres-Rovira L, Garcia-Fernandez RA, Flores JM, Ros JM, et al. Exposure to the endocrine disruptor di(2-ethylhexyl)phthalate affects female reproductive features by altering pulsatile LH secretion. Environ Toxicol Pharmacol. 2013;36:1141–9.CrossRefPubMed Herreros MA, Encinas T, Torres-Rovira L, Garcia-Fernandez RA, Flores JM, Ros JM, et al. Exposure to the endocrine disruptor di(2-ethylhexyl)phthalate affects female reproductive features by altering pulsatile LH secretion. Environ Toxicol Pharmacol. 2013;36:1141–9.CrossRefPubMed
23.
go back to reference Stone D, Hechter O. Studies on ACTH action in perfused bovine adrenals: the site of action of ACTH in corticosteroidogenesis. Arch Biochem Biophys. 1954;51:457–69.CrossRefPubMed Stone D, Hechter O. Studies on ACTH action in perfused bovine adrenals: the site of action of ACTH in corticosteroidogenesis. Arch Biochem Biophys. 1954;51:457–69.CrossRefPubMed
24.
25.
go back to reference Wang X, Shang L, Wang J, Wu N, Wang S. Effect of phthalate esters on the secretion of prostaglandins (F2alpha and E2) and oxytocin in cultured bovine ovarian and endometrial cells. Domest Anim Endocrinol. 2010;39:131–6.CrossRefPubMed Wang X, Shang L, Wang J, Wu N, Wang S. Effect of phthalate esters on the secretion of prostaglandins (F2alpha and E2) and oxytocin in cultured bovine ovarian and endometrial cells. Domest Anim Endocrinol. 2010;39:131–6.CrossRefPubMed
26.
go back to reference Ban JB, Fan XW, Huang Q, Li BF, Chen C, Zhang HC, et al. Mono-(2-ethylhexyl) phthalate induces injury in human umbilical vein endothelial cells. PLoS One. 2014;9:e97607.CrossRefPubMedCentralPubMed Ban JB, Fan XW, Huang Q, Li BF, Chen C, Zhang HC, et al. Mono-(2-ethylhexyl) phthalate induces injury in human umbilical vein endothelial cells. PLoS One. 2014;9:e97607.CrossRefPubMedCentralPubMed
27.
go back to reference Zei D, Pascarella A, Barrese C, Pantalone S, Stefanini S. DEHP effects on retinal vessels in newborn rats: a qualitative and quantitative analysis. Histochem Cell Biol. 2009;132:567–75.CrossRefPubMed Zei D, Pascarella A, Barrese C, Pantalone S, Stefanini S. DEHP effects on retinal vessels in newborn rats: a qualitative and quantitative analysis. Histochem Cell Biol. 2009;132:567–75.CrossRefPubMed
Metadata
Title
Exposure to di(2-ethylhexyl) phthalate inhibits luteal function via dysregulation of CD31 and prostaglandin F2alpha in pregnant mice
Authors
Meijun Guo
Lidan Lai
Teng Zong
Yan Lin
Bei Yang
Lu Zhang
Mo Li
Haibin Kuang
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Reproductive Biology and Endocrinology / Issue 1/2015
Electronic ISSN: 1477-7827
DOI
https://doi.org/10.1186/s12958-015-0013-4

Other articles of this Issue 1/2015

Reproductive Biology and Endocrinology 1/2015 Go to the issue