Skip to main content
Top
Published in: Health and Quality of Life Outcomes 1/2020

01-12-2020 | Autism Spectrum Disorder | Research

Impact of polyunsaturated fatty acids on patient-important outcomes in children and adolescents with autism spectrum disorder: a systematic review

Authors: Franco De Crescenzo, Gian Loreto D’Alò, Gian Paolo Morgano, Silvia Minozzi, Zuzana Mitrova, Rosella Saulle, Fabio Cruciani, Francesca Fulceri, Marina Davoli, Maria Luisa Scattoni, Francesco Nardocci, Holger Jens Schünemann, Laura Amato, on behalf of the ISACA guideline working group

Published in: Health and Quality of Life Outcomes | Issue 1/2020

Login to get access

Abstract

Background

Recent randomized controlled trials (RCTs) claimed PUFAs to be effective for autism spectrum disorder (ASD) but international guidelines have not considered yet this body of evidence. Our aim was to assess the effectiveness of PUFAs in children and adolescents with ASD, for the Italian national guidelines on the management of ASD in children and adolescents.

Methods

We performed a systematic review and meta-analysis of RCTs comparing PUFAs versus placebo or a healthy diet for the treatment of ASD in children and adolescents. The outcomes considered were deemed by the guideline panel to be highly relevant to children and adolescents with ASD and to their caregivers. The outcomes included hyperactivity, quality of sleep, self-harm, aggression, irritability, anxiety, attention, adaptive functioning, social interaction, restricted and repetitive interests and behavior, communication, hyperactivity and disruptive behaviors coexistent with core symptoms. The risk of bias of the included studies was assessed with the Cochrane tool, and the rating of the confidence in the effect estimates according to the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach.

Results

We included 9 studies with 405 participants. The strength of evidence ranged from low to very low. Six studies included preschoolers and school-age children, three studies included both children and adolescents. The majority of participants were males (83.8%), with a mean age of 6.7 years. PUFAs were superior compared to placebo in reducing anxiety in individuals with ASD (SMD -1.01, 95% CI − 1.86 to − 0.17; very low certainty of evidence). Moreover, PUFAs worsened quality of sleep compared to a healthy diet (SMD 1.11, 95% CI 0.21 to 2.00; very low certainty of evidence). PUFAs were not better than placebo in reducing aggression, hyperactivity, adaptive functioning, irritability, restricted and repetitive interests and behaviors and communication. Effects on some critical outcomes such as sleep, self-harm and disruptive behavior are currently unknown. The main limitations were the small number of participants included in the RCTs and the dosage which varied greatly (from 200 mg/day to 1540 mg/day), making it difficult to address causal inference.

Conclusions

PUFAs did not show evidence of effect in children and adolescents with ASD and the certainty of evidence as measured with the GRADE was low to very low. Further research is needed on this topic because the available evidence is inconclusive.
Appendix
Available only for authorised users
Literature
2.
go back to reference Narzisi A, Posada M, Barbieri F, Chericoni N, Ciuffolini D, Pinzino M, et al. Prevalence of autism Spectrum disorder in a large Italian catchment area: a school-based population study within the ASDEU project. Epidemiol Psychiatr Sci. 2018;29:e5.PubMedCrossRefPubMedCentral Narzisi A, Posada M, Barbieri F, Chericoni N, Ciuffolini D, Pinzino M, et al. Prevalence of autism Spectrum disorder in a large Italian catchment area: a school-based population study within the ASDEU project. Epidemiol Psychiatr Sci. 2018;29:e5.PubMedCrossRefPubMedCentral
5.
go back to reference Postorino V, Fatta LM, Sanges V, Giovagnoli G, De Peppo L, Vicari S, et al. Intellectual disability in autism Spectrum disorder: investigation of prevalence in an Italian sample of children and adolescents. Res Dev Disabil. 2016;48:193–201.PubMedCrossRef Postorino V, Fatta LM, Sanges V, Giovagnoli G, De Peppo L, Vicari S, et al. Intellectual disability in autism Spectrum disorder: investigation of prevalence in an Italian sample of children and adolescents. Res Dev Disabil. 2016;48:193–201.PubMedCrossRef
7.
go back to reference Abdelhamid AS, Martin N, Bridges C, Brainard JS, Wang X, Brown TJ, et al. Polyunsaturated fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2018;7:CD012345.PubMed Abdelhamid AS, Martin N, Bridges C, Brainard JS, Wang X, Brown TJ, et al. Polyunsaturated fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2018;7:CD012345.PubMed
8.
go back to reference Bozzatello P, Brignolo E, De Grandi E, Bellino S. Supplementation with Omega-3 Fatty Acids in Psychiatric Disorders: A Review of Literature Data. J Clin Med. 2016;5(8): 67.PubMedCentralCrossRef Bozzatello P, Brignolo E, De Grandi E, Bellino S. Supplementation with Omega-3 Fatty Acids in Psychiatric Disorders: A Review of Literature Data. J Clin Med. 2016;5(8): 67.PubMedCentralCrossRef
9.
go back to reference Manson JE, Cook NR, Lee IM, Christen W, Bassuk SS, Mora S, et al; VITAL Research Group. Marine n-3 fatty acids and prevention of cardiovascular disease and cancer. N Engl J Med 2019;380(1):23–32.PubMedCrossRef Manson JE, Cook NR, Lee IM, Christen W, Bassuk SS, Mora S, et al; VITAL Research Group. Marine n-3 fatty acids and prevention of cardiovascular disease and cancer. N Engl J Med 2019;380(1):23–32.PubMedCrossRef
10.
go back to reference ASCEND Study Collaborative Group, Bowman L, Mafham M, Wallendszus K, Stevens W, Buck G, Barton J, Murphy K, et al. Effects of n-3 fatty acid supplements in diabetes mellitus. N Engl J Med. 2018;379(16):1540–50.CrossRef ASCEND Study Collaborative Group, Bowman L, Mafham M, Wallendszus K, Stevens W, Buck G, Barton J, Murphy K, et al. Effects of n-3 fatty acid supplements in diabetes mellitus. N Engl J Med. 2018;379(16):1540–50.CrossRef
11.
go back to reference Foti F, De Crescenzo F, Vivanti G, Menghini D, Vicari S. Implicit learning in individuals with autism spectrum disorders: a meta-analysis. Psychol Med. 2015;45(5):897–910.PubMedCrossRef Foti F, De Crescenzo F, Vivanti G, Menghini D, Vicari S. Implicit learning in individuals with autism spectrum disorders: a meta-analysis. Psychol Med. 2015;45(5):897–910.PubMedCrossRef
12.
go back to reference Yui K, Koshiba M, Nakamura S, Kobayashi Y. Effects of large doses of arachidonic acid added to docosahexaenoic acid on social impairment in individuals with autism spectrum disorders: a double-blind, placebo-controlled, randomized trial. J Clin Psychopharmacol. 2012;32(2):200–6.PubMedCrossRef Yui K, Koshiba M, Nakamura S, Kobayashi Y. Effects of large doses of arachidonic acid added to docosahexaenoic acid on social impairment in individuals with autism spectrum disorders: a double-blind, placebo-controlled, randomized trial. J Clin Psychopharmacol. 2012;32(2):200–6.PubMedCrossRef
13.
go back to reference De Giorgi R, De Crescenzo F, D'Alò GL, Rizzo Pesci N, Di Franco V, Sandini C, et al. Prevalence of Non-Affective Psychoses in Individuals with Autism Spectrum Disorders: A Systematic Review. J Clin Med. 2019;8(9). De Giorgi R, De Crescenzo F, D'Alò GL, Rizzo Pesci N, Di Franco V, Sandini C, et al. Prevalence of Non-Affective Psychoses in Individuals with Autism Spectrum Disorders: A Systematic Review. J Clin Med. 2019;8(9).
14.
go back to reference Siscovick DS, Barringer TA, Fretts AM, Wu JH, Lichtenstein AH, Costello RB, et al. American Heart Association Nutrition Committee of the Council on Lifestyle and Cardiometabolic Health; Council on Epidemiology and Prevention; Council on Cardiovascular Disease in the Young; Council on Cardiovascular and Stroke Nursing; and Council on Clinical Cardiology. Omega-3 Polyunsaturated Fatty Acid (Fish Oil) Supplementation and the Prevention of Clinical Cardiovascular Disease: A Science Advisory From the American Heart Association. Circulation. 2017;135(15):e867–84.PubMedPubMedCentralCrossRef Siscovick DS, Barringer TA, Fretts AM, Wu JH, Lichtenstein AH, Costello RB, et al. American Heart Association Nutrition Committee of the Council on Lifestyle and Cardiometabolic Health; Council on Epidemiology and Prevention; Council on Cardiovascular Disease in the Young; Council on Cardiovascular and Stroke Nursing; and Council on Clinical Cardiology. Omega-3 Polyunsaturated Fatty Acid (Fish Oil) Supplementation and the Prevention of Clinical Cardiovascular Disease: A Science Advisory From the American Heart Association. Circulation. 2017;135(15):e867–84.PubMedPubMedCentralCrossRef
16.
go back to reference IOM (Institute of Medicine). Clinical Practice Guidelines We Can Trust. Washington, DC: The National Academies Press, 2011. IOM (Institute of Medicine). Clinical Practice Guidelines We Can Trust. Washington, DC: The National Academies Press, 2011.
17.
go back to reference Qaseem A, Forland F, Macbeth F, Ollenschläger G, Phillips S, Van der Wees P. Board of Trustees of the guidelines international network. Guidelines international network: toward international standards for clinical practice guidelines. Ann Intern Med. 2012 Apr 3;156(7):525–31.PubMedCrossRef Qaseem A, Forland F, Macbeth F, Ollenschläger G, Phillips S, Van der Wees P. Board of Trustees of the guidelines international network. Guidelines international network: toward international standards for clinical practice guidelines. Ann Intern Med. 2012 Apr 3;156(7):525–31.PubMedCrossRef
18.
go back to reference Istituto Superiore di Sanità – Centro Nazionale per l’Eccellenza Clinica, la Qualità e la Sicurezza delle Cure. Manuale metodologico per la produzione di linee guida di pratica clinica. 2018. Available at: https://snlg.iss.it/wp-content/uploads/2018/10/MM_v1.2_lug-2018.pdf Accessed 17 Gen 2019. Istituto Superiore di Sanità – Centro Nazionale per l’Eccellenza Clinica, la Qualità e la Sicurezza delle Cure. Manuale metodologico per la produzione di linee guida di pratica clinica. 2018. Available at: https://​snlg.​iss.​it/​wp-content/​uploads/​2018/​10/​MM_​v1.​2_​lug-2018.​pdf Accessed 17 Gen 2019.
19.
go back to reference GRADEpro Guideline Development Tool [Software]. McMaster University, 2015 (developed by Evidence Prime, Inc.). Available from gradepro.org. GRADEpro Guideline Development Tool [Software]. McMaster University, 2015 (developed by Evidence Prime, Inc.). Available from gradepro.org.
20.
21.
go back to reference Higgins JPT, Green S (editors). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011. Available from www.handbook.cochrane.org. Higgins JPT, Green S (editors). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011. Available from www.handbook.cochrane.org.
22.
go back to reference Schünemann HJ, Oxman AD, Higgins JPT, Vist GE, Glasziou P, Guyatt GH, et al. Presenting results and “Summary of findings” tables. In: Higgins JPT, Green S, eds. Cochrane handbook for systematic reviews of interventions. Chichester: Wiley; 2008. p. 335–8. Schünemann HJ, Oxman AD, Higgins JPT, Vist GE, Glasziou P, Guyatt GH, et al. Presenting results and “Summary of findings” tables. In: Higgins JPT, Green S, eds. Cochrane handbook for systematic reviews of interventions. Chichester: Wiley; 2008. p. 335–8.
23.
go back to reference Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336:924–6.PubMedPubMedCentralCrossRef Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336:924–6.PubMedPubMedCentralCrossRef
24.
go back to reference Guyatt GH, Oxman AD, Santesso N, Helfand M, Vist G, Kunz R, et al. GRADE guidelines: 12. Preparing summary of findings tables-binary outcomes. J Clin Epidemiol. 2013;66(2):158–72.PubMedCrossRef Guyatt GH, Oxman AD, Santesso N, Helfand M, Vist G, Kunz R, et al. GRADE guidelines: 12. Preparing summary of findings tables-binary outcomes. J Clin Epidemiol. 2013;66(2):158–72.PubMedCrossRef
25.
go back to reference Guyatt GH, Thorlund K, Oxman AD, Walter SD, Patrick D, Furukawa TA, et al. GRADE guidelines: 13. Preparing summary of findings tables and evidence profiles-continuous outcomes. J Clin Epidemiol. 2013;66(2):173–83.PubMedCrossRef Guyatt GH, Thorlund K, Oxman AD, Walter SD, Patrick D, Furukawa TA, et al. GRADE guidelines: 13. Preparing summary of findings tables and evidence profiles-continuous outcomes. J Clin Epidemiol. 2013;66(2):173–83.PubMedCrossRef
26.
go back to reference Johnson SM, Hollander E. Evidence that eicosapentaenoic acid is effective in treating autism. J Clin Psychiatry. 2003;64:848–9.PubMedCrossRef Johnson SM, Hollander E. Evidence that eicosapentaenoic acid is effective in treating autism. J Clin Psychiatry. 2003;64:848–9.PubMedCrossRef
27.
go back to reference Meguid NA, Atta HM, Gouda AS, Khalil RO. Role of polyunsaturated fatty acids in the management of Egyptian children with autism. Clin Biochem. 2008;41:1044–8.PubMedCrossRef Meguid NA, Atta HM, Gouda AS, Khalil RO. Role of polyunsaturated fatty acids in the management of Egyptian children with autism. Clin Biochem. 2008;41:1044–8.PubMedCrossRef
28.
go back to reference Meiri G, Bichovsky Y, Belmaker RH. Omega 3 fatty acid treatment in autism. J Child Adolesc Psychopharm. 2009;19(4):449–51.CrossRef Meiri G, Bichovsky Y, Belmaker RH. Omega 3 fatty acid treatment in autism. J Child Adolesc Psychopharm. 2009;19(4):449–51.CrossRef
29.
go back to reference Patrick L, Salik R. The effect of essential fatty acid supplementation on language development and learning skills in autism and Asperger's syndrome. Autism Asperger's Digest. 2005;Jan-Feb:36–7. Patrick L, Salik R. The effect of essential fatty acid supplementation on language development and learning skills in autism and Asperger's syndrome. Autism Asperger's Digest. 2005;Jan-Feb:36–7.
30.
go back to reference Politi P, Cena H, Comelli M, Marrone G, Allegri C, Emanuele E, et al. Behavioral effects of omega-3 fatty acid supplementation in young adults with severe autism: an open label study. Arch Med Res. 2008;39(7):682–5.PubMedCrossRef Politi P, Cena H, Comelli M, Marrone G, Allegri C, Emanuele E, et al. Behavioral effects of omega-3 fatty acid supplementation in young adults with severe autism: an open label study. Arch Med Res. 2008;39(7):682–5.PubMedCrossRef
31.
go back to reference Ooi YP, Weng SJ, Jang LY, Low L, Seah J, Teo S, et al. Omega-3 fatty acids in the management of autism spectrum disorders: findings from an open-label pilot study in Singapore. Eur J Clin Nutr. 2015;69(8):969–71.PubMedCrossRef Ooi YP, Weng SJ, Jang LY, Low L, Seah J, Teo S, et al. Omega-3 fatty acids in the management of autism spectrum disorders: findings from an open-label pilot study in Singapore. Eur J Clin Nutr. 2015;69(8):969–71.PubMedCrossRef
32.
go back to reference Boone KM, Gracious B, Klebanoff MA, Rogers LK, Rausch J, Coury DL, et al. Omega-3 and -6 fatty acid supplementation and sensory processing in toddlers with ASD symptomology born preterm: a randomized controlled trial. Early HumDev. 2017;115:64–70.CrossRef Boone KM, Gracious B, Klebanoff MA, Rogers LK, Rausch J, Coury DL, et al. Omega-3 and -6 fatty acid supplementation and sensory processing in toddlers with ASD symptomology born preterm: a randomized controlled trial. Early HumDev. 2017;115:64–70.CrossRef
33.
go back to reference Boone KM, Gracious B, Klebanoff MA, Rogers LK, Rausch J, Coury DL, et al. Corrigendum to "Omega-3 and -6 fatty acid supplementation and sensory processing in toddlers with ASD symptomology born preterm: a randomized controlled trial". Early Hum Dev. 2018;128:120.PubMedCrossRef Boone KM, Gracious B, Klebanoff MA, Rogers LK, Rausch J, Coury DL, et al. Corrigendum to "Omega-3 and -6 fatty acid supplementation and sensory processing in toddlers with ASD symptomology born preterm: a randomized controlled trial". Early Hum Dev. 2018;128:120.PubMedCrossRef
34.
go back to reference Keim SA, Gracious B, Boone KM, Klebanoff MA, Rogers LK, Rausch J, et al. ω-3 and ω-6 fatty acid supplementation may reduce autism symptoms based on parent report in preterm toddlers. J Nutr. 2018;148(2):227–35.PubMedPubMedCentralCrossRef Keim SA, Gracious B, Boone KM, Klebanoff MA, Rogers LK, Rausch J, et al. ω-3 and ω-6 fatty acid supplementation may reduce autism symptoms based on parent report in preterm toddlers. J Nutr. 2018;148(2):227–35.PubMedPubMedCentralCrossRef
35.
go back to reference Sheppard KW, Boone KM, Gracious B, Klebanoff MA, Rogers LK, Rausch J, et al. Effect of Omega-3 and -6 supplementation on language in preterm toddlers exhibiting autism Spectrum disorder symptoms. J Autism Dev Disord. 2017;47(11):3358–69.PubMedCrossRef Sheppard KW, Boone KM, Gracious B, Klebanoff MA, Rogers LK, Rausch J, et al. Effect of Omega-3 and -6 supplementation on language in preterm toddlers exhibiting autism Spectrum disorder symptoms. J Autism Dev Disord. 2017;47(11):3358–69.PubMedCrossRef
36.
go back to reference Adams JB, Audhya T, Geis E, Gehn E, Fimbres V, Pollard EL, et al. Comprehensive nutritional and dietary intervention for autism Spectrum disorder-a randomized, controlled 12-month trial. Nutrients. 2018;10(3):E369.PubMedCrossRef Adams JB, Audhya T, Geis E, Gehn E, Fimbres V, Pollard EL, et al. Comprehensive nutritional and dietary intervention for autism Spectrum disorder-a randomized, controlled 12-month trial. Nutrients. 2018;10(3):E369.PubMedCrossRef
37.
go back to reference ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US). Identifier NCT01248130. Omega-3 Fatty Acids Monotherapy in Children and Adolescents With Autism Spectrum Disorders. (first posted 25th November 2010). ClinicalTrials.​gov. Bethesda (MD): National Library of Medicine (US). Identifier NCT01248130. Omega-3 Fatty Acids Monotherapy in Children and Adolescents With Autism Spectrum Disorders. (first posted 25th November 2010).
38.
go back to reference ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US). Identifier NCT01260961. Developing Treatment, Treatment Validation and Treatment Scope in the Setting of an Autism Clinical Trial. (first posted 15th December 2010). ClinicalTrials.​gov. Bethesda (MD): National Library of Medicine (US). Identifier NCT01260961. Developing Treatment, Treatment Validation and Treatment Scope in the Setting of an Autism Clinical Trial. (first posted 15th December 2010).
39.
go back to reference ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US). Identifier NCT00467818. Omega 3 Fatty Acids in the Treatment of Children With Autism Spectrum Disorders. (first posted 1st May 2007). ClinicalTrials.​gov. Bethesda (MD): National Library of Medicine (US). Identifier NCT00467818. Omega 3 Fatty Acids in the Treatment of Children With Autism Spectrum Disorders. (first posted 1st May 2007).
40.
go back to reference ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US). Identifier NCT03620097. Evaluate the Efficacy and Safety of DHA in the Adjuvant Treatment of Children With ASD (first posted 8th August 2018). ClinicalTrials.​gov. Bethesda (MD): National Library of Medicine (US). Identifier NCT03620097. Evaluate the Efficacy and Safety of DHA in the Adjuvant Treatment of Children With ASD (first posted 8th August 2018).
41.
go back to reference ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US). Identifier NCT03757585. Management of Emotional Dysregulation in Youth With Non-verbal Learning Disability (NVLD) and/or Autism Spectrum Disorders (ASD) Using Telepsychiatry of Complementary and Alternative Treatments. clinicaltrial.gov (first posted 29th November 2018). ClinicalTrials.​gov. Bethesda (MD): National Library of Medicine (US). Identifier NCT03757585. Management of Emotional Dysregulation in Youth With Non-verbal Learning Disability (NVLD) and/or Autism Spectrum Disorders (ASD) Using Telepsychiatry of Complementary and Alternative Treatments. clinicaltrial.​gov (first posted 29th November 2018).
46.
go back to reference Mazahery H, Conlon CA, Beck KL, Mugridge O, Kruger MC, Stonehouse W, et al. A randomised controlled trial of vitamin D and omega-3 long chain polyunsaturated fatty acids in the treatment of irritability and hyperactivity among children with autism spectrum disorder. J Steroid Biochem Mol Biol. 2019;187:9–16.PubMedCrossRef Mazahery H, Conlon CA, Beck KL, Mugridge O, Kruger MC, Stonehouse W, et al. A randomised controlled trial of vitamin D and omega-3 long chain polyunsaturated fatty acids in the treatment of irritability and hyperactivity among children with autism spectrum disorder. J Steroid Biochem Mol Biol. 2019;187:9–16.PubMedCrossRef
47.
go back to reference Bent S, Hendren RL, Zandi T, Law K, Choi JE, Widjaja F, et al. Internet-based, randomized, controlled trial of omega-3 fatty acids for hyperactivity in autism. J Am Acad Child Adolesc Psychiatry. 2014;53(6):658–66.PubMedPubMedCentralCrossRef Bent S, Hendren RL, Zandi T, Law K, Choi JE, Widjaja F, et al. Internet-based, randomized, controlled trial of omega-3 fatty acids for hyperactivity in autism. J Am Acad Child Adolesc Psychiatry. 2014;53(6):658–66.PubMedPubMedCentralCrossRef
48.
go back to reference Amminger GP, Berger GE, Schafer MR, Klier C, Friedrich MH, Feucht M. Omega-3 fatty acids supplementation in children with autism: a double-blind randomized, placebo-controlled pilot study. Biol Psychiatry. 2007;61:551–3.PubMedCrossRef Amminger GP, Berger GE, Schafer MR, Klier C, Friedrich MH, Feucht M. Omega-3 fatty acids supplementation in children with autism: a double-blind randomized, placebo-controlled pilot study. Biol Psychiatry. 2007;61:551–3.PubMedCrossRef
49.
go back to reference Bent S, Bertoglio K, Ashwood P, Bostrom A, Hendren RL. A pilot randomized controlled trial of omega-3 fatty acids for autism spectrum disorder. J Autism Dev Disord. 2011;41(5):545–54.PubMedCrossRef Bent S, Bertoglio K, Ashwood P, Bostrom A, Hendren RL. A pilot randomized controlled trial of omega-3 fatty acids for autism spectrum disorder. J Autism Dev Disord. 2011;41(5):545–54.PubMedCrossRef
50.
go back to reference Mankad D, Dupuis A, Smile S, Roberts W, Brian J, Lui T, et al. A randomized, placebo controlled trial ofomega-3 fatty acids in the treatment of young children with autism. Mol Autism. 2015;6:18.PubMedPubMedCentralCrossRef Mankad D, Dupuis A, Smile S, Roberts W, Brian J, Lui T, et al. A randomized, placebo controlled trial ofomega-3 fatty acids in the treatment of young children with autism. Mol Autism. 2015;6:18.PubMedPubMedCentralCrossRef
51.
go back to reference Parellada M, Llorente C, Calvo R, Gutierrez S, Lázaro L, Graell M, et al. Randomized trial of omega-3 for autism spectrum disorders: effect on cell membrane composition and behavior. Eur Neuropsychopharmacol. 2017;27(12):1319–30.PubMedCrossRef Parellada M, Llorente C, Calvo R, Gutierrez S, Lázaro L, Graell M, et al. Randomized trial of omega-3 for autism spectrum disorders: effect on cell membrane composition and behavior. Eur Neuropsychopharmacol. 2017;27(12):1319–30.PubMedCrossRef
52.
go back to reference Voigt RG, Mellon MW, Katusic SK, Weaver AL, Matern D, Mellon B, et al. Dietary docosahexaenoic acid supplementation in children with autism. J Pediatr Gastroenterol Nutr. 2014;58(6):715–22.PubMed Voigt RG, Mellon MW, Katusic SK, Weaver AL, Matern D, Mellon B, et al. Dietary docosahexaenoic acid supplementation in children with autism. J Pediatr Gastroenterol Nutr. 2014;58(6):715–22.PubMed
53.
go back to reference Johnson CR, Handen BL, Zimmer M, Sacco K. Polyunsaturated fatty acid supplementation in young children with autism. J Dev Phys Disabil. 2010;22:1–10.CrossRef Johnson CR, Handen BL, Zimmer M, Sacco K. Polyunsaturated fatty acid supplementation in young children with autism. J Dev Phys Disabil. 2010;22:1–10.CrossRef
54.
go back to reference Sterne JAC, Egger M, Moher D; Cochrane Bias Method Group. Addressing reporting biases. In: Higgins JPT, Green S, editors. Cochrane Handbook of Systematic Reviews of Interventions. Chichester, UK: Wiley, 2008. p. 297–333. Sterne JAC, Egger M, Moher D; Cochrane Bias Method Group. Addressing reporting biases. In: Higgins JPT, Green S, editors. Cochrane Handbook of Systematic Reviews of Interventions. Chichester, UK: Wiley, 2008. p. 297–333.
55.
go back to reference WHO/FAO Expert Consultation on Diet, Nutrition and the Prevention of Chronic Diseases (2002: Geneva, Switzerland) Diet, nutrition and the prevention of chronic diseases: Report of a joint WHO/FAO expert consultation, Geneva, 28 January -- 1 February 2002. WHO technical report series 916. WHO/FAO Expert Consultation on Diet, Nutrition and the Prevention of Chronic Diseases (2002: Geneva, Switzerland) Diet, nutrition and the prevention of chronic diseases: Report of a joint WHO/FAO expert consultation, Geneva, 28 January -- 1 February 2002. WHO technical report series 916.
56.
go back to reference International Society for the Study of Fatty Acids and Lipids (June 2004). Report of the Sub-Committee on Recommendations for Intake of Polyunsaturated Fatty Acids in Healthy Adults. [online]. Available at: http://www.issfal.org/news-links/resources/publications/PUFAIntakeReccomdFinalReport.pdf, undefined). International Society for the Study of Fatty Acids and Lipids (June 2004). Report of the Sub-Committee on Recommendations for Intake of Polyunsaturated Fatty Acids in Healthy Adults. [online]. Available at: http://​www.​issfal.​org/​news-links/​resources/​publications/​PUFAIntakeReccom​dFinalReport.​pdf, undefined).
57.
go back to reference National Institutes of Health - Office of Dietary Supplements. Omega-3 fatty acids - Fact Sheet for Health Professionals. Disponibile su: https://ods.od.nih.gov/factsheets/Omega3FattyAcids-HealthProfessional/ Ultimo accesso: 26-11-2018. National Institutes of Health - Office of Dietary Supplements. Omega-3 fatty acids - Fact Sheet for Health Professionals. Disponibile su: https://​ods.​od.​nih.​gov/​factsheets/​Omega3FattyAcids​-HealthProfession​al/​ Ultimo accesso: 26-11-2018.
58.
go back to reference Bays HE. Safety considerations with omega-3 fatty acid therapy. Am J Cardiol. 2007;99(6A):35C–43C.PubMedCrossRef Bays HE. Safety considerations with omega-3 fatty acid therapy. Am J Cardiol. 2007;99(6A):35C–43C.PubMedCrossRef
59.
go back to reference Institute of Medicine, Food and Nutrition Board. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids (macronutrients). Washington, DC: National Academy Press; 2005. Institute of Medicine, Food and Nutrition Board. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids (macronutrients). Washington, DC: National Academy Press; 2005.
60.
go back to reference EFSA Panel on Dietetic Products NaA. Scientific opinion on the tolerable upper intake level of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA). EFSA J. 2012;10:2815. EFSA Panel on Dietetic Products NaA. Scientific opinion on the tolerable upper intake level of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA). EFSA J. 2012;10:2815.
61.
go back to reference Hilleman D, Smer A. Prescription Omega-3 fatty acid products and dietary supplements are not interchangeable. Manag Care. 2016;25(1):46–52.PubMed Hilleman D, Smer A. Prescription Omega-3 fatty acid products and dietary supplements are not interchangeable. Manag Care. 2016;25(1):46–52.PubMed
62.
go back to reference Santini A, Cammarata SM, Capone G, Ianaro A, Tenore GC, Pani L, et al. Nutraceuticals: opening the debate for a regulatory framework. Br J Clin Pharmacol. 2018;84(4):659–72.PubMedPubMedCentralCrossRef Santini A, Cammarata SM, Capone G, Ianaro A, Tenore GC, Pani L, et al. Nutraceuticals: opening the debate for a regulatory framework. Br J Clin Pharmacol. 2018;84(4):659–72.PubMedPubMedCentralCrossRef
63.
go back to reference Morgano GP, Fulceri F, Nardocci F, Barbui C, Ostuzzi G, Papola D, et al. Introduction and methods of the evidence-based guidelines for the diagnosis and management of autism Spectrum disorder by the Italian National Institute of health. Submitted to Health Qual Life Outcomes. Morgano GP, Fulceri F, Nardocci F, Barbui C, Ostuzzi G, Papola D, et al. Introduction and methods of the evidence-based guidelines for the diagnosis and management of autism Spectrum disorder by the Italian National Institute of health. Submitted to Health Qual Life Outcomes.
64.
go back to reference James S, Montgomery P, Williams K. Omega-3 fatty acids supplementation for autism spectrum disorders (ASD). Cochrane Database Syst Rev. 2011;11:CD007992. James S, Montgomery P, Williams K. Omega-3 fatty acids supplementation for autism spectrum disorders (ASD). Cochrane Database Syst Rev. 2011;11:CD007992.
65.
go back to reference Mazahery H, Stonehouse W, Delshad M, Kruger MC, Conlon CA, Beck KL, et al. Relationship between Long Chain n-3 Polyunsaturated Fatty Acids and Autism Spectrum Disorder: Systematic Review and Meta-Analysis of Case-Control and Randomised Controlled Trials. Nutrients. 2017;9(2). pii: E155.PubMedCentralCrossRef Mazahery H, Stonehouse W, Delshad M, Kruger MC, Conlon CA, Beck KL, et al. Relationship between Long Chain n-3 Polyunsaturated Fatty Acids and Autism Spectrum Disorder: Systematic Review and Meta-Analysis of Case-Control and Randomised Controlled Trials. Nutrients. 2017;9(2). pii: E155.PubMedCentralCrossRef
66.
go back to reference Horvath A, Łukasik J, Szajewska H. ω-3 fatty acid supplementation does not affect autism Spectrum disorder in children: a systematic review and meta-analysis. J Nutr. 2017;147(3):367–76.PubMedCrossRef Horvath A, Łukasik J, Szajewska H. ω-3 fatty acid supplementation does not affect autism Spectrum disorder in children: a systematic review and meta-analysis. J Nutr. 2017;147(3):367–76.PubMedCrossRef
67.
go back to reference Hopf KP, Madren E, Santianni KA. Use and perceived effectiveness of complementary and alternative medicine to treat and manage the symptoms of autism in children: a survey of parents in a community population. J Altern Complement Med. 2016;22(1):25–32.PubMedPubMedCentralCrossRef Hopf KP, Madren E, Santianni KA. Use and perceived effectiveness of complementary and alternative medicine to treat and manage the symptoms of autism in children: a survey of parents in a community population. J Altern Complement Med. 2016;22(1):25–32.PubMedPubMedCentralCrossRef
68.
go back to reference Huang A, Seshadri K, Matthews TA, Ostfeld BM. Parental perspectives on use, benefits, and physician knowledge of complementary and alternative medicine in children with autistic disorder and attention-deficit/hyperactivity disorder. J Altern Complement Med. 2013;19(9):746–50.PubMedPubMedCentralCrossRef Huang A, Seshadri K, Matthews TA, Ostfeld BM. Parental perspectives on use, benefits, and physician knowledge of complementary and alternative medicine in children with autistic disorder and attention-deficit/hyperactivity disorder. J Altern Complement Med. 2013;19(9):746–50.PubMedPubMedCentralCrossRef
69.
go back to reference D’Alò GL, De Crescenzo F, Minozzi S, Morgano GP, Mitrova Z, Scattoni ML, et al. Equity, acceptability and feasibility of using polyunsaturated fatty acids in children and adolescents with autism spectrum disorder: a rapid systematic review. Submitted to Health Qual Life Outcomes. D’Alò GL, De Crescenzo F, Minozzi S, Morgano GP, Mitrova Z, Scattoni ML, et al. Equity, acceptability and feasibility of using polyunsaturated fatty acids in children and adolescents with autism spectrum disorder: a rapid systematic review. Submitted to Health Qual Life Outcomes.
Metadata
Title
Impact of polyunsaturated fatty acids on patient-important outcomes in children and adolescents with autism spectrum disorder: a systematic review
Authors
Franco De Crescenzo
Gian Loreto D’Alò
Gian Paolo Morgano
Silvia Minozzi
Zuzana Mitrova
Rosella Saulle
Fabio Cruciani
Francesca Fulceri
Marina Davoli
Maria Luisa Scattoni
Francesco Nardocci
Holger Jens Schünemann
Laura Amato
on behalf of the ISACA guideline working group
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Health and Quality of Life Outcomes / Issue 1/2020
Electronic ISSN: 1477-7525
DOI
https://doi.org/10.1186/s12955-020-01284-5

Other articles of this Issue 1/2020

Health and Quality of Life Outcomes 1/2020 Go to the issue