Skip to main content
Top
Published in: Molecular Cancer 1/2018

Open Access 01-12-2018 | Letter to the Editor

Heterogeneous mutation pattern in tumor tissue and circulating tumor DNA warrants parallel NGS panel testing

Authors: Qiaomei Guo, Junlei Wang, Jianfeng Xiao, Lin Wang, Xiaomeng Hu, Wenjun Yu, Gang Song, Jiatao Lou, JianFeng Chen

Published in: Molecular Cancer | Issue 1/2018

Login to get access

Abstract

Liquid biopsy by genotyping circulating tumor DNA (ctDNA) has provided a non-invasive approach in assessing tumor genomic alterations in clinical oncology. However, emerging evidence in clinical settings has shown significant discordance in the genomic alterations between matched tumor tissue and blood ctDNA samples, and even between the same set of blood samples analyzed on different testing platforms. Thus, it is necessary to study underlying causes of discrepancies in these studies by genotyping tumor tissue and ctDNA in parallel using next generation sequencing (NGS) panels based on the same technology. Here we enrolled 56 non-small-cell lung cancer (NSCLC) patients and evaluated tumor tissue genotyping and ctDNA based liquid biopsy by parallel NGS panel testing and compared different sample preparation conditions. Somatic mutations in plasma cell-free DNA (cfDNA) were detected in 63.6% patients with early-stage NSCLC and 60% patients with advanced-stage NSCLC. The overall concordance between matched formalin-fixed paraffin-embedded sample and cfDNA was 54.6% in early-stage NSCLC patients and 80% in advanced-stage NSCLC patients. The positive concordance rate was 44.4% and 71.4% in early-stage and advanced-stage patients, respectively. Using fresh frozen tumor samples did not improve the overall concordance rate between matched tumor tissue and cfDNA. Processing blood samples beyond 4 h after blood draw significantly decreased the detection rate of somatic mutations in cfDNA. Thus, the concordance rate between tumor tissue-based and ctDNA-based genotyping in clinical samples can be affected by multiple pre-analytical, analytical and biologic factors. Parallel NGS panel testing on both sample types for each patient may be warranted for effective guidance of cancer targeted therapies and possible early detection of cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Phallen J, Sausen M, Adleff V, Leal A, Hruban C, White J, Anagnostou V, Fiksel J, Cristiano S, Papp E, et al. Direct detection of early-stage cancers using circulating tumor DNA. Sci Transl Med. 2017;9 Phallen J, Sausen M, Adleff V, Leal A, Hruban C, White J, Anagnostou V, Fiksel J, Cristiano S, Papp E, et al. Direct detection of early-stage cancers using circulating tumor DNA. Sci Transl Med. 2017;9
2.
go back to reference Abbosh C, Birkbak NJ, Wilson GA, Jamal-Hanjani M, Constantin T, Salari R, Le Quesne J, Moore DA, Veeriah S, Rosenthal R, et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature. 2017;545:446–51.CrossRefPubMedPubMedCentral Abbosh C, Birkbak NJ, Wilson GA, Jamal-Hanjani M, Constantin T, Salari R, Le Quesne J, Moore DA, Veeriah S, Rosenthal R, et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature. 2017;545:446–51.CrossRefPubMedPubMedCentral
3.
go back to reference Jamal-Hanjani M, Wilson GA, McGranahan N, Birkbak NJ, Watkins TBK, Veeriah S, Shafi S, Johnson DH, Mitter R, Rosenthal R, et al. Tracking the evolution of non-small-cell lung Cancer. N Engl J Med. 2017;376:2109–21.CrossRefPubMed Jamal-Hanjani M, Wilson GA, McGranahan N, Birkbak NJ, Watkins TBK, Veeriah S, Shafi S, Johnson DH, Mitter R, Rosenthal R, et al. Tracking the evolution of non-small-cell lung Cancer. N Engl J Med. 2017;376:2109–21.CrossRefPubMed
4.
go back to reference Lanman RB, Mortimer SA, Zill OA, Sebisanovic D, Lopez R, Blau S, Collisson EA, Divers SG, Hoon DS, Kopetz ES, et al. Analytical and clinical validation of a digital sequencing panel for quantitative, Highly Accurate Evaluation of Cell-Free Circulating Tumor DNA. PLoS One. 2015;10:e0140712.CrossRefPubMedPubMedCentral Lanman RB, Mortimer SA, Zill OA, Sebisanovic D, Lopez R, Blau S, Collisson EA, Divers SG, Hoon DS, Kopetz ES, et al. Analytical and clinical validation of a digital sequencing panel for quantitative, Highly Accurate Evaluation of Cell-Free Circulating Tumor DNA. PLoS One. 2015;10:e0140712.CrossRefPubMedPubMedCentral
5.
go back to reference Frampton GM, Fichtenholtz A, Otto GA, Wang K, Downing SR, He J, Schnall-Levin M, White J, Sanford EM, An P, et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol. 2013;31:1023–31.CrossRefPubMedPubMedCentral Frampton GM, Fichtenholtz A, Otto GA, Wang K, Downing SR, He J, Schnall-Levin M, White J, Sanford EM, An P, et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol. 2013;31:1023–31.CrossRefPubMedPubMedCentral
6.
go back to reference Jones S, Anagnostou V, Lytle K, Parpart-Li S, Nesselbush M, Riley DR, Shukla M, Chesnick B, Kadan M, Papp E, et al. Personalized genomic analyses for cancer mutation discovery and interpretation. Sci Transl Med. 2015;7:283ra253.CrossRef Jones S, Anagnostou V, Lytle K, Parpart-Li S, Nesselbush M, Riley DR, Shukla M, Chesnick B, Kadan M, Papp E, et al. Personalized genomic analyses for cancer mutation discovery and interpretation. Sci Transl Med. 2015;7:283ra253.CrossRef
7.
go back to reference Kuderer NM, Burton KA, Blau S, Rose AL, Parker S, Lyman GH, Blau CA. Comparison of 2 commercially available next-generation sequencing platforms in oncology. JAMA Oncol. 2017;3:996–8.CrossRefPubMed Kuderer NM, Burton KA, Blau S, Rose AL, Parker S, Lyman GH, Blau CA. Comparison of 2 commercially available next-generation sequencing platforms in oncology. JAMA Oncol. 2017;3:996–8.CrossRefPubMed
8.
go back to reference Torga G, Pienta KJ. Patient-paired sample congruence between 2 commercial liquid biopsy tests. JAMA Oncol. 2017; Torga G, Pienta KJ. Patient-paired sample congruence between 2 commercial liquid biopsy tests. JAMA Oncol. 2017;
9.
go back to reference Chae YK, Davis AA, Carneiro BA, Chandra S, Mohindra N, Kalyan A, Kaplan J, Matsangou M, Pai S, Costa R, et al. Concordance between genomic alterations assessed by next-generation sequencing in tumor tissue or circulating cell-free DNA. Oncotarget. 2016;7:65364–73.PubMedPubMedCentral Chae YK, Davis AA, Carneiro BA, Chandra S, Mohindra N, Kalyan A, Kaplan J, Matsangou M, Pai S, Costa R, et al. Concordance between genomic alterations assessed by next-generation sequencing in tumor tissue or circulating cell-free DNA. Oncotarget. 2016;7:65364–73.PubMedPubMedCentral
10.
go back to reference Chen L, Liu P, Evans TC Jr, Ettwiller LM. DNA damage is a pervasive cause of sequencing errors, directly confounding variant identification. Science. 2017;355:752–6.CrossRefPubMed Chen L, Liu P, Evans TC Jr, Ettwiller LM. DNA damage is a pervasive cause of sequencing errors, directly confounding variant identification. Science. 2017;355:752–6.CrossRefPubMed
Metadata
Title
Heterogeneous mutation pattern in tumor tissue and circulating tumor DNA warrants parallel NGS panel testing
Authors
Qiaomei Guo
Junlei Wang
Jianfeng Xiao
Lin Wang
Xiaomeng Hu
Wenjun Yu
Gang Song
Jiatao Lou
JianFeng Chen
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2018
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/s12943-018-0875-0

Other articles of this Issue 1/2018

Molecular Cancer 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine