Skip to main content
Top
Published in: Molecular Cancer 1/2018

Open Access 01-12-2018 | Research

The lncRNA MACC1-AS1 promotes gastric cancer cell metabolic plasticity via AMPK/Lin28 mediated mRNA stability of MACC1

Authors: Yang Zhao, Yajing Liu, Li Lin, Qiong Huang, Wanming He, Shuyi Zhang, Shumin Dong, Zhaowei Wen, Jinjun Rao, Wangjun Liao, Min Shi

Published in: Molecular Cancer | Issue 1/2018

Login to get access

Abstract

Background

Metabolic plasticity has been increasingly thought to be a determinant of tumor growth and metastasis. MACC1, a transcriptional regulator of MET, was recognized as an oncogene in gastric cancer (GC); however, its transcriptional or post-translational regulation was not clear. We previously reported the metabolic role of MACC1 in glycolysis to promote GC progression. MACC1-AS1 is the antisense lncRNA of MACC1, yet its function was previously unknown.

Methods

We profiled and analyzed the expression of MACC1-AS1 utilizing the TCGA database as well as in situ hybridization using 123 pairs of GC tissues and matched adjacent normal gastric mucosa tissues (ANTs). The biological role of MACC1-AS1 in cell growth and metastasis was determined by performing in vitro and in vivo functional experiments. Glycolysis and antioxidant capabilities were assayed to examine its metabolic function. Further, the specific regulatory effect of MACC1-AS1 on MACC1 was explored transcriptionally and post-transcriptionally.

Results

MACC1-AS1 was shown to be expressed significantly higher in GC tissues than in ANTs, which predicted poor prognosis in GC patients. MACC1-AS1 promoted GC cell proliferation and inhibited cell apoptosis under metabolic stress. Mechanistically, MACC1-AS1 stabilized MACC1 mRNA and post-transcriptionally augmented MACC1 expression. Further, MACC1-AS1 was shown to mediate metabolic plasticity through MACC1 upregulation and subsequent enhanced glycolysis and anti-oxidative capabilities, and this was suggested to be coordinated by the AMPK/Lin28 pathway.

Conclusions

Elevated expression of MACC1-AS1 in gastric cancer tissues is linked to poor prognosis and promotes malignant phenotype upon cancer cells. MACC1-AS1 is elevated under metabolic stress and facilitates metabolic plasticity by promoting MACC1 expression through mRNA stabilization. Our study implicates lncRNA MACC1-AS1 as a valuable biomarker for GC diagnosis and prognosis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Van Cutsem E, Sagaert X, Topal B, Haustermans K, Prenen H. Gastric cancer. Lancet. 2016;388:2654–64.CrossRefPubMed Van Cutsem E, Sagaert X, Topal B, Haustermans K, Prenen H. Gastric cancer. Lancet. 2016;388:2654–64.CrossRefPubMed
2.
go back to reference Lehuédé C, Dupuy F, Rabinovitch R, Jones RG, Siegel PM. Metabolic plasticity as a determinant of tumor growth and metastasis. Cancer Res. 2016;76:5201–8.CrossRefPubMed Lehuédé C, Dupuy F, Rabinovitch R, Jones RG, Siegel PM. Metabolic plasticity as a determinant of tumor growth and metastasis. Cancer Res. 2016;76:5201–8.CrossRefPubMed
3.
go back to reference Wu Z-Z, Chen L-S, Zhou R, Bin J-P, Liao Y-L, Liao W-J. Metastasis-associated in colon cancer-1 in gastric cancer: beyond metastasis. World J Gastroenterol. 2016;22:6629.CrossRefPubMedPubMedCentral Wu Z-Z, Chen L-S, Zhou R, Bin J-P, Liao Y-L, Liao W-J. Metastasis-associated in colon cancer-1 in gastric cancer: beyond metastasis. World J Gastroenterol. 2016;22:6629.CrossRefPubMedPubMedCentral
4.
go back to reference Stylianopoulos T, Martin JD, Snuderl M, Mpekris F, Jain SR, Jain RK. Coevolution of solid stress and interstitial fluid pressure in tumors during progression: implications for vascular collapse. Cancer Res. 2013;73:3833–41.CrossRefPubMedPubMedCentral Stylianopoulos T, Martin JD, Snuderl M, Mpekris F, Jain SR, Jain RK. Coevolution of solid stress and interstitial fluid pressure in tumors during progression: implications for vascular collapse. Cancer Res. 2013;73:3833–41.CrossRefPubMedPubMedCentral
5.
go back to reference Zhao Y, Hu X, Liu Y, Dong S, Wen Z, He W, Zhang S, Huang Q, Shi M. ROS signaling under metabolic stress: cross-talk between AMPK and AKT pathway. Mol Cancer. 2017;16:79.CrossRefPubMedPubMedCentral Zhao Y, Hu X, Liu Y, Dong S, Wen Z, He W, Zhang S, Huang Q, Shi M. ROS signaling under metabolic stress: cross-talk between AMPK and AKT pathway. Mol Cancer. 2017;16:79.CrossRefPubMedPubMedCentral
6.
go back to reference Yang F, Xue X, Zheng L, Bi J, Zhou Y, Zhi K, Gu Y, Fang G. Long non-coding RNA GHET1 promotes gastric carcinoma cell proliferation by increasing c-Myc mRNA stability. FEBS J. 2014;281:802–13.CrossRefPubMed Yang F, Xue X, Zheng L, Bi J, Zhou Y, Zhi K, Gu Y, Fang G. Long non-coding RNA GHET1 promotes gastric carcinoma cell proliferation by increasing c-Myc mRNA stability. FEBS J. 2014;281:802–13.CrossRefPubMed
7.
8.
go back to reference Guo Y, Sheng Q, Li J, Ye F, Samuels DC, Shyr Y. Large scale comparison of gene expression levels by microarrays and RNAseq using TCGA data. PLoS One. 2013;8:e71462.CrossRefPubMedPubMedCentral Guo Y, Sheng Q, Li J, Ye F, Samuels DC, Shyr Y. Large scale comparison of gene expression levels by microarrays and RNAseq using TCGA data. PLoS One. 2013;8:e71462.CrossRefPubMedPubMedCentral
9.
go back to reference Lin L, Huang H, Liao W, Ma H, Liu J, Wang L, Huang N, Liao Y. MACC1 supports human gastric cancer growth under metabolic stress by enhancing the Warburg effect. Oncogene. 2015;34:2700–10.CrossRefPubMed Lin L, Huang H, Liao W, Ma H, Liu J, Wang L, Huang N, Liao Y. MACC1 supports human gastric cancer growth under metabolic stress by enhancing the Warburg effect. Oncogene. 2015;34:2700–10.CrossRefPubMed
10.
go back to reference Kanska J, Aspuria P-JP, Taylor-Harding B, Spurka L, Funari V, Orsulic S, Karlan BY, Wiedemeyer WR. Glucose deprivation elicits phenotypic plasticity via ZEB1-mediated expression of NNMT. Oncotarget. 2017;8:26200.CrossRefPubMedPubMedCentral Kanska J, Aspuria P-JP, Taylor-Harding B, Spurka L, Funari V, Orsulic S, Karlan BY, Wiedemeyer WR. Glucose deprivation elicits phenotypic plasticity via ZEB1-mediated expression of NNMT. Oncotarget. 2017;8:26200.CrossRefPubMedPubMedCentral
11.
go back to reference Cheung EC, Ludwig RL, Vousden KH. Mitochondrial localization of TIGAR under hypoxia stimulates HK2 and lowers ROS and cell death. Proc Natl Acad Sci. 2012;109:20491–6.CrossRefPubMedPubMedCentral Cheung EC, Ludwig RL, Vousden KH. Mitochondrial localization of TIGAR under hypoxia stimulates HK2 and lowers ROS and cell death. Proc Natl Acad Sci. 2012;109:20491–6.CrossRefPubMedPubMedCentral
12.
go back to reference Huang B, Song J, Cheng Y, Abraham J, Ibrahim S, Sun Z, Ke X, Meltzer S. Long non-coding antisense RNA KRT7-AS is activated in gastric cancers and supports cancer cell progression by increasing KRT7 expression. Oncogene. 2016;35(37):4927–36.CrossRefPubMedPubMedCentral Huang B, Song J, Cheng Y, Abraham J, Ibrahim S, Sun Z, Ke X, Meltzer S. Long non-coding antisense RNA KRT7-AS is activated in gastric cancers and supports cancer cell progression by increasing KRT7 expression. Oncogene. 2016;35(37):4927–36.CrossRefPubMedPubMedCentral
13.
go back to reference Hu R, Sun X. lncRNATargets: a platform for lncRNA target prediction based on nucleic acid thermodynamics. J Bioinform Comput Biol. 2016;14:1650016.CrossRefPubMed Hu R, Sun X. lncRNATargets: a platform for lncRNA target prediction based on nucleic acid thermodynamics. J Bioinform Comput Biol. 2016;14:1650016.CrossRefPubMed
14.
go back to reference Li J-H, Liu S, Zhou H, Qu L-H, Yang J-H. starBase v2. 0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2013;42:D92–7.CrossRefPubMedPubMedCentral Li J-H, Liu S, Zhou H, Qu L-H, Yang J-H. starBase v2. 0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2013;42:D92–7.CrossRefPubMedPubMedCentral
15.
go back to reference Yang T, He W, Cui F, Xia J, Zhou R, Wu Z, Zhao Y, Shi M. MACC1 mediates acetylcholine-induced invasion and migration by human gastric cancer cells. Oncotarget. 2016;7:18085.PubMedPubMedCentral Yang T, He W, Cui F, Xia J, Zhou R, Wu Z, Zhao Y, Shi M. MACC1 mediates acetylcholine-induced invasion and migration by human gastric cancer cells. Oncotarget. 2016;7:18085.PubMedPubMedCentral
16.
go back to reference Wang C, Wen Z, Xie J, Zhao Y, Zhao L, Zhang S, Liu Y, Xue Y, Shi M. MACC1 mediates chemotherapy sensitivity of 5-FU and cisplatin via regulating MCT1 expression in gastric cancer. Biochem Biophys Res Commun. 2017;485:665–71.CrossRefPubMed Wang C, Wen Z, Xie J, Zhao Y, Zhao L, Zhang S, Liu Y, Xue Y, Shi M. MACC1 mediates chemotherapy sensitivity of 5-FU and cisplatin via regulating MCT1 expression in gastric cancer. Biochem Biophys Res Commun. 2017;485:665–71.CrossRefPubMed
17.
go back to reference Stein U, Walther W, Arlt F, Schwabe H, Smith J, Fichtner I, Birchmeier W, Schlag PM. MACC1, a newly identified key regulator of HGF-MET signaling, predicts colon cancer metastasis. Nat Med. 2009;15:59–67.CrossRefPubMed Stein U, Walther W, Arlt F, Schwabe H, Smith J, Fichtner I, Birchmeier W, Schlag PM. MACC1, a newly identified key regulator of HGF-MET signaling, predicts colon cancer metastasis. Nat Med. 2009;15:59–67.CrossRefPubMed
18.
go back to reference Bradley CA, Salto-Tellez M, Laurent-Puig P, Bardelli A, Rolfo C, Tabernero J, Khawaja HA, Lawler M, Johnston PG, Van Schaeybroeck S. Targeting c-MET in gastrointestinal tumours: rationale, opportunities and challenges. Nat Rev Clin Oncol. 2017;14(9):562–76.CrossRefPubMed Bradley CA, Salto-Tellez M, Laurent-Puig P, Bardelli A, Rolfo C, Tabernero J, Khawaja HA, Lawler M, Johnston PG, Van Schaeybroeck S. Targeting c-MET in gastrointestinal tumours: rationale, opportunities and challenges. Nat Rev Clin Oncol. 2017;14(9):562–76.CrossRefPubMed
19.
go back to reference Mira A, Morello V, Céspedes MV, Perera T, Comoglio PM, Mangues R, Michieli P. Stroma-derived HGF drives metabolic adaptation of colorectal cancer to angiogenesis inhibitors. Oncotarget. 2017;8:38193.CrossRefPubMedPubMedCentral Mira A, Morello V, Céspedes MV, Perera T, Comoglio PM, Mangues R, Michieli P. Stroma-derived HGF drives metabolic adaptation of colorectal cancer to angiogenesis inhibitors. Oncotarget. 2017;8:38193.CrossRefPubMedPubMedCentral
20.
go back to reference Lui VWY, Wong EYL, Ho K, Ng PKS, Lau CPY, Tsui SKW, Tsang C-M, Tsao S-W, Cheng SH, Ng MHL. Inhibition of c-met downregulates TIGAR expression and reduces NADPH production leading to cell death. Oncogene. 2011;30:1127.CrossRefPubMed Lui VWY, Wong EYL, Ho K, Ng PKS, Lau CPY, Tsui SKW, Tsang C-M, Tsao S-W, Cheng SH, Ng MHL. Inhibition of c-met downregulates TIGAR expression and reduces NADPH production leading to cell death. Oncogene. 2011;30:1127.CrossRefPubMed
21.
go back to reference Ma L, Tao Y, Duran A, Llado V, Galvez A, Barger JF, Castilla EA, Chen J, Yajima T, Porollo A. Control of nutrient stress-induced metabolic reprogramming by PKCζ in tumorigenesis. Cell. 2013;152:599–611.CrossRefPubMedPubMedCentral Ma L, Tao Y, Duran A, Llado V, Galvez A, Barger JF, Castilla EA, Chen J, Yajima T, Porollo A. Control of nutrient stress-induced metabolic reprogramming by PKCζ in tumorigenesis. Cell. 2013;152:599–611.CrossRefPubMedPubMedCentral
22.
go back to reference Piskounova E, Agathocleous M, Murphy MM, Hu Z, Huddlestun SE, Zhao Z, Leitch AM, Johnson TM, DeBerardinis RJ, Morrison SJ. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature. 2015;527:186–91.CrossRefPubMedPubMedCentral Piskounova E, Agathocleous M, Murphy MM, Hu Z, Huddlestun SE, Zhao Z, Leitch AM, Johnson TM, DeBerardinis RJ, Morrison SJ. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature. 2015;527:186–91.CrossRefPubMedPubMedCentral
23.
go back to reference Schafer ZT, Grassian AR, Song L, Jiang Z, Gerhart-Hines Z, Irie HY, Gao S, Puigserver P, Brugge JS. Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature. 2009;461:109.CrossRefPubMedPubMedCentral Schafer ZT, Grassian AR, Song L, Jiang Z, Gerhart-Hines Z, Irie HY, Gao S, Puigserver P, Brugge JS. Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature. 2009;461:109.CrossRefPubMedPubMedCentral
24.
go back to reference Bhattacharya B, Low S, Soh C, Kamal Mustapa N, Beloueche-Babari M, Koh K, Loh J, Soong R. Increased drug resistance is associated with reduced glucose levels and an enhanced glycolysis phenotype. Br J Pharmacol. 2014;171:3255–67.CrossRefPubMedPubMedCentral Bhattacharya B, Low S, Soh C, Kamal Mustapa N, Beloueche-Babari M, Koh K, Loh J, Soong R. Increased drug resistance is associated with reduced glucose levels and an enhanced glycolysis phenotype. Br J Pharmacol. 2014;171:3255–67.CrossRefPubMedPubMedCentral
25.
go back to reference Yun J, Rago C, Cheong I, Pagliarini R, Angenendt P, Rajagopalan H, Schmidt K, Willson JK, Markowitz S, Zhou S. Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science. 2009;325:1555–9.CrossRefPubMedPubMedCentral Yun J, Rago C, Cheong I, Pagliarini R, Angenendt P, Rajagopalan H, Schmidt K, Willson JK, Markowitz S, Zhou S. Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science. 2009;325:1555–9.CrossRefPubMedPubMedCentral
27.
go back to reference Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-Sananikone E, Locasale JW, Son J, Zhang H, Coloff JL. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell. 2012;149:656–70.CrossRefPubMedPubMedCentral Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-Sananikone E, Locasale JW, Son J, Zhang H, Coloff JL. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell. 2012;149:656–70.CrossRefPubMedPubMedCentral
28.
go back to reference Liu L, Duclos G, Sun B, Lee J, Wu A, Kam Y, Sontag ED, Stone HA, Sturm JC, Gatenby RA. Minimization of thermodynamic costs in cancer cell invasion. Proc Natl Acad Sci. 2013;110:1686–91.CrossRefPubMedPubMedCentral Liu L, Duclos G, Sun B, Lee J, Wu A, Kam Y, Sontag ED, Stone HA, Sturm JC, Gatenby RA. Minimization of thermodynamic costs in cancer cell invasion. Proc Natl Acad Sci. 2013;110:1686–91.CrossRefPubMedPubMedCentral
29.
go back to reference Simões RV, Serganova IS, Kruchevsky N, Leftin A, Shestov AA, Thaler HT, Sukenick G, Locasale JW, Blasberg RG, Koutcher JA. Metabolic plasticity of metastatic breast cancer cells: adaptation to changes in the microenvironment. Neoplasia. 2015;17:671–84.CrossRefPubMedPubMedCentral Simões RV, Serganova IS, Kruchevsky N, Leftin A, Shestov AA, Thaler HT, Sukenick G, Locasale JW, Blasberg RG, Koutcher JA. Metabolic plasticity of metastatic breast cancer cells: adaptation to changes in the microenvironment. Neoplasia. 2015;17:671–84.CrossRefPubMedPubMedCentral
30.
go back to reference Viswanathan VS, Ryan MJ, Dhruv HD, Gill S, Eichhoff OM, Seashore-Ludlow B, Kaffenberger SD, Eaton JK, Shimada K, Aguirre AJ. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature. 2017;547:453–7.CrossRefPubMed Viswanathan VS, Ryan MJ, Dhruv HD, Gill S, Eichhoff OM, Seashore-Ludlow B, Kaffenberger SD, Eaton JK, Shimada K, Aguirre AJ. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature. 2017;547:453–7.CrossRefPubMed
31.
go back to reference Oizel K, Chauvin C, Oliver L, Gratas C, Geraldo F, Jarry U, Scotet E, Rabe M, Alves-Guerra M-C, Teusan R. Efficient mitochondrial glutamine targeting prevails over glioblastoma metabolic plasticity. Clin Cancer Res. 2017;23(20):6292–304. clincanres. 3102.2016CrossRefPubMed Oizel K, Chauvin C, Oliver L, Gratas C, Geraldo F, Jarry U, Scotet E, Rabe M, Alves-Guerra M-C, Teusan R. Efficient mitochondrial glutamine targeting prevails over glioblastoma metabolic plasticity. Clin Cancer Res. 2017;23(20):6292–304. clincanres. 3102.2016CrossRefPubMed
32.
go back to reference De Nadal E, Ammerer G, Posas F. Controlling gene expression in response to stress. Nat Rev Genet. 2011;12:833.CrossRefPubMed De Nadal E, Ammerer G, Posas F. Controlling gene expression in response to stress. Nat Rev Genet. 2011;12:833.CrossRefPubMed
33.
34.
go back to reference Yun H, Lee M, Kim S-S, Ha J. Glucose deprivation increases mRNA stability of vascular endothelial growth factor through activation of AMP-activated protein kinase in DU145 prostate carcinoma. J Biol Chem. 2005;280:9963–72.CrossRefPubMed Yun H, Lee M, Kim S-S, Ha J. Glucose deprivation increases mRNA stability of vascular endothelial growth factor through activation of AMP-activated protein kinase in DU145 prostate carcinoma. J Biol Chem. 2005;280:9963–72.CrossRefPubMed
35.
go back to reference Zhang J, Bowden GT. UVB irradiation regulates Cox-2 mRNA stability through AMPK and HuR in human keratinocytes. Mol Carcinog. 2008;47:974–83.CrossRefPubMed Zhang J, Bowden GT. UVB irradiation regulates Cox-2 mRNA stability through AMPK and HuR in human keratinocytes. Mol Carcinog. 2008;47:974–83.CrossRefPubMed
36.
go back to reference Qiu C, Ma Y, Wang J, Peng S, Huang Y. Lin28-mediated post-transcriptional regulation of Oct4 expression in human embryonic stem cells. Nucleic Acids Res. 2009;38:1240–8.CrossRefPubMedPubMedCentral Qiu C, Ma Y, Wang J, Peng S, Huang Y. Lin28-mediated post-transcriptional regulation of Oct4 expression in human embryonic stem cells. Nucleic Acids Res. 2009;38:1240–8.CrossRefPubMedPubMedCentral
38.
go back to reference Yoon J-H, Abdelmohsen K, Gorospe M. Posttranscriptional gene regulation by long noncoding RNA. J Mol Biol. 2013;425:3723–30.CrossRefPubMed Yoon J-H, Abdelmohsen K, Gorospe M. Posttranscriptional gene regulation by long noncoding RNA. J Mol Biol. 2013;425:3723–30.CrossRefPubMed
Metadata
Title
The lncRNA MACC1-AS1 promotes gastric cancer cell metabolic plasticity via AMPK/Lin28 mediated mRNA stability of MACC1
Authors
Yang Zhao
Yajing Liu
Li Lin
Qiong Huang
Wanming He
Shuyi Zhang
Shumin Dong
Zhaowei Wen
Jinjun Rao
Wangjun Liao
Min Shi
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2018
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/s12943-018-0820-2

Other articles of this Issue 1/2018

Molecular Cancer 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine