Skip to main content
Top
Published in: Molecular Cancer 1/2018

Open Access 01-12-2018 | Research

microRNA-124 inhibits bone metastasis of breast cancer by repressing Interleukin-11

Authors: Wei-Luo Cai, Wen-Ding Huang, Bo Li, Tian-Rui Chen, Zhen-Xi Li, Cheng-Long Zhao, Heng-Yu Li, Yan-Mei Wu, Wang-Jun Yan, Jian-Ru Xiao

Published in: Molecular Cancer | Issue 1/2018

Login to get access

Abstract

Background

Most patients with breast cancer in advanced stages of the disease suffer from bone metastases which lead to fractures and nerve compression syndromes. microRNA dysregulation is an important event in the metastases of breast cancer to bone. microRNA-124 (miR-124) has been proved to inhibit cancer progression, whereas its effect on bone metastases of breast cancer has not been reported. Therefore, this study aimed to investigate the role and underlying mechanism of miR-124 in bone metastases of breast cancer.

Methods

In situ hybridization (ISH) was used to detect the expression of miR-124 in breast cancer tissues and bone metastatic tissues. Ventricle injection model was constructed to explore the effect of miR-124 on bone metastasis in vivo. The function of cancer cell derived miR-124 in the differentiation of osteoclast progenitor cells was verified in vitro. Dual-luciferase reporter assay was conducted to confirm Interleukin-11 (IL-11) as a miR-124 target. The involvement of miR-124/IL-11 in the prognosis of breast cancer patients with bone metastasis was determined by Kaplan-Meier analysis.

Results

Herein, we found that miR-124 was significantly reduced in metastatic bone tissues from breast cancers. Down-regulation of miR-124 was associated with aggressive clinical characteristics and shorter bone metastasis-free survival and overall survival. Restoration of miR-124 suppressed, while inhibition of miR-124 promoted the bone metastasis of breast cancer cells in vivo. At the cellular level, gain of function and loss-of function assays indicated that cancer cell-derived miR-124 inhibited the survival and differentiation of osteoclast progenitor cells. At the molecular level, we demonstrated that IL-11 partially mediated osteoclastogenesis suppression by miR-124 using in vitro and in vivo assays. Furthermore, IL-11 levels were inversely correlated with miR-124, and up-regulation IL-11 in bone metastases was associated with a poor prognosis.

Conclusions

Thus, the identification of a dysregulated miR-124/IL-11 axis helps elucidate mechanisms of breast cancer metastases to bone, uncovers new prognostic markers, and facilitates the development of novel therapeutic targets to treat and even prevent bone metastases of breast cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.CrossRefPubMed Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.CrossRefPubMed
3.
go back to reference Ibrahim MF, Mazzarello S, Shorr R, Vandermeer L, Jacobs C, Hilton J, et al. Should de-escalation of bone-targeting agents be standard of care for patients with bone metastases from breast cancer? A systematic review and meta-analysis. Ann Oncol. 2015;26:2205–13.CrossRefPubMed Ibrahim MF, Mazzarello S, Shorr R, Vandermeer L, Jacobs C, Hilton J, et al. Should de-escalation of bone-targeting agents be standard of care for patients with bone metastases from breast cancer? A systematic review and meta-analysis. Ann Oncol. 2015;26:2205–13.CrossRefPubMed
4.
go back to reference Tanaka R, et al. Risk factors for developing skeletal-related events in breast cancer patients with bone metastases undergoing treatment with bone-modifying agents. Oncologist. 2016;21:508–13.CrossRefPubMedPubMedCentral Tanaka R, et al. Risk factors for developing skeletal-related events in breast cancer patients with bone metastases undergoing treatment with bone-modifying agents. Oncologist. 2016;21:508–13.CrossRefPubMedPubMedCentral
7.
go back to reference Esposito M, Kang Y. Targeting tumor-stromal interactions in bone metastasis. Pharmacol Ther. 2014;141:222–33.CrossRefPubMed Esposito M, Kang Y. Targeting tumor-stromal interactions in bone metastasis. Pharmacol Ther. 2014;141:222–33.CrossRefPubMed
8.
go back to reference Putoczki T, Ernst M. More than a sidekick: the IL-6 family cytokine IL-11 links inflammation to cancer. J Leukoc Biol. 2010;88:1109–17.CrossRefPubMed Putoczki T, Ernst M. More than a sidekick: the IL-6 family cytokine IL-11 links inflammation to cancer. J Leukoc Biol. 2010;88:1109–17.CrossRefPubMed
9.
go back to reference Johnstone CN, Chand A, Putoczki TL, Ernst M. Emerging roles for IL-11 signaling in cancer development and progression: focus on breast cancer. Cytokine Growth Factor Rev. 2015;26:489–98.CrossRefPubMed Johnstone CN, Chand A, Putoczki TL, Ernst M. Emerging roles for IL-11 signaling in cancer development and progression: focus on breast cancer. Cytokine Growth Factor Rev. 2015;26:489–98.CrossRefPubMed
10.
go back to reference McCoy EM, Hong H, Pruitt HC, Feng X. IL-11 produced by breast cancer cells augments osteoclastogenesis by sustaining the pool of osteoclast progenitor cells. BMC Cancer. 2013;13:16.CrossRefPubMedPubMedCentral McCoy EM, Hong H, Pruitt HC, Feng X. IL-11 produced by breast cancer cells augments osteoclastogenesis by sustaining the pool of osteoclast progenitor cells. BMC Cancer. 2013;13:16.CrossRefPubMedPubMedCentral
11.
go back to reference Browne G, Taipaleenmäki H, Stein GS, Stein JL, Lian JB. MicroRNAs in the control of metastatic bone disease. Trends Endocrinol Metab. 2014;25:320–7.CrossRefPubMedPubMedCentral Browne G, Taipaleenmäki H, Stein GS, Stein JL, Lian JB. MicroRNAs in the control of metastatic bone disease. Trends Endocrinol Metab. 2014;25:320–7.CrossRefPubMedPubMedCentral
12.
13.
go back to reference Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-specific microRNAs from mouse. Curr Biol. 2002;12:735–9.CrossRefPubMed Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-specific microRNAs from mouse. Curr Biol. 2002;12:735–9.CrossRefPubMed
14.
go back to reference Åkerblom M, Jakobsson J. MicroRNAs as neuronal fate determinants. Neuroscientist. 2014;20:235–42.CrossRefPubMed Åkerblom M, Jakobsson J. MicroRNAs as neuronal fate determinants. Neuroscientist. 2014;20:235–42.CrossRefPubMed
15.
go back to reference Sonntag KC, Woo TU, Krichevsky AM. Converging miRNA functions in diverse brain disorders: a case for miR-124 and miR-126. Exp Neurol. 2012;235:427–35.CrossRefPubMed Sonntag KC, Woo TU, Krichevsky AM. Converging miRNA functions in diverse brain disorders: a case for miR-124 and miR-126. Exp Neurol. 2012;235:427–35.CrossRefPubMed
16.
go back to reference Furuta M, Kozaki KI, Tanaka S, Arii S, Imoto I, Inazawa J. miR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma. Carcinogenesis. 2010;31:766–76.CrossRefPubMed Furuta M, Kozaki KI, Tanaka S, Arii S, Imoto I, Inazawa J. miR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma. Carcinogenesis. 2010;31:766–76.CrossRefPubMed
17.
go back to reference Wilting SM, van Boerdonk RA, Henken FE, Meijer CJ, Diosdado B, Meijer GA, et al. Methylation-mediated silencing and tumour suppressive function of hsa-miR-124 in cervical cancer. Mol Cancer. 2010;9:167.CrossRefPubMedPubMedCentral Wilting SM, van Boerdonk RA, Henken FE, Meijer CJ, Diosdado B, Meijer GA, et al. Methylation-mediated silencing and tumour suppressive function of hsa-miR-124 in cervical cancer. Mol Cancer. 2010;9:167.CrossRefPubMedPubMedCentral
18.
go back to reference Vázquez I, Maicas M, Marcotegui N, Conchillo A, Guruceaga E, Roman-Gomez J, et al. Silencing of hsa-miR-124 by EVI1 in cell lines and patients with acute myeloid leukemia. Proc Natl Acad Sci U S A. 2010;107:E167–8.CrossRefPubMedPubMedCentral Vázquez I, Maicas M, Marcotegui N, Conchillo A, Guruceaga E, Roman-Gomez J, et al. Silencing of hsa-miR-124 by EVI1 in cell lines and patients with acute myeloid leukemia. Proc Natl Acad Sci U S A. 2010;107:E167–8.CrossRefPubMedPubMedCentral
19.
go back to reference Xia J, Wu Z, Yu C, He W, Zheng H, He Y, et al. miR-124 inhibits cell proliferation in gastric cancer through down-regulation of SPHK1. J Pathol. 2012;227:470–80.CrossRefPubMed Xia J, Wu Z, Yu C, He W, Zheng H, He Y, et al. miR-124 inhibits cell proliferation in gastric cancer through down-regulation of SPHK1. J Pathol. 2012;227:470–80.CrossRefPubMed
20.
go back to reference Sun Y, Zhao X, Zhou Y, Hu Y. miR-124, miR-137 and miR-340 regulate colorectal cancer growth via inhibition of the Warburg effect. Oncol Rep. 2012;28:1346–52.CrossRefPubMed Sun Y, Zhao X, Zhou Y, Hu Y. miR-124, miR-137 and miR-340 regulate colorectal cancer growth via inhibition of the Warburg effect. Oncol Rep. 2012;28:1346–52.CrossRefPubMed
21.
go back to reference Wang P, Chen L, Zhang J, Chen H, Fan J, Wang K, et al. Methylation-mediated silencing of the miR-124 genes facilitates pancreatic cancer progression and metastasis by targeting Rac1. Oncogene. 2014;33:514–24.CrossRefPubMed Wang P, Chen L, Zhang J, Chen H, Fan J, Wang K, et al. Methylation-mediated silencing of the miR-124 genes facilitates pancreatic cancer progression and metastasis by targeting Rac1. Oncogene. 2014;33:514–24.CrossRefPubMed
22.
go back to reference Shi XB, Xue L, Ma AH, Tepper CG, Gandour-Edwards R, Kung HJ, et al. Tumor suppressive miR-124 targets androgen receptor and inhibits proliferation of prostate cancer cells. Oncogene. 2013;32:4130–8.CrossRefPubMed Shi XB, Xue L, Ma AH, Tepper CG, Gandour-Edwards R, Kung HJ, et al. Tumor suppressive miR-124 targets androgen receptor and inhibits proliferation of prostate cancer cells. Oncogene. 2013;32:4130–8.CrossRefPubMed
23.
go back to reference Lv XB, Jiao Y, Qing Y, Hu H, Cui X, Lin T, et al. miR-124 suppresses multiple steps of breast cancer metastasis by targeting a cohort of pro-metastatic genes in vitro. Chin J Cancer. 2011;30:821–30.CrossRefPubMedPubMedCentral Lv XB, Jiao Y, Qing Y, Hu H, Cui X, Lin T, et al. miR-124 suppresses multiple steps of breast cancer metastasis by targeting a cohort of pro-metastatic genes in vitro. Chin J Cancer. 2011;30:821–30.CrossRefPubMedPubMedCentral
24.
go back to reference Liang YJ, Wang QY, Zhou CX, Yin QQ, He M, Yu XT, et al. MiR-124 targets slug to regulate epithelial-mesenchymal transition and metastasis of breast cancer. Carcinogenesis. 2013;34:713–22.CrossRefPubMed Liang YJ, Wang QY, Zhou CX, Yin QQ, He M, Yu XT, et al. MiR-124 targets slug to regulate epithelial-mesenchymal transition and metastasis of breast cancer. Carcinogenesis. 2013;34:713–22.CrossRefPubMed
25.
go back to reference Han ZB, Yang Z, Chi Y, Zhang L, Wang Y, Ji Y, et al. MicroRNA-124 suppresses breast cancer cell growth and motility by targeting CD151. Cell Physiol Biochem. 2013;31:823–32.CrossRefPubMed Han ZB, Yang Z, Chi Y, Zhang L, Wang Y, Ji Y, et al. MicroRNA-124 suppresses breast cancer cell growth and motility by targeting CD151. Cell Physiol Biochem. 2013;31:823–32.CrossRefPubMed
26.
go back to reference Li L, Luo J, Wang B, Wang D, Xie X, Yuan L, et al. Microrna-124 targets flotillin-1 to regulate proliferation and migration in breast cancer. Mol Cancer. 2013;12:163.CrossRefPubMedPubMedCentral Li L, Luo J, Wang B, Wang D, Xie X, Yuan L, et al. Microrna-124 targets flotillin-1 to regulate proliferation and migration in breast cancer. Mol Cancer. 2013;12:163.CrossRefPubMedPubMedCentral
27.
go back to reference Feng T, Shao F, Wu Q, Zhang X, Xu D, Qian K, et al. miR-124 downregulation leads to breast cancer progression via LncRNA-MALAT1 regulation and CDK4/E2F1 signal activation. Oncotarget. 2016;7:16205–16.PubMedPubMedCentral Feng T, Shao F, Wu Q, Zhang X, Xu D, Qian K, et al. miR-124 downregulation leads to breast cancer progression via LncRNA-MALAT1 regulation and CDK4/E2F1 signal activation. Oncotarget. 2016;7:16205–16.PubMedPubMedCentral
28.
go back to reference Zhang F, Wang B, Long H, Yu J, Li F, Hou H, et al. Decreased miR-124-3p expression prompted breast cancer cell progression mainly by targeting Beclin-1. Clin Lab. 2016;62:1139–45.PubMed Zhang F, Wang B, Long H, Yu J, Li F, Hou H, et al. Decreased miR-124-3p expression prompted breast cancer cell progression mainly by targeting Beclin-1. Clin Lab. 2016;62:1139–45.PubMed
29.
go back to reference Dong LL, Chen LM, Wang WM, Zhang LM. Decreased expression of microRNA-124 is an independent unfavorable prognostic factor for patients with breast cancer. Diagn Pathol. 2015;10:45.CrossRefPubMedPubMedCentral Dong LL, Chen LM, Wang WM, Zhang LM. Decreased expression of microRNA-124 is an independent unfavorable prognostic factor for patients with breast cancer. Diagn Pathol. 2015;10:45.CrossRefPubMedPubMedCentral
30.
go back to reference Ng PK, Tsui SK, Lau CP, Wong CH, Wong WH, Huang L, et al. CCAAT/enhancer binding protein beta is up-regulated in giant cell tumor of bone and regulates RANKL expression. J Cell Biochem. 2010;110:438–46.PubMed Ng PK, Tsui SK, Lau CP, Wong CH, Wong WH, Huang L, et al. CCAAT/enhancer binding protein beta is up-regulated in giant cell tumor of bone and regulates RANKL expression. J Cell Biochem. 2010;110:438–46.PubMed
31.
go back to reference Zhou W, Yin H, Wang T, Liu T, Li Z, Yan W, et al. MiR-126-5p regulates osteolysis formation and stromal cell proliferation in giant cell tumor through inhibition of PTHrP. Bone. 2014;66:267–76.CrossRefPubMed Zhou W, Yin H, Wang T, Liu T, Li Z, Yan W, et al. MiR-126-5p regulates osteolysis formation and stromal cell proliferation in giant cell tumor through inhibition of PTHrP. Bone. 2014;66:267–76.CrossRefPubMed
32.
go back to reference Hollensen AK, Bak RO, Haslund D, Mikkelsen JG. Suppression of microRNAs by dual-targeting and clustered tough decoy inhibitors. RNA Biol. 2013;10:406–14.CrossRefPubMedPubMedCentral Hollensen AK, Bak RO, Haslund D, Mikkelsen JG. Suppression of microRNAs by dual-targeting and clustered tough decoy inhibitors. RNA Biol. 2013;10:406–14.CrossRefPubMedPubMedCentral
33.
go back to reference Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989;77:51–9.CrossRefPubMed Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989;77:51–9.CrossRefPubMed
34.
go back to reference Joung YH, Darvin P, Kang DY, Sp N, Byun HJ, Lee CH, et al. Methylsulfonylmethane inhibits RANKL-induced osteoclastogenesis in BMMs by suppressing NF-κB and STAT3 activities. PLoS One. 2016;11:e0159891.CrossRefPubMedPubMedCentral Joung YH, Darvin P, Kang DY, Sp N, Byun HJ, Lee CH, et al. Methylsulfonylmethane inhibits RANKL-induced osteoclastogenesis in BMMs by suppressing NF-κB and STAT3 activities. PLoS One. 2016;11:e0159891.CrossRefPubMedPubMedCentral
35.
go back to reference Pivetta E, Scapolan M, Pecolo M, Wassermann B, Abu-Rumeileh I, Balestreri L, et al. MMP-13 stimulates osteoclast differentiation and activation in tumour breast bone metastases. Breast Cancer Res. 2011;13:R105.CrossRefPubMedPubMedCentral Pivetta E, Scapolan M, Pecolo M, Wassermann B, Abu-Rumeileh I, Balestreri L, et al. MMP-13 stimulates osteoclast differentiation and activation in tumour breast bone metastases. Breast Cancer Res. 2011;13:R105.CrossRefPubMedPubMedCentral
36.
go back to reference Lee Y, Kim HJ, Park CK, Kim YG, Lee HJ, Kim JY, et al. MicroRNA-124 regulates osteoclast differentiation. Bone. 2013;56:383–9.CrossRefPubMed Lee Y, Kim HJ, Park CK, Kim YG, Lee HJ, Kim JY, et al. MicroRNA-124 regulates osteoclast differentiation. Bone. 2013;56:383–9.CrossRefPubMed
37.
go back to reference Irelli A, Cocciolone V, Cannita K, Zugaro L, Di Staso M, Lanfiuti Baldi P, et al. Bone targeted therapy for preventing skeletal-related events in metastatic breast cancer. Bone. 2016;87:169–75.CrossRefPubMed Irelli A, Cocciolone V, Cannita K, Zugaro L, Di Staso M, Lanfiuti Baldi P, et al. Bone targeted therapy for preventing skeletal-related events in metastatic breast cancer. Bone. 2016;87:169–75.CrossRefPubMed
38.
go back to reference Early Breast Cancer Trialists' Collaborative Group (EBCTCG), Coleman R, Powles T, Paterson A, Gnant M, Anderson S, et al. Adjuvant bisphosphonate treatment in early breast cancer: meta-analyses of individual patient data from randomised trials. Lancet. 2015;386:1353–1361. Early Breast Cancer Trialists' Collaborative Group (EBCTCG), Coleman R, Powles T, Paterson A, Gnant M, Anderson S, et al. Adjuvant bisphosphonate treatment in early breast cancer: meta-analyses of individual patient data from randomised trials. Lancet. 2015;386:1353–1361.
39.
go back to reference Hadji P, Coleman RE, Wilson C, Powles TJ, Clézardin P, Aapro M, et al. Adjuvant bisphosphonates in early breast cancer: consensus guidance for clinical practice from a European panel. Ann Oncol. 2016;27:379–90.CrossRefPubMed Hadji P, Coleman RE, Wilson C, Powles TJ, Clézardin P, Aapro M, et al. Adjuvant bisphosphonates in early breast cancer: consensus guidance for clinical practice from a European panel. Ann Oncol. 2016;27:379–90.CrossRefPubMed
40.
42.
go back to reference Aubin JE, Bonnelye E. Osteoprotegerin and its ligand: a new paradigm for regulation of osteoclastogenesis and bone resorption. Osteoporos Int. 2000;11:905–13.CrossRefPubMed Aubin JE, Bonnelye E. Osteoprotegerin and its ligand: a new paradigm for regulation of osteoclastogenesis and bone resorption. Osteoporos Int. 2000;11:905–13.CrossRefPubMed
43.
go back to reference Kudo O, Sabokbar A, Pocock A, Itonaga I, Fujikawa Y, Athanasou NA. Interleukin-6 and interleukin-11 support human osteoclast formation by a RANKL-independent mechanism. Bone. 2003;32:1–7.CrossRefPubMed Kudo O, Sabokbar A, Pocock A, Itonaga I, Fujikawa Y, Athanasou NA. Interleukin-6 and interleukin-11 support human osteoclast formation by a RANKL-independent mechanism. Bone. 2003;32:1–7.CrossRefPubMed
44.
go back to reference Sotiriou C, Lacroix M, Lespagnard L, Larsimont D, Paesmans M, Body JJ. Interleukins-6 and −11 expression in primary breast cancer and subsequent development of bone metastases. Cancer Lett. 2001;169:87–95.CrossRefPubMed Sotiriou C, Lacroix M, Lespagnard L, Larsimont D, Paesmans M, Body JJ. Interleukins-6 and −11 expression in primary breast cancer and subsequent development of bone metastases. Cancer Lett. 2001;169:87–95.CrossRefPubMed
45.
go back to reference Hanavadi S, Martin TA, Watkins G, Mansel RE, Jiang WG. Expression of interleukin 11 and its receptor and their prognostic value in human breast cancer. Ann Surg Oncol. 2006;13:802–8.CrossRefPubMed Hanavadi S, Martin TA, Watkins G, Mansel RE, Jiang WG. Expression of interleukin 11 and its receptor and their prognostic value in human breast cancer. Ann Surg Oncol. 2006;13:802–8.CrossRefPubMed
46.
go back to reference Cheang MC, Chia SK, Voduc D, Gao D, Leung S, Snider J, et al. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst. 2009;101:736–50.CrossRefPubMedPubMedCentral Cheang MC, Chia SK, Voduc D, Gao D, Leung S, Snider J, et al. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst. 2009;101:736–50.CrossRefPubMedPubMedCentral
Metadata
Title
microRNA-124 inhibits bone metastasis of breast cancer by repressing Interleukin-11
Authors
Wei-Luo Cai
Wen-Ding Huang
Bo Li
Tian-Rui Chen
Zhen-Xi Li
Cheng-Long Zhao
Heng-Yu Li
Yan-Mei Wu
Wang-Jun Yan
Jian-Ru Xiao
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2018
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/s12943-017-0746-0

Other articles of this Issue 1/2018

Molecular Cancer 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine