Skip to main content
Top
Published in: Molecular Cancer 1/2017

Open Access 01-12-2017 | Review

Nano-based delivery of RNAi in cancer therapy

Authors: Yong Xin, Min Huang, Wen Wen Guo, Qian Huang, Long zhen Zhang, Guan Jiang

Published in: Molecular Cancer | Issue 1/2017

Login to get access

Abstract

Background

RNA interference (RNAi), a newly developed method in which RNA molecules inhibit gene expression, has recently received considerable research attention. In the development of RNAi-based therapies, nanoparticles, which have distinctive size effects along with facile modification strategies and are capable of mediating effective RNAi with targeting potential, are attracting extensive interest.

Objective

This review presents an overview of the mechanisms of RNAi molecules in gene therapy and the different nanoparticles used to deliver RNAi molecules; briefly describes the current uses of RNAi in cancer therapy along with the nano-based delivery of RNA molecules in previous studies; and highlights some other carriers that have been applied in clinical settings. Finally, we discuss the nano-based delivery of RNAi therapeutics in preclinical development, including the current status and limitations of anti-cancer treatment.

Conclusion

With the growing number of RNAi therapeutics entering the clinical phase, various nanocarriers are expected to play important roles in the delivery of RNAi molecules for cancer therapeutics.
Literature
1.
go back to reference Jema A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics. CA Cancer J Clin. 2009;59:225–49.CrossRef Jema A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics. CA Cancer J Clin. 2009;59:225–49.CrossRef
2.
go back to reference Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.
3.
go back to reference Tiram G, Scomparin A, Ofek P, Satchi-Fainaro R. Interfering cancer with polymeric siRNA Nanomedicines. J Biomed Nanotechnol. 2014;10:50–66.CrossRefPubMed Tiram G, Scomparin A, Ofek P, Satchi-Fainaro R. Interfering cancer with polymeric siRNA Nanomedicines. J Biomed Nanotechnol. 2014;10:50–66.CrossRefPubMed
4.
go back to reference Landesman-Milo D, Goldsmith M, Leviatan BS, Witenberg B, Brown E, Leibovitch S, et al. Hyaluronan grafted lipid-based nanoparticles as RNAi carriers for cancer cells. Cancer Lett. 2012;334(2):221–7.CrossRefPubMed Landesman-Milo D, Goldsmith M, Leviatan BS, Witenberg B, Brown E, Leibovitch S, et al. Hyaluronan grafted lipid-based nanoparticles as RNAi carriers for cancer cells. Cancer Lett. 2012;334(2):221–7.CrossRefPubMed
5.
go back to reference Murchan PM, Bradford I, Palmer D, Townsend S, Harrison JD, Mitchell CJ, Macfie C. O.22 Value of preoperative and postoperative supplemental enteral nutrition in patients undergoing major gastrointestinal surgery. Clinical Nutrition. 1995;14(7014):8–8. Murchan PM, Bradford I, Palmer D, Townsend S, Harrison JD, Mitchell CJ, Macfie C. O.22 Value of preoperative and postoperative supplemental enteral nutrition in patients undergoing major gastrointestinal surgery. Clinical Nutrition. 1995;14(7014):8–8.
6.
go back to reference Tokatlian T, Segura T. siRNA applications in nanomedicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2010; 2:305. Tokatlian T, Segura T. siRNA applications in nanomedicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2010; 2:305.
7.
go back to reference Melamed JR, Riley RS, Valcourt DM, Billingsley MM, Kreuzberger NL, Day ES. Quantification of siRNA duplexes bound to gold Nanoparticle surfaces. Methods Mol Biol. 2017;1570:1–15.CrossRefPubMed Melamed JR, Riley RS, Valcourt DM, Billingsley MM, Kreuzberger NL, Day ES. Quantification of siRNA duplexes bound to gold Nanoparticle surfaces. Methods Mol Biol. 2017;1570:1–15.CrossRefPubMed
8.
go back to reference Deng Y, Wang CC, Choy KW, Du Q, Chen J, Wang Q, et al. Therapeutic potentials of gene silencing by RNA interference: principles, challenges, and new strategies. Gene. 2014;538:217–27.CrossRefPubMed Deng Y, Wang CC, Choy KW, Du Q, Chen J, Wang Q, et al. Therapeutic potentials of gene silencing by RNA interference: principles, challenges, and new strategies. Gene. 2014;538:217–27.CrossRefPubMed
9.
go back to reference Li X, Chen Y, Wang M, Ma Y, Xia W, Gu H. A mesoporous silica nanoparticle–PEI–fusogenic peptide system for siRNA delivery in cancer therapy. Biomaterials. 2013;34:1391–401.CrossRefPubMed Li X, Chen Y, Wang M, Ma Y, Xia W, Gu H. A mesoporous silica nanoparticle–PEI–fusogenic peptide system for siRNA delivery in cancer therapy. Biomaterials. 2013;34:1391–401.CrossRefPubMed
10.
go back to reference Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2015;411(6836):494–8.CrossRef Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2015;411(6836):494–8.CrossRef
11.
go back to reference De FA, Vornlocher HP, Maraganore J, Lieberman J. Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov. 2007;6(6):443–53.CrossRef De FA, Vornlocher HP, Maraganore J, Lieberman J. Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov. 2007;6(6):443–53.CrossRef
12.
go back to reference Martínez G, Forment J, Llave C, Pallás V, Gómez G. High-throughput sequencing, characterization and detection of new and conserved cucumber miRNAs. PloS One. 2011;6(5):e19523. Martínez G, Forment J, Llave C, Pallás V, Gómez G. High-throughput sequencing, characterization and detection of new and conserved cucumber miRNAs. PloS One. 2011;6(5):e19523.
14.
go back to reference Lin H, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5(7):522–31.CrossRef Lin H, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5(7):522–31.CrossRef
15.
go back to reference Jing L, Kai X, Roth JA, Ji L. Detection of siRNA-mediated target mRNA cleavage activities in human cells by a novel stem-loop array RT-PCR analysis. Biochem Biophys Rep. 2016;6:16–23. Jing L, Kai X, Roth JA, Ji L. Detection of siRNA-mediated target mRNA cleavage activities in human cells by a novel stem-loop array RT-PCR analysis. Biochem Biophys Rep. 2016;6:16–23.
16.
go back to reference Ohno SI, Itano K, Harada Y, Asada K, Oikawa K, Kashiwazako M, et al. Development of novel small hairpin RNAs that do not require processing by Dicer or AGO2. Mol Ther. 2016;24:1278–89.CrossRef Ohno SI, Itano K, Harada Y, Asada K, Oikawa K, Kashiwazako M, et al. Development of novel small hairpin RNAs that do not require processing by Dicer or AGO2. Mol Ther. 2016;24:1278–89.CrossRef
17.
go back to reference Crocco P, Montesanto A, Passarino G, Rose G. Polymorphisms falling within putative miRNA target sites in the 3’UTR region of SIRT2 and DRD2 genes are correlated with human longevity. Gerontol A Biol Sci Med Sci. 2016;71(5):586–92.CrossRef Crocco P, Montesanto A, Passarino G, Rose G. Polymorphisms falling within putative miRNA target sites in the 3’UTR region of SIRT2 and DRD2 genes are correlated with human longevity. Gerontol A Biol Sci Med Sci. 2016;71(5):586–92.CrossRef
18.
go back to reference Hnisz D, Weintraub AS, Day DS, Valton AL, Bak RO, Li CH, et al. Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science. 2016;351(6280):1454.CrossRefPubMedPubMedCentral Hnisz D, Weintraub AS, Day DS, Valton AL, Bak RO, Li CH, et al. Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science. 2016;351(6280):1454.CrossRefPubMedPubMedCentral
19.
go back to reference Katoh M, Terada M. Oncogenes and tumor suppressor genes. Gastric Cancer. 1993:196–208. Katoh M, Terada M. Oncogenes and tumor suppressor genes. Gastric Cancer. 1993:196–208.
20.
go back to reference Wilda M, Fuchs U, Wossmann W, Borkhardt A. Killing of leukemic cells with a bcr/abl fusion gene by rna interference (rnai). Oncogene. 2002;21(37):5716–24.CrossRefPubMed Wilda M, Fuchs U, Wossmann W, Borkhardt A. Killing of leukemic cells with a bcr/abl fusion gene by rna interference (rnai). Oncogene. 2002;21(37):5716–24.CrossRefPubMed
21.
go back to reference Cioca D, Aoki Y, Kiyosawa K. RNA interference is a functional pathway with therapeutic potential in humanmyeloid leukemia cell lines. Cancer Gene Ther. 2003;10(2):125–33.CrossRefPubMed Cioca D, Aoki Y, Kiyosawa K. RNA interference is a functional pathway with therapeutic potential in humanmyeloid leukemia cell lines. Cancer Gene Ther. 2003;10(2):125–33.CrossRefPubMed
22.
go back to reference Nieth C, Priebsch A, Stege A, Lage H. Modulation of the classical multidrug resistance (MDR) phenotype by RNA interference (RNAi). FEBS Lett. 2003;545:144–50.CrossRefPubMed Nieth C, Priebsch A, Stege A, Lage H. Modulation of the classical multidrug resistance (MDR) phenotype by RNA interference (RNAi). FEBS Lett. 2003;545:144–50.CrossRefPubMed
23.
go back to reference Zhao J, Feng SS. Nanocarriers for delivery of siRNA and co-delivery of siRNA and other therapeutic agents. Nanomedicine. 2015;10(14):2199–228.CrossRefPubMed Zhao J, Feng SS. Nanocarriers for delivery of siRNA and co-delivery of siRNA and other therapeutic agents. Nanomedicine. 2015;10(14):2199–228.CrossRefPubMed
24.
go back to reference Wang K, Zhang X, Liu Y, Liu C, Jiang B, Jiang YY. Tumor penetrability and anti-angiogenesis using iRGD-mediated delivery of doxorubicin-polymer conjugates. Biomaterials. 2014;35(30):8735–47.CrossRefPubMed Wang K, Zhang X, Liu Y, Liu C, Jiang B, Jiang YY. Tumor penetrability and anti-angiogenesis using iRGD-mediated delivery of doxorubicin-polymer conjugates. Biomaterials. 2014;35(30):8735–47.CrossRefPubMed
25.
go back to reference Scomparin A, Tiram G, Satchi-Fainaro R. Nanoscale-based delivery of RNAi for cancer therapy. In: Erdmann VA, Barciszewski J, editors. DNA and RNA nanotechnologies in medicine. Diagnosis and treatment of diseases. Berlin: Springer; 2013:349–372. Scomparin A, Tiram G, Satchi-Fainaro R. Nanoscale-based delivery of RNAi for cancer therapy. In: Erdmann VA, Barciszewski J, editors. DNA and RNA nanotechnologies in medicine. Diagnosis and treatment of diseases. Berlin: Springer; 2013:349–372.
26.
go back to reference Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M, et al. Therapeutic silencing of an endogenous Gene by systemic Administration of Modified SiRNAs. Nature. 2004;432:173–8.CrossRefPubMed Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M, et al. Therapeutic silencing of an endogenous Gene by systemic Administration of Modified SiRNAs. Nature. 2004;432:173–8.CrossRefPubMed
27.
go back to reference de Fougerolles A, Vornlocher H-P, Maraganore J, Lieberman J. Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov. 2007;6:443–53.CrossRefPubMed de Fougerolles A, Vornlocher H-P, Maraganore J, Lieberman J. Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov. 2007;6:443–53.CrossRefPubMed
29.
go back to reference Kim DH, Rossi JJ. Strategies for silencing human disease using RNA interference. Nat Rev Genet. 2007;8:173–84.CrossRefPubMed Kim DH, Rossi JJ. Strategies for silencing human disease using RNA interference. Nat Rev Genet. 2007;8:173–84.CrossRefPubMed
31.
go back to reference Nagal A, Singla R K. Nanoparticles in different delivery systems: a brief review. Indo Global Journal of Pharmaceutical Sciences, 2013;3(2):96–106. Nagal A, Singla R K. Nanoparticles in different delivery systems: a brief review. Indo Global Journal of Pharmaceutical Sciences, 2013;3(2):96–106.
32.
go back to reference Drummond DC, Meyer O, Hong K, Kirpotin DB, Papahadjopoulos D. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev. 1999;51:691–743.PubMed Drummond DC, Meyer O, Hong K, Kirpotin DB, Papahadjopoulos D. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev. 1999;51:691–743.PubMed
33.
go back to reference Ragelle H, Vandermeulen G, Préat V. Chitosan-based siRNA delivery systems. J Control Release. 2013;172(1):207–18.CrossRefPubMed Ragelle H, Vandermeulen G, Préat V. Chitosan-based siRNA delivery systems. J Control Release. 2013;172(1):207–18.CrossRefPubMed
35.
go back to reference Merkel OM, Librizzi D, Pfestroff A, Schurrat T, Buyens K, Sanders NN, et al. Stability of siRNA polyplexes from poly(ethylenimine) and poly(ethylenimine)-g-poly(ethylene glycol) under in vivo conditions: effects on pharmacokinetics and biodistribution measured by fluorescence fluctuation spectroscopy and single photon emission comp. J Control Release. 2009;138(2):148–59.CrossRefPubMed Merkel OM, Librizzi D, Pfestroff A, Schurrat T, Buyens K, Sanders NN, et al. Stability of siRNA polyplexes from poly(ethylenimine) and poly(ethylenimine)-g-poly(ethylene glycol) under in vivo conditions: effects on pharmacokinetics and biodistribution measured by fluorescence fluctuation spectroscopy and single photon emission comp. J Control Release. 2009;138(2):148–59.CrossRefPubMed
37.
go back to reference Kim SH, Jeong JH, Lee SH, Kim SW, Park TG. LHRH receptor-mediated delivery of siRNA using polyelectrolyte complex micelles self-assembled from siRNA-PEG-LHRH conjugate and PEI. Bioconjug Chem. 2008;19(11):2156–62.CrossRefPubMed Kim SH, Jeong JH, Lee SH, Kim SW, Park TG. LHRH receptor-mediated delivery of siRNA using polyelectrolyte complex micelles self-assembled from siRNA-PEG-LHRH conjugate and PEI. Bioconjug Chem. 2008;19(11):2156–62.CrossRefPubMed
39.
go back to reference Torrecilla J, Del Pozo-Rodríguez A, Solinís MÁ, Apaolaza PS, Berzal-Herranz B, Romero-López C, et al. Silencing of hepatitis C virus replication by a non-viral vector based on solid lipid nanoparticles containing a shRNA targeted to the internal ribosome entry site (IRES). Colloids Surf B Biointerfaces. 2016;146:808–17.CrossRefPubMed Torrecilla J, Del Pozo-Rodríguez A, Solinís MÁ, Apaolaza PS, Berzal-Herranz B, Romero-López C, et al. Silencing of hepatitis C virus replication by a non-viral vector based on solid lipid nanoparticles containing a shRNA targeted to the internal ribosome entry site (IRES). Colloids Surf B Biointerfaces. 2016;146:808–17.CrossRefPubMed
40.
go back to reference Szabo P. Formulation and stability aspects of Nanosized solid drug delivery systems. Curr Pharm Des. 2015;21:3148–57.CrossRefPubMed Szabo P. Formulation and stability aspects of Nanosized solid drug delivery systems. Curr Pharm Des. 2015;21:3148–57.CrossRefPubMed
41.
go back to reference Pang J, Luan Y, Yang X, Jiang Y, Zhao L, Zong Y, et al. Functionalized mesoporous silica particles for application in drug delivery system. Mini Reviews in Medicinal Chemistry. 2012;12(8):775–88.CrossRefPubMed Pang J, Luan Y, Yang X, Jiang Y, Zhao L, Zong Y, et al. Functionalized mesoporous silica particles for application in drug delivery system. Mini Reviews in Medicinal Chemistry. 2012;12(8):775–88.CrossRefPubMed
42.
go back to reference Wu SH, Mou CY, Lin HP. Synthesis of mesoporous silica nanoparticles. Chem Soc Rev. 2013;42(9):3862–75.CrossRefPubMed Wu SH, Mou CY, Lin HP. Synthesis of mesoporous silica nanoparticles. Chem Soc Rev. 2013;42(9):3862–75.CrossRefPubMed
43.
go back to reference Jing CX, Zhang H. Inhibition of VEGF expression and SMMC 7721 cell growth by VEGFsiRNA. Chin J Pathophysiology. 2006;22(4):771–5. Jing CX, Zhang H. Inhibition of VEGF expression and SMMC 7721 cell growth by VEGFsiRNA. Chin J Pathophysiology. 2006;22(4):771–5.
44.
go back to reference Conde J, Ambrosone A, Sanz V, Hernandez Y, Marchesano V, Tian F, et al. Design of multifunctional gold nanoparticles for in vitro and in vivo gene silencing. ACS Nano. 2012;6(9):8316–24.CrossRefPubMed Conde J, Ambrosone A, Sanz V, Hernandez Y, Marchesano V, Tian F, et al. Design of multifunctional gold nanoparticles for in vitro and in vivo gene silencing. ACS Nano. 2012;6(9):8316–24.CrossRefPubMed
45.
go back to reference Qian X, Peng XH, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol. 2008;26(1):83–90.CrossRefPubMed Qian X, Peng XH, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol. 2008;26(1):83–90.CrossRefPubMed
46.
go back to reference Choi CH, Alabi CA, Webster P, Davis ME. Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc Natl Acad Sci U S A. 2010;107(3):1235–40.CrossRefPubMed Choi CH, Alabi CA, Webster P, Davis ME. Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc Natl Acad Sci U S A. 2010;107(3):1235–40.CrossRefPubMed
47.
go back to reference Kim D, Jeong YY, Jon S. A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano. 2010;4(7):3689–96.CrossRefPubMed Kim D, Jeong YY, Jon S. A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano. 2010;4(7):3689–96.CrossRefPubMed
48.
go back to reference Jang SC, Kim OY, Yoon CM, Choi DS, Roh TY, Park J, et al. Bioinspired exosome mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano. 2013;7:7698–710.CrossRefPubMed Jang SC, Kim OY, Yoon CM, Choi DS, Roh TY, Park J, et al. Bioinspired exosome mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano. 2013;7:7698–710.CrossRefPubMed
49.
go back to reference Kole R, Krainer AR, Altman S. RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov. 2012;11(2):125–40.PubMedPubMedCentral Kole R, Krainer AR, Altman S. RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov. 2012;11(2):125–40.PubMedPubMedCentral
50.
go back to reference American Cancer Society. Cancer facts & figures 2007. Atlanta: American Cancer Society; 2007. American Cancer Society. Cancer facts & figures 2007. Atlanta: American Cancer Society; 2007.
51.
go back to reference Saini V, Kamboj S, Bala S, Nair AB. Nanocarriers as an emerging platform for cancer therapy. Int J Nat Prod Sci. 2012;1(12):751–60. Saini V, Kamboj S, Bala S, Nair AB. Nanocarriers as an emerging platform for cancer therapy. Int J Nat Prod Sci. 2012;1(12):751–60.
52.
go back to reference Lunavat TR, Jang SC, Nilsson L, Park HT, Repiska G, Lässer C, et al. RNAi delivery by exosome-mimetic nanovesicles - implications for targeting c-Myc in cancer. Biomaterials. 2016;102:231.CrossRefPubMed Lunavat TR, Jang SC, Nilsson L, Park HT, Repiska G, Lässer C, et al. RNAi delivery by exosome-mimetic nanovesicles - implications for targeting c-Myc in cancer. Biomaterials. 2016;102:231.CrossRefPubMed
53.
go back to reference Wu Y, Wang W, Chen Y, Huang K, Shuai X, Chen Q, et al. The investigation of polyer-siRNA nanoparticle for gene therapy of gastric cancerin vitro.InterJ. Nanomedicine. 2010;5:129–36.CrossRef Wu Y, Wang W, Chen Y, Huang K, Shuai X, Chen Q, et al. The investigation of polyer-siRNA nanoparticle for gene therapy of gastric cancerin vitro.InterJ. Nanomedicine. 2010;5:129–36.CrossRef
54.
go back to reference Huschka R, Barhoumi A, Liu Q, Roth JA, Ji L, Halas NJ. Gene silencing by gold nanoshell-mediated delivery and laser-triggered release of antisense oligonucleotide and siRNA. ACS Nano. 2012;6(9):7681–91.CrossRefPubMedPubMedCentral Huschka R, Barhoumi A, Liu Q, Roth JA, Ji L, Halas NJ. Gene silencing by gold nanoshell-mediated delivery and laser-triggered release of antisense oligonucleotide and siRNA. ACS Nano. 2012;6(9):7681–91.CrossRefPubMedPubMedCentral
55.
go back to reference Mohammadi M, Salmasi Z, Hashemi M, Mosaffa F, Abnous K, Ramezani M. Single-walled carbon nanotubes functionalized with aptamer and piperazine-polyethylenimine derivative for targeted siRNA delivery into breast cancer cells. Int J Pharm. 2015;485:50–60.CrossRefPubMed Mohammadi M, Salmasi Z, Hashemi M, Mosaffa F, Abnous K, Ramezani M. Single-walled carbon nanotubes functionalized with aptamer and piperazine-polyethylenimine derivative for targeted siRNA delivery into breast cancer cells. Int J Pharm. 2015;485:50–60.CrossRefPubMed
56.
go back to reference Liu X, Liu L, Xu Q, Wu P, Zuo X, Ji A. MicroRNA as a novel drug target for cancer therapy. Expert Opin Biol Ther. 2012;12:573–80.CrossRefPubMed Liu X, Liu L, Xu Q, Wu P, Zuo X, Ji A. MicroRNA as a novel drug target for cancer therapy. Expert Opin Biol Ther. 2012;12:573–80.CrossRefPubMed
57.
go back to reference Jr CR, Marton LJ. Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat Rev Drug Discov. 2007;6(5):373–90.CrossRef Jr CR, Marton LJ. Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat Rev Drug Discov. 2007;6(5):373–90.CrossRef
58.
go back to reference Xie Y, Murray-Stewart T, Wang Y, Yu F, Li J, Marton LJ, et al. Self-immolative nanoparticles for simultaneous delivery of microRNA and targeting of polyamine metabolism in combination cancer therapy. J Control Release. 2016;246:110–9.CrossRefPubMed Xie Y, Murray-Stewart T, Wang Y, Yu F, Li J, Marton LJ, et al. Self-immolative nanoparticles for simultaneous delivery of microRNA and targeting of polyamine metabolism in combination cancer therapy. J Control Release. 2016;246:110–9.CrossRefPubMed
59.
go back to reference Crew E, Tessel MA, Rahman S, Razzak-Jaffar A, Mott D, Kamundi M, et al. MicroRNA conjugated gold nanoparticles and cell transfection. Anal Chem. 2012;84(1):26–9.CrossRefPubMed Crew E, Tessel MA, Rahman S, Razzak-Jaffar A, Mott D, Kamundi M, et al. MicroRNA conjugated gold nanoparticles and cell transfection. Anal Chem. 2012;84(1):26–9.CrossRefPubMed
61.
go back to reference Tang D. Research progress on the development of the strategies for siRNAs delivery in vivo. J Biomed Eng. 2012;29(4):775–9. Tang D. Research progress on the development of the strategies for siRNAs delivery in vivo. J Biomed Eng. 2012;29(4):775–9.
62.
63.
go back to reference Nayak S, Herzog RW. Progress and prospects: immune responses to viral vectors. Gene Ther. 2010;17(2):295–304.CrossRefPubMed Nayak S, Herzog RW. Progress and prospects: immune responses to viral vectors. Gene Ther. 2010;17(2):295–304.CrossRefPubMed
64.
go back to reference Frisch J, Orth P, Venkatesan JK, Rey-Rico A, Schmitt G, Kohn D, et al. Genetic modification of human peripheral blood aspirates using recombinant Adeno-associated viral vectors for Articular cartilage repair with a focus on Chondrogenic transforming growth factor-β Gene delivery. Stem Cells Transl Med. 2017;6:249–60.CrossRefPubMed Frisch J, Orth P, Venkatesan JK, Rey-Rico A, Schmitt G, Kohn D, et al. Genetic modification of human peripheral blood aspirates using recombinant Adeno-associated viral vectors for Articular cartilage repair with a focus on Chondrogenic transforming growth factor-β Gene delivery. Stem Cells Transl Med. 2017;6:249–60.CrossRefPubMed
66.
go back to reference Zaiss AK, Muruve DA. Immune responses to adeno-associated virus vectors. Curr Gene Ther. 2005;5(5):323–31.CrossRefPubMed Zaiss AK, Muruve DA. Immune responses to adeno-associated virus vectors. Curr Gene Ther. 2005;5(5):323–31.CrossRefPubMed
68.
go back to reference Foged C. siRNA delivery with lipid-based systems: promises and pitfalls. Curr Top Med Chem. 2012;12(2):97–107.CrossRefPubMed Foged C. siRNA delivery with lipid-based systems: promises and pitfalls. Curr Top Med Chem. 2012;12(2):97–107.CrossRefPubMed
69.
go back to reference Oh YK, Park TG. siRNA delivery systems for cancer treatment. Adv Drug Deliv Rev. 2009;61(10):850–62.CrossRefPubMed Oh YK, Park TG. siRNA delivery systems for cancer treatment. Adv Drug Deliv Rev. 2009;61(10):850–62.CrossRefPubMed
71.
go back to reference Urbanklein B, Werth S, Abuharbeid S, Czubayko F, Aigner A. RNAi-mediated gene-targeting through systemic application of polyethylenimine(PEI)-complexed sirna in vivo. Gene T- her. 2005;12(5):461–6.CrossRef Urbanklein B, Werth S, Abuharbeid S, Czubayko F, Aigner A. RNAi-mediated gene-targeting through systemic application of polyethylenimine(PEI)-complexed sirna in vivo. Gene T- her. 2005;12(5):461–6.CrossRef
72.
go back to reference Mccarthy EF. The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop J. 2006;26(26):154–8.PubMedPubMedCentral Mccarthy EF. The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop J. 2006;26(26):154–8.PubMedPubMedCentral
73.
go back to reference Lage H, Krühn A. Bacterial delivery of RNAi effectors: transkingdom RNAi. J Vis Exp. 2010;(42). doi: 10.3791/2099. Lage H, Krühn A. Bacterial delivery of RNAi effectors: transkingdom RNAi. J Vis Exp. 2010;(42). doi: 10.​3791/​2099.
74.
go back to reference Love TM, Moffett HF, Novina CD. Not miR-ly small RNAs: big potential for microRNAs in therapy. J Allergy Clin Immunol. 2008;121(2):309–19.CrossRefPubMed Love TM, Moffett HF, Novina CD. Not miR-ly small RNAs: big potential for microRNAs in therapy. J Allergy Clin Immunol. 2008;121(2):309–19.CrossRefPubMed
75.
go back to reference O'Connell RM, Rao DS, Chaudhuri AA, Baltimore D. Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol. 2010;10(2):111–22.CrossRefPubMed O'Connell RM, Rao DS, Chaudhuri AA, Baltimore D. Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol. 2010;10(2):111–22.CrossRefPubMed
76.
go back to reference Weinstein S, Peer D. RNAi nanomedicines: challenges and opportunities within the immune system. Nanotechnology. 2010;21(23):232001–232013(13).CrossRefPubMed Weinstein S, Peer D. RNAi nanomedicines: challenges and opportunities within the immune system. Nanotechnology. 2010;21(23):232001–232013(13).CrossRefPubMed
Metadata
Title
Nano-based delivery of RNAi in cancer therapy
Authors
Yong Xin
Min Huang
Wen Wen Guo
Qian Huang
Long zhen Zhang
Guan Jiang
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2017
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/s12943-017-0683-y

Other articles of this Issue 1/2017

Molecular Cancer 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine