Skip to main content
Top
Published in: Molecular Cancer 1/2017

Open Access 01-12-2017 | Review

Tumor-Initiating Cells: a criTICal review of isolation approaches and new challenges in targeting strategies

Authors: Komal Qureshi-Baig, Pit Ullmann, Serge Haan, Elisabeth Letellier

Published in: Molecular Cancer | Issue 1/2017

Login to get access

Abstract

Most cancers contain a subpopulation of highly tumorigenic cells, known as cancer stem cells (CSCs) or tumor-initiating cells (TICs). Targeting TICs may be essential to achieve cure, because of their self-renewal and tumorigenic properties as well as their resistance to conventional therapies. Despite significant advances in TIC biology, their isolation and identification remain largely disputed and incompletely established. In this review, we discuss the latest developments in isolation and culturing approaches of TICs, with focus on colorectal cancer (CRC). We feature recent findings on TIC-relevant signaling pathways and the metabolic identity of TICs, as well as their current clinical implications. Lastly, we highlight the influence of inter- and intra-tumoral heterogeneity on TIC function and targeting approaches.
Literature
1.
go back to reference Siegel R, Desantis C, Jemal A. Colorectal Cancer Statistics, 2014. CA Cancer J Clin. 2014;64:104–17.PubMedCrossRef Siegel R, Desantis C, Jemal A. Colorectal Cancer Statistics, 2014. CA Cancer J Clin. 2014;64:104–17.PubMedCrossRef
6.
7.
go back to reference Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007;449:1003–7. doi:10.1038/nature06196.PubMedCrossRef Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007;449:1003–7. doi:10.​1038/​nature06196.PubMedCrossRef
9.
go back to reference Sadanandam A, Wang X, de Sousa E Melo F, Gray JW, Vermeulen L, Hanahan D, et al. Reconciliation of classification systems defining molecular subtypes of colorectal cancer: interrelationships and clinical implications. Cell Cycle. 2014;13:353–7. doi:10.4161/cc.27769.PubMedPubMedCentralCrossRef Sadanandam A, Wang X, de Sousa E Melo F, Gray JW, Vermeulen L, Hanahan D, et al. Reconciliation of classification systems defining molecular subtypes of colorectal cancer: interrelationships and clinical implications. Cell Cycle. 2014;13:353–7. doi:10.​4161/​cc.​27769.PubMedPubMedCentralCrossRef
10.
go back to reference Calon A, Lonardo E, Berenguer-llergo A, Espinet E, Hernando-momblona X, Iglesias M, et al. Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nat Genet. 2015;47:320–9. doi:10.1038/ng.3225.PubMedCrossRef Calon A, Lonardo E, Berenguer-llergo A, Espinet E, Hernando-momblona X, Iglesias M, et al. Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nat Genet. 2015;47:320–9. doi:10.​1038/​ng.​3225.PubMedCrossRef
12.
13.
go back to reference De Sousa E, Melo F, Wang X, Jansen M, Fessler E, Trinh A, de Rooij LPMH, et al. Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions. Nat Med. 2013;19:614–8. doi:10.1038/nm.3174.CrossRef De Sousa E, Melo F, Wang X, Jansen M, Fessler E, Trinh A, de Rooij LPMH, et al. Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions. Nat Med. 2013;19:614–8. doi:10.​1038/​nm.​3174.CrossRef
15.
go back to reference Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367:645–8. doi:10.1038/367645a0.PubMedCrossRef Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367:645–8. doi:10.​1038/​367645a0.PubMedCrossRef
19.
go back to reference Singh SSK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432 November:396–401. doi:10.1038/nature03128. Singh SSK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432 November:396–401. doi:10.​1038/​nature03128.
20.
go back to reference Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A. 2003;100:15178–83.PubMedPubMedCentralCrossRef Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A. 2003;100:15178–83.PubMedPubMedCentralCrossRef
21.
go back to reference Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, et al. Distinct Populations of Cancer Stem Cells Determine Tumor Growth and Metastatic Activity in Human Pancreatic Cancer. Cell Stem Cell. 2007;1:313–23.PubMedCrossRef Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, et al. Distinct Populations of Cancer Stem Cells Determine Tumor Growth and Metastatic Activity in Human Pancreatic Cancer. Cell Stem Cell. 2007;1:313–23.PubMedCrossRef
22.
go back to reference Bender Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell. 2005;121:823–35.CrossRef Bender Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell. 2005;121:823–35.CrossRef
24.
29.
go back to reference Morton JJ, Bird G, Keysar SB, Astling DP, Lyons TR, Anderson RT, et al. XactMice: humanizing mouse bone marrow enables microenvironment reconstitution in a patient-derived xenograft model of head and neck cancer. Oncogene. 2016;35:290–300. doi:10.1038/onc.2015.94.PubMedCrossRef Morton JJ, Bird G, Keysar SB, Astling DP, Lyons TR, Anderson RT, et al. XactMice: humanizing mouse bone marrow enables microenvironment reconstitution in a patient-derived xenograft model of head and neck cancer. Oncogene. 2016;35:290–300. doi:10.​1038/​onc.​2015.​94.PubMedCrossRef
35.
go back to reference Haraguchi N, Ishii H, Mimori K, Ohta K, Uemura M. CD49f-positive cell population efficiently enriches colon cancer-initiating cells. Int J Oncol. 2013;43(2):425-30. doi:10.3892/ijo.2013.1955.PubMed Haraguchi N, Ishii H, Mimori K, Ohta K, Uemura M. CD49f-positive cell population efficiently enriches colon cancer-initiating cells. Int J Oncol. 2013;43(2):425-30. doi:10.3892/ijo.2013.1955.PubMed
38.
go back to reference Geng S, Guo Y, Wang Q, Li L, Wang J. Cancer stem-like cells enriched with CD29 and CD44 markers exhibit molecular characteristics with epithelial-mesenchymal transition in squamous cell carcinoma. Arch Dermatol Res. 2013;305:35–47.PubMedCrossRef Geng S, Guo Y, Wang Q, Li L, Wang J. Cancer stem-like cells enriched with CD29 and CD44 markers exhibit molecular characteristics with epithelial-mesenchymal transition in squamous cell carcinoma. Arch Dermatol Res. 2013;305:35–47.PubMedCrossRef
39.
go back to reference Chu P, Clanton DJ, Snipas TS, Lee J, Mitchell E, Nguyen M-L, et al. Characterization of a subpopulation of colon cancer cells with stem cell-like properties. Int J Cancer. 2009;124:1312–21. doi:10.1002/ijc.24061.PubMedCrossRef Chu P, Clanton DJ, Snipas TS, Lee J, Mitchell E, Nguyen M-L, et al. Characterization of a subpopulation of colon cancer cells with stem cell-like properties. Int J Cancer. 2009;124:1312–21. doi:10.​1002/​ijc.​24061.PubMedCrossRef
40.
go back to reference Shmelkov S V, Butler JM, Hooper AT, Hormigo A, Kushner J, Milde T, et al. CD133 expression is not restricted to metastatic colon cancer cells initiate tumors. J Clin Invest. 2008;118(6):2111-20. doi:10.1172/JCI34401.PubMedPubMedCentral Shmelkov S V, Butler JM, Hooper AT, Hormigo A, Kushner J, Milde T, et al. CD133 expression is not restricted to metastatic colon cancer cells initiate tumors. J Clin Invest. 2008;118(6):2111-20. doi:10.1172/JCI34401.PubMedPubMedCentral
45.
go back to reference Hirsch D, Barker N, Mcneil N, Hu Y, Camps J, Mckinnon K, et al. LGR5 positivity defines stem-like cells in colorectal cancer. Carcinogenesis. 2014;35:849–58.PubMedCrossRef Hirsch D, Barker N, Mcneil N, Hu Y, Camps J, Mckinnon K, et al. LGR5 positivity defines stem-like cells in colorectal cancer. Carcinogenesis. 2014;35:849–58.PubMedCrossRef
46.
go back to reference Barker N, Ridgway RA, Van Es JH, Van de Wetering M, Begthel H, Van den Born M, et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature. 2009;457:608–11.PubMedCrossRef Barker N, Ridgway RA, Van Es JH, Van de Wetering M, Begthel H, Van den Born M, et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature. 2009;457:608–11.PubMedCrossRef
48.
go back to reference Sgambato A, Puglisi MA, Errico F, Rafanelli F, Boninsegna A, Rettino A, et al. Post-translational modulation of CD133 expression during sodium butyrate-induced differentiation of HT29 human colon cancer cells: implications for its detection. J Cell Physiol. 2010;224:234–41. doi:10.1002/jcp.22124.PubMed Sgambato A, Puglisi MA, Errico F, Rafanelli F, Boninsegna A, Rettino A, et al. Post-translational modulation of CD133 expression during sodium butyrate-induced differentiation of HT29 human colon cancer cells: implications for its detection. J Cell Physiol. 2010;224:234–41. doi:10.​1002/​jcp.​22124.PubMed
49.
go back to reference Jeon Y-K, Kim S-H, Choi S-H, Kim K-H, Yoo B-C, Ku J-L, et al. Promoter hypermethylation and loss of CD133 gene expression in colorectal cancers. World J Gastroenterol. 2010;16(25):3153-60. doi:10.3748/WJG.v16.i25.3153.PubMedPubMedCentralCrossRef Jeon Y-K, Kim S-H, Choi S-H, Kim K-H, Yoo B-C, Ku J-L, et al. Promoter hypermethylation and loss of CD133 gene expression in colorectal cancers. World J Gastroenterol. 2010;16(25):3153-60. doi:10.3748/WJG.v16.i25.3153.PubMedPubMedCentralCrossRef
52.
go back to reference Dieter SM, Ball CR, Hoffmann CM, Nowrouzi A, Herbst F, Zavidij O, et al. Distinct types of tumor-initiating cells form human colon cancer tumors and metastases. Cell Stem Cell. 2011;9:357–65.PubMedCrossRef Dieter SM, Ball CR, Hoffmann CM, Nowrouzi A, Herbst F, Zavidij O, et al. Distinct types of tumor-initiating cells form human colon cancer tumors and metastases. Cell Stem Cell. 2011;9:357–65.PubMedCrossRef
53.
go back to reference Miranda-Lorenzo, Irene; Dorado, Jorge; Lonardo, Enza; Alcala, Sonia; Serrano, Alicia G.; Clausell-Tormos, Jenifer; Cioffi, Michele; Megias Diego; Zagorac, Sladjana; Balic, Anamaria; Hidalgo, Manuel; Erkan, Mert; Kleeff, Joerg; Scarpa, Aldo; Sainz, Jr., Br C. Intracellular auto-fluorescence – A novel and universally inherited biomarker in epithelial cancer stem cells. Nat Methods. 2014;11. Miranda-Lorenzo, Irene; Dorado, Jorge; Lonardo, Enza; Alcala, Sonia; Serrano, Alicia G.; Clausell-Tormos, Jenifer; Cioffi, Michele; Megias Diego; Zagorac, Sladjana; Balic, Anamaria; Hidalgo, Manuel; Erkan, Mert; Kleeff, Joerg; Scarpa, Aldo; Sainz, Jr., Br C. Intracellular auto-fluorescence – A novel and universally inherited biomarker in epithelial cancer stem cells. Nat Methods. 2014;11.
55.
go back to reference Kemper K, Grandela C, Medema JP. Molecular identification and targeting of colorectal cancer stem cells. Oncotarget. 2010;1(6):387–95. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3248116/.PubMedPubMedCentralCrossRef Kemper K, Grandela C, Medema JP. Molecular identification and targeting of colorectal cancer stem cells. Oncotarget. 2010;1(6):387–95. https://​www.​ncbi.​nlm.​nih.​gov/​pmc/​articles/​PMC3248116/​.​PubMedPubMedCentralCrossRef
57.
go back to reference Todaro M, Gaggianesi M, Catalano V, Benfante A, Iovino F, Biffoni M, et al. CD44v6 Is a Marker of Constitutive and Reprogrammed Cancer Stem Cells Driving Colon Cancer Metastasis. Cell Stem Cell. 2014;14:342–56.PubMedCrossRef Todaro M, Gaggianesi M, Catalano V, Benfante A, Iovino F, Biffoni M, et al. CD44v6 Is a Marker of Constitutive and Reprogrammed Cancer Stem Cells Driving Colon Cancer Metastasis. Cell Stem Cell. 2014;14:342–56.PubMedCrossRef
59.
go back to reference Pastò A, Marchesi M, Diamantini A, Frasson C, Curtarello M, Lago C, et al. PKH26 staining defines distinct subsets of normal human colon epithelial cells at different maturation stages. PLoS One. 2012;7. Pastò A, Marchesi M, Diamantini A, Frasson C, Curtarello M, Lago C, et al. PKH26 staining defines distinct subsets of normal human colon epithelial cells at different maturation stages. PLoS One. 2012;7.
61.
go back to reference Scharenberg CW, Harkey MA, Torok-Storb B. The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood. 2002;99:507–12. https://www.ncbi.nlm.nih.gov/pubmed/11781231.PubMedCrossRef Scharenberg CW, Harkey MA, Torok-Storb B. The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood. 2002;99:507–12. https://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​11781231.​PubMedCrossRef
68.
go back to reference Mayer U, Wagenaar E, Beijnen JH, Smit JW, Meijer DK, van Asperen J, et al. Substantial excretion of digoxin via the intestinal mucosa and prevention of long-term digoxin accumulation in the brain by the mdr 1a P-glycoprotein. Br J Pharmacol. 1996;119:1038–44. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1915939/.PubMedPubMedCentralCrossRef Mayer U, Wagenaar E, Beijnen JH, Smit JW, Meijer DK, van Asperen J, et al. Substantial excretion of digoxin via the intestinal mucosa and prevention of long-term digoxin accumulation in the brain by the mdr 1a P-glycoprotein. Br J Pharmacol. 1996;119:1038–44. https://​www.​ncbi.​nlm.​nih.​gov/​pmc/​articles/​PMC1915939/​.​PubMedPubMedCentralCrossRef
72.
go back to reference Panopoulos AD, Yanes O, Ruiz S, Kida YS, Diep D, Tautenhahn R, et al. The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Res. 2012;22:168–77. doi:10.1038/cr.2011.177.PubMedCrossRef Panopoulos AD, Yanes O, Ruiz S, Kida YS, Diep D, Tautenhahn R, et al. The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Res. 2012;22:168–77. doi:10.​1038/​cr.​2011.​177.PubMedCrossRef
73.
76.
go back to reference Palorini R, Votta G, Balestrieri C, Monestiroli A, Olivieri S, Vento R, et al. Energy metabolism characterization of a novel cancer stem cell-like line 3AB-OS. J Cell Biochem. 2014;115:368–79. doi:10.1002/jcb.24671.PubMedCrossRef Palorini R, Votta G, Balestrieri C, Monestiroli A, Olivieri S, Vento R, et al. Energy metabolism characterization of a novel cancer stem cell-like line 3AB-OS. J Cell Biochem. 2014;115:368–79. doi:10.​1002/​jcb.​24671.PubMedCrossRef
80.
go back to reference Song K, Kwon H, Han C, Zhang J, Dash S, Lim K, et al. Active glycolytic metabolism in CD133 (+) hepatocellular cancer stem cells: regulation by MIR-122. Oncotarget. 2015;6:40822–35. doi:10.18632/oncotarget.5812. Song K, Kwon H, Han C, Zhang J, Dash S, Lim K, et al. Active glycolytic metabolism in CD133 (+) hepatocellular cancer stem cells: regulation by MIR-122. Oncotarget. 2015;6:40822–35. doi:10.18632/oncotarget.5812.
81.
go back to reference Kahlert UD, Mooney SM, Natsumeda M, Steiger H-J, Maciaczyk J. Targeting cancer stem-like cells in glioblastoma and colorectal cancer through metabolic pathways. Int J Cancer. 2016. doi:10.1002/ijc.30259. Kahlert UD, Mooney SM, Natsumeda M, Steiger H-J, Maciaczyk J. Targeting cancer stem-like cells in glioblastoma and colorectal cancer through metabolic pathways. Int J Cancer. 2016. doi:10.​1002/​ijc.​30259.
82.
go back to reference Song I-S, Jeong YJ, Jeong SH, Heo HJ, Kim HK, Bae KB, et al. FOXM1-Induced PRX3 Regulates Stemness and Survival of Colon Cancer Cells via Maintenance of Mitochondrial Function. Gastroenterology. 2015;149:1006–16.e9. doi:10.1053/j.gastro.2015.06.007. Song I-S, Jeong YJ, Jeong SH, Heo HJ, Kim HK, Bae KB, et al. FOXM1-Induced PRX3 Regulates Stemness and Survival of Colon Cancer Cells via Maintenance of Mitochondrial Function. Gastroenterology. 2015;149:1006–16.e9. doi:10.​1053/​j.​gastro.​2015.​06.​007.
85.
go back to reference Ullmann P, Qureshi-Baig K, Rodriguez F, Ginolhac A, Nonnenmacher Y, Ternes D, et al. Hypoxia-responsive miR-210 promotes self-renewal capacity of colon tumor-initiating cells by repressing ISCU and by inducing lactate production. Oncotarget. 2016. doi:10.18632/oncotarget.11772. Ullmann P, Qureshi-Baig K, Rodriguez F, Ginolhac A, Nonnenmacher Y, Ternes D, et al. Hypoxia-responsive miR-210 promotes self-renewal capacity of colon tumor-initiating cells by repressing ISCU and by inducing lactate production. Oncotarget. 2016. doi:10.18632/oncotarget.11772.
87.
go back to reference Xu X, Chai S, Wang P, Zhang C, Yang Y, Yang Y, et al. Aldehyde dehydrogenases and cancer stem cells. Cancer Lett. 2015;369:50–7.PubMedCrossRef Xu X, Chai S, Wang P, Zhang C, Yang Y, Yang Y, et al. Aldehyde dehydrogenases and cancer stem cells. Cancer Lett. 2015;369:50–7.PubMedCrossRef
88.
go back to reference Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell. 2006;9:391–403. doi:10.1016/j.ccr.2006.03.030.PubMedCrossRef Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell. 2006;9:391–403. doi:10.​1016/​j.​ccr.​2006.​03.​030.PubMedCrossRef
89.
go back to reference Ponti D. Isolation and In vitro Propagation of Tumorigenic Breast Cancer Cells with Stem/Progenitor Cell Properties. Cancer Res. 2005;65:5506–11.PubMedCrossRef Ponti D. Isolation and In vitro Propagation of Tumorigenic Breast Cancer Cells with Stem/Progenitor Cell Properties. Cancer Res. 2005;65:5506–11.PubMedCrossRef
93.
go back to reference Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 2003;17:1253–70.PubMedPubMedCentralCrossRef Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 2003;17:1253–70.PubMedPubMedCentralCrossRef
97.
go back to reference Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444:756–60.PubMedCrossRef Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444:756–60.PubMedCrossRef
101.
102.
go back to reference Hashimoto N, Tsunedomi R, Yoshimura K, Watanabe Y, Hazama S, Oka M. Cancer stem-like sphere cells induced from cell lines possess the resistance to anti-cancer drugs. 2014;:1–14. Hashimoto N, Tsunedomi R, Yoshimura K, Watanabe Y, Hazama S, Oka M. Cancer stem-like sphere cells induced from cell lines possess the resistance to anti-cancer drugs. 2014;:1–14.
104.
go back to reference Muraro MG, Mele V, Daster S, Han J, Heberer M, Cesare Spagnoli G, et al. CD133+, CD166 + CD44+, and CD24 + CD44+ Phenotypes Fail to Reliably Identify Cell Populations with Cancer Stem Cell Functional Features in Established Human Colorectal Cancer Cell Lines. Stem Cells Transl Med. 2012;1:592–603.PubMedPubMedCentralCrossRef Muraro MG, Mele V, Daster S, Han J, Heberer M, Cesare Spagnoli G, et al. CD133+, CD166 + CD44+, and CD24 + CD44+ Phenotypes Fail to Reliably Identify Cell Populations with Cancer Stem Cell Functional Features in Established Human Colorectal Cancer Cell Lines. Stem Cells Transl Med. 2012;1:592–603.PubMedPubMedCentralCrossRef
105.
go back to reference Ahmad M, Frei K, Willscher E, Stefanski A, Kaulich K, Roth P, et al. How Stemlike Are Sphere Cultures From Long-term Cancer Cell Lines ? Lessons From Mouse Glioma Models. 2014;73:1062–77 Ahmad M, Frei K, Willscher E, Stefanski A, Kaulich K, Roth P, et al. How Stemlike Are Sphere Cultures From Long-term Cancer Cell Lines ? Lessons From Mouse Glioma Models. 2014;73:1062–77
107.
go back to reference Wu H, Zhang H, Hu Y, Xia Q, Liu C, Li Y, et al. Sphere formation assay is not an effective method for cancer stem cell derivation and characterization from the Caco-2 colorectal cell line. Curr Stem Cell Res Ther. 2014;9:82–8. https://www.ncbi.nlm.nih.gov/pubmed/24359140.PubMedCrossRef Wu H, Zhang H, Hu Y, Xia Q, Liu C, Li Y, et al. Sphere formation assay is not an effective method for cancer stem cell derivation and characterization from the Caco-2 colorectal cell line. Curr Stem Cell Res Ther. 2014;9:82–8. https://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​24359140.​PubMedCrossRef
110.
go back to reference Liu A, Yu X, Liu S. Pluripotency transcription factors and cancer stem cells: Small genes make a big difference. Chin J Cancer. 2013;32:483–7.PubMedPubMedCentral Liu A, Yu X, Liu S. Pluripotency transcription factors and cancer stem cells: Small genes make a big difference. Chin J Cancer. 2013;32:483–7.PubMedPubMedCentral
111.
go back to reference Vermeulen L, De Sousa E Melo F, Van der Heijden M, Cameron K, De Jong JH, Borovski T, et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol. 2010;12:468–76. doi:10.1038/ncb2048.PubMedCrossRef Vermeulen L, De Sousa E Melo F, Van der Heijden M, Cameron K, De Jong JH, Borovski T, et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol. 2010;12:468–76. doi:10.​1038/​ncb2048.PubMedCrossRef
112.
go back to reference Vermeulen L, De Sousa e Melo F, Richel DJ, Medema JP. The developing cancer stem-cell model: Clinical challenges and opportunities. Lancet Oncol. 2012;13:e83–9.PubMedCrossRef Vermeulen L, De Sousa e Melo F, Richel DJ, Medema JP. The developing cancer stem-cell model: Clinical challenges and opportunities. Lancet Oncol. 2012;13:e83–9.PubMedCrossRef
113.
go back to reference Di Francesco AM, Toesca A, Cenciarelli C, Giordano A, Gasbarrini A, Puglisi MA. Metabolic modification in gastrointestinal cancer stem cells: characteristics and therapeutic approaches. J Cell Physiol. 2016;231:2081–7. doi:10.1002/jcp.25318.PubMedCrossRef Di Francesco AM, Toesca A, Cenciarelli C, Giordano A, Gasbarrini A, Puglisi MA. Metabolic modification in gastrointestinal cancer stem cells: characteristics and therapeutic approaches. J Cell Physiol. 2016;231:2081–7. doi:10.​1002/​jcp.​25318.PubMedCrossRef
117.
go back to reference Puglisi MA, Cenciarelli C, Tesori V, Cappellari M, Martini M, Di Francesco AM, et al. High nitric oxide production, secondary to inducible nitric oxide synthase expression, is essential for regulation of the tumour-initiating properties of colon cancer stem cells. J Pathol. 2015;236:479–90. doi:10.1002/path.4545.PubMedCrossRef Puglisi MA, Cenciarelli C, Tesori V, Cappellari M, Martini M, Di Francesco AM, et al. High nitric oxide production, secondary to inducible nitric oxide synthase expression, is essential for regulation of the tumour-initiating properties of colon cancer stem cells. J Pathol. 2015;236:479–90. doi:10.​1002/​path.​4545.PubMedCrossRef
119.
go back to reference Chen X, Hu C, Zhang W, Shen Y, Wang J, Hu F, et al. Metformin inhibits the proliferation, metastasis, and cancer stem-like sphere formation in osteosarcoma MG63 cells in vitro. Tumour Biol. 2015;36:9873–83. doi:10.1007/s13277-015-3751-1.PubMedCrossRef Chen X, Hu C, Zhang W, Shen Y, Wang J, Hu F, et al. Metformin inhibits the proliferation, metastasis, and cancer stem-like sphere formation in osteosarcoma MG63 cells in vitro. Tumour Biol. 2015;36:9873–83. doi:10.​1007/​s13277-015-3751-1.PubMedCrossRef
120.
go back to reference Gritti M, Würth R, Angelini M, Barbieri F, Peretti M, Pizzi E, et al. Metformin repositioning as antitumoral agent: selective antiproliferative effects in human glioblastoma stem cells, via inhibition of CLIC1-mediated ion current. Oncotarget. 2014;5:11252–68. doi:10.18632/oncotarget.2617 Gritti M, Würth R, Angelini M, Barbieri F, Peretti M, Pizzi E, et al. Metformin repositioning as antitumoral agent: selective antiproliferative effects in human glioblastoma stem cells, via inhibition of CLIC1-mediated ion current. Oncotarget. 2014;5:11252–68. doi:10.18632/oncotarget.2617
121.
go back to reference Janzer A, German NJ, Gonzalez-Herrera KN, Asara JM, Haigis MC, Struhl K. Metformin and phenformin deplete tricarboxylic acid cycle and glycolytic intermediates during cell transformation and NTPs in cancer stem cells. Proc Natl Acad Sci U S A. 2014;111:10574–9. doi:10.1073/pnas.1409844111.PubMedPubMedCentralCrossRef Janzer A, German NJ, Gonzalez-Herrera KN, Asara JM, Haigis MC, Struhl K. Metformin and phenformin deplete tricarboxylic acid cycle and glycolytic intermediates during cell transformation and NTPs in cancer stem cells. Proc Natl Acad Sci U S A. 2014;111:10574–9. doi:10.​1073/​pnas.​1409844111.PubMedPubMedCentralCrossRef
122.
go back to reference Martínez-Zaguilán R, Seftor EA, Seftor RE, Chu YW, Gillies RJ, Hendrix MJ. Acidic pH enhances the invasive behavior of human melanoma cells. Clin Exp Metastasis. 1996;14:176–86. https://www.ncbi.nlm.nih.gov/pubmed/8605731.PubMedCrossRef Martínez-Zaguilán R, Seftor EA, Seftor RE, Chu YW, Gillies RJ, Hendrix MJ. Acidic pH enhances the invasive behavior of human melanoma cells. Clin Exp Metastasis. 1996;14:176–86. https://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​8605731.​PubMedCrossRef
127.
go back to reference Takebe N, Miele L, Harris PJ, Jeong W, Bando H, Kahn M, et al. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat Rev Clin Oncol. 2015. doi:10.1038/nrclinonc.2015.61 Takebe N, Miele L, Harris PJ, Jeong W, Bando H, Kahn M, et al. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat Rev Clin Oncol. 2015. doi:10.​1038/​nrclinonc.​2015.​61
128.
130.
go back to reference Lombardo Y, Scopelliti A, Cammareri P, Todaro M, Iovino F, Ricci-Vitiani L, et al. Bone morphogenetic protein 4 induces differentiation of colorectal cancer stem cells and increases their response to chemotherapy in mice. Gastroenterology. 2011;140:297–309. doi:10.1053/j.gastro.2010.10.005.PubMedCrossRef Lombardo Y, Scopelliti A, Cammareri P, Todaro M, Iovino F, Ricci-Vitiani L, et al. Bone morphogenetic protein 4 induces differentiation of colorectal cancer stem cells and increases their response to chemotherapy in mice. Gastroenterology. 2011;140:297–309. doi:10.​1053/​j.​gastro.​2010.​10.​005.PubMedCrossRef
132.
go back to reference Vidal SJ, Rodriguez-Bravo V, Galsky M, Cordon-Cardo C, Domingo-Domenech J. Targeting cancer stem cells to suppress acquired chemotherapy resistance. Oncogene. 2013;33 August:1–13. doi:10.1038/onc.2013.411. Vidal SJ, Rodriguez-Bravo V, Galsky M, Cordon-Cardo C, Domingo-Domenech J. Targeting cancer stem cells to suppress acquired chemotherapy resistance. Oncogene. 2013;33 August:1–13. doi:10.​1038/​onc.​2013.​411.
133.
134.
go back to reference Huang F-T, Zhuan-Sun Y-X, Zhuang Y-Y, Wei S-L, Tang J, Chen W-B, et al. Inhibition of hedgehog signaling depresses self-renewal of pancreatic cancer stem cells and reverses chemoresistance. Int J Oncol. 2012;41:1707–14. doi:10.3892/ijo.2012.1597.PubMed Huang F-T, Zhuan-Sun Y-X, Zhuang Y-Y, Wei S-L, Tang J, Chen W-B, et al. Inhibition of hedgehog signaling depresses self-renewal of pancreatic cancer stem cells and reverses chemoresistance. Int J Oncol. 2012;41:1707–14. doi:10.​3892/​ijo.​2012.​1597.PubMed
135.
140.
go back to reference Xiong A, Yu W, Liu Y, Sanders BG, Kline K. Elimination of ALDH+ breast tumor initiating cells by docosahexanoic acid and/or gamma tocotrienol through SHP-1 inhibition of Stat3 signaling. Mol Carcinog. 2015. doi:10.1002/mc.22291. Xiong A, Yu W, Liu Y, Sanders BG, Kline K. Elimination of ALDH+ breast tumor initiating cells by docosahexanoic acid and/or gamma tocotrienol through SHP-1 inhibition of Stat3 signaling. Mol Carcinog. 2015. doi:10.​1002/​mc.​22291.
144.
148.
149.
154.
go back to reference Yang L, Tang H, Kong Y, Xie X, Chen J, Song C, et al. LGR5 promotes breast cancer progression and maintains stem-like cells through activation of Wnt/β-catenin signaling. Stem Cells. 2015. doi:10.1002/stem.2083. Yang L, Tang H, Kong Y, Xie X, Chen J, Song C, et al. LGR5 promotes breast cancer progression and maintains stem-like cells through activation of Wnt/β-catenin signaling. Stem Cells. 2015. doi:10.​1002/​stem.​2083.
159.
160.
go back to reference Sims-Mourtada J, Opdenaker LM, Davis J, Arnold KM, Flynn D. Taxane-induced hedgehog signaling is linked to expansion of breast cancer stem-like populations after chemotherapy. Mol Carcinog. 2014. doi:10.1002/mc.22225 Sims-Mourtada J, Opdenaker LM, Davis J, Arnold KM, Flynn D. Taxane-induced hedgehog signaling is linked to expansion of breast cancer stem-like populations after chemotherapy. Mol Carcinog. 2014. doi:10.​1002/​mc.​22225
163.
go back to reference Fender AW, Nutter JM, Bertrand FE, Sigounas G. Notch-1 Promotes Stemness and Epithelial to Mesenchymal Transition in Colorectal Cancer. J Cell Biochem. 2015. doi:10.1002/jcb.25196. Fender AW, Nutter JM, Bertrand FE, Sigounas G. Notch-1 Promotes Stemness and Epithelial to Mesenchymal Transition in Colorectal Cancer. J Cell Biochem. 2015. doi:10.​1002/​jcb.​25196.
164.
165.
go back to reference Zhang X, Zhao X, Shao S, Zuo X, Ning Q, Luo M, et al. Notch1 induces epithelial-mesenchymal transition and the cancer stem cell phenotype in breast cancer cells and STAT3 plays a key role. Int J Oncol. 2015;46:1141–8. doi:10.3892/ijo.2014.2809.PubMed Zhang X, Zhao X, Shao S, Zuo X, Ning Q, Luo M, et al. Notch1 induces epithelial-mesenchymal transition and the cancer stem cell phenotype in breast cancer cells and STAT3 plays a key role. Int J Oncol. 2015;46:1141–8. doi:10.​3892/​ijo.​2014.​2809.PubMed
167.
go back to reference Hossain A, Gumin J, Gao F, Figueroa J, Shinojima N, Takezaki T, et al. Mesenchymal stem cells isolated from human gliomas increase proliferation and maintain stemness of glioma stem cells through the IL-6/gp130/STAT3 pathway. Stem Cells. 2015;33:2400–15. doi:10.1002/stem.2053.PubMedPubMedCentralCrossRef Hossain A, Gumin J, Gao F, Figueroa J, Shinojima N, Takezaki T, et al. Mesenchymal stem cells isolated from human gliomas increase proliferation and maintain stemness of glioma stem cells through the IL-6/gp130/STAT3 pathway. Stem Cells. 2015;33:2400–15. doi:10.​1002/​stem.​2053.PubMedPubMedCentralCrossRef
169.
170.
go back to reference Won C, Kim B-H, Hee Yi E, Choi K-J, Kim E-K, Jeong J-M, et al. STAT3-mediated CD133 upregulation contributes to promotion of hepatocellular carcinoma. Hepatology. 2015. doi:10.1002/hep.27968 Won C, Kim B-H, Hee Yi E, Choi K-J, Kim E-K, Jeong J-M, et al. STAT3-mediated CD133 upregulation contributes to promotion of hepatocellular carcinoma. Hepatology. 2015. doi:10.​1002/​hep.​27968
171.
go back to reference Kim BR, Oh SC, Lee D-H, Kim JL, Lee SY, Kang MH, et al. BMP-2 induces motility and invasiveness by promoting colon cancer stemness through STAT3 activation. Tumour Biol. 2015. doi:10.1007/s13277-015-3681-y Kim BR, Oh SC, Lee D-H, Kim JL, Lee SY, Kang MH, et al. BMP-2 induces motility and invasiveness by promoting colon cancer stemness through STAT3 activation. Tumour Biol. 2015. doi:10.​1007/​s13277-015-3681-y
173.
go back to reference Patricia Ng, Wang Cheng-I. The Dark Side of Pluripotency – Cancer Stem Cell, Pluripotent Stem Cells, Dr. Deepa Bhartiya (Ed.), InTech; 2013. doi:10.5772/54369. Available from: http://www.intechopen.com/books/pluripotent-stem-cells/the-dark-side-of-pluripotency-cancer-stem-cell. Patricia Ng, Wang Cheng-I. The Dark Side of Pluripotency – Cancer Stem Cell, Pluripotent Stem Cells, Dr. Deepa Bhartiya (Ed.), InTech; 2013. doi:10.5772/54369. Available from: http://​www.​intechopen.​com/​books/​pluripotent-stem-cells/​the-dark-side-of-pluripotency-cancer-stem-cell.​
Metadata
Title
Tumor-Initiating Cells: a criTICal review of isolation approaches and new challenges in targeting strategies
Authors
Komal Qureshi-Baig
Pit Ullmann
Serge Haan
Elisabeth Letellier
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2017
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/s12943-017-0602-2

Other articles of this Issue 1/2017

Molecular Cancer 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine