Skip to main content
Top
Published in: Molecular Cancer 1/2016

Open Access 01-12-2016 | Review

Wnt-signalling pathways and microRNAs network in carcinogenesis: experimental and bioinformatics approaches

Authors: Emenike K. Onyido, Eloise Sweeney, Abdolrahman Shams Nateri

Published in: Molecular Cancer | Issue 1/2016

Login to get access

Abstract

Over the past few years, microRNAs (miRNAs) have not only emerged as integral regulators of gene expression at the post-transcriptional level but also respond to signalling molecules to affect cell function(s). miRNAs crosstalk with a variety of the key cellular signalling networks such as Wnt, transforming growth factor-β and Notch, control stem cell activity in maintaining tissue homeostasis, while if dysregulated contributes to the initiation and progression of cancer. Herein, we overview the molecular mechanism(s) underlying the crosstalk between Wnt-signalling components (canonical and non-canonical) and miRNAs, as well as changes in the miRNA/Wnt-signalling components observed in the different forms of cancer. Furthermore, the fundamental understanding of miRNA-mediated regulation of Wnt-signalling pathway and vice versa has been significantly improved by high-throughput genomics and bioinformatics technologies. Whilst, these approaches have identified a number of specific miRNA(s) that function as oncogenes or tumour suppressors, additional analyses will be necessary to fully unravel the links among conserved cellular signalling pathways and miRNAs and their potential associated components in cancer, thereby creating therapeutic avenues against tumours. Hence, we also discuss the current challenges associated with Wnt-signalling/miRNAs complex and the analysis using the biomedical experimental and bioinformatics approaches.
Literature
2.
go back to reference Novellasdemunt L, Antas P, Li VS. Targeting Wnt signaling in colorectal cancer. A Review in the Theme: Cell Signaling: Proteins, Pathways and Mechanisms. Am J Phys Cell Phys. 2015;309(8):C511–21.CrossRef Novellasdemunt L, Antas P, Li VS. Targeting Wnt signaling in colorectal cancer. A Review in the Theme: Cell Signaling: Proteins, Pathways and Mechanisms. Am J Phys Cell Phys. 2015;309(8):C511–21.CrossRef
4.
go back to reference Sheikh A, et al. The role of Wnt signaling pathway in carcinogenesis and implications for anticancer. Hered Cancer Clin Pract. 2014;12(1):12–13. Sheikh A, et al. The role of Wnt signaling pathway in carcinogenesis and implications for anticancer. Hered Cancer Clin Pract. 2014;12(1):12–13.
6.
go back to reference Yang X, et al. Wnt signaling through Snail1 and Zeb1 regulates bone metastasis in lung cancer. Am J Cancer Res. 2015;5(2):748.PubMedPubMedCentral Yang X, et al. Wnt signaling through Snail1 and Zeb1 regulates bone metastasis in lung cancer. Am J Cancer Res. 2015;5(2):748.PubMedPubMedCentral
9.
go back to reference Miller JR, et al. Mechanism and function of signal transduction by the Wnt/beta-catenin and Wnt/Ca2+ pathways. Oncogene. 1999;18(55):7860–72.PubMedCrossRef Miller JR, et al. Mechanism and function of signal transduction by the Wnt/beta-catenin and Wnt/Ca2+ pathways. Oncogene. 1999;18(55):7860–72.PubMedCrossRef
10.
11.
go back to reference Anastas JN, Moon RT. WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer. 2013;13(1):11–26.PubMedCrossRef Anastas JN, Moon RT. WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer. 2013;13(1):11–26.PubMedCrossRef
12.
go back to reference Kim W, Kim M, Jho E-h. Wnt/β-catenin signalling: from plasma membrane to nucleus. Biochem J. 2013;450(1):9–21.PubMedCrossRef Kim W, Kim M, Jho E-h. Wnt/β-catenin signalling: from plasma membrane to nucleus. Biochem J. 2013;450(1):9–21.PubMedCrossRef
13.
go back to reference Rao TP, Kühl M. An Updated Overview on Wnt Signaling Pathways A Prelude for More. Circ Res. 2010;106(12):1798–806.PubMedCrossRef Rao TP, Kühl M. An Updated Overview on Wnt Signaling Pathways A Prelude for More. Circ Res. 2010;106(12):1798–806.PubMedCrossRef
14.
go back to reference Aoki K, Taketo MM. Adenomatous polyposis coli (APC): a multi-functional tumor suppressor gene. J Cell Sci. 2007;120(19):3327–35.PubMedCrossRef Aoki K, Taketo MM. Adenomatous polyposis coli (APC): a multi-functional tumor suppressor gene. J Cell Sci. 2007;120(19):3327–35.PubMedCrossRef
16.
go back to reference Wantae K, Minseong K, Eek-hoon J. Wnt/beta-catenin signalling: from plasma membrane to nucleus. Biochem J. 2013;450(1):9–21.CrossRef Wantae K, Minseong K, Eek-hoon J. Wnt/beta-catenin signalling: from plasma membrane to nucleus. Biochem J. 2013;450(1):9–21.CrossRef
17.
18.
go back to reference Augsten M. Cancer-associated fibroblasts as another polarized cell type of the tumor microenvironment. Front Oncol. 2014;4(62):1–8. Augsten M. Cancer-associated fibroblasts as another polarized cell type of the tumor microenvironment. Front Oncol. 2014;4(62):1–8.
19.
go back to reference Sobel K, et al. Wnt‐3a‐activated human fibroblasts promote human keratinocyte proliferation and matrix destruction. Int J Cancer. 2015;136(12):2786–98.PubMedCrossRef Sobel K, et al. Wnt‐3a‐activated human fibroblasts promote human keratinocyte proliferation and matrix destruction. Int J Cancer. 2015;136(12):2786–98.PubMedCrossRef
20.
go back to reference Zeng X, et al. Initiation of Wnt signaling: control of Wnt coreceptor Lrp6 phosphorylation/activation via frizzled, dishevelled and axin functions. Development. 2008;135(2):367–75.PubMedCrossRef Zeng X, et al. Initiation of Wnt signaling: control of Wnt coreceptor Lrp6 phosphorylation/activation via frizzled, dishevelled and axin functions. Development. 2008;135(2):367–75.PubMedCrossRef
21.
go back to reference Bilić J, et al. Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science. 2007;316(5831):1619–22.PubMedCrossRef Bilić J, et al. Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science. 2007;316(5831):1619–22.PubMedCrossRef
23.
go back to reference Angers S, Moon RT. Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol. 2009;10(7):468–77.PubMedCrossRef Angers S, Moon RT. Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol. 2009;10(7):468–77.PubMedCrossRef
24.
25.
go back to reference Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004;20:781–810.PubMedCrossRef Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004;20:781–810.PubMedCrossRef
26.
go back to reference Pinto D, et al. Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev. 2003;17(14):1709–13. Pinto D, et al. Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev. 2003;17(14):1709–13.
27.
go back to reference Nateri AS, Spencer-Dene B, Behrens A. Interaction of phosphorylated c-Jun with TCF4 regulates intestinal cancer development. Nature. 2005;437(7056):281–5.PubMedCrossRef Nateri AS, Spencer-Dene B, Behrens A. Interaction of phosphorylated c-Jun with TCF4 regulates intestinal cancer development. Nature. 2005;437(7056):281–5.PubMedCrossRef
28.
go back to reference Schwartz AL, et al. Phenylmethimazole decreases Toll-like receptor 3 and noncanonical Wnt5a expression in pancreatic cancer and melanoma together with tumor cell growth and migration. Clin Cancer Res. 2009;15(12):4114–22.PubMedPubMedCentralCrossRef Schwartz AL, et al. Phenylmethimazole decreases Toll-like receptor 3 and noncanonical Wnt5a expression in pancreatic cancer and melanoma together with tumor cell growth and migration. Clin Cancer Res. 2009;15(12):4114–22.PubMedPubMedCentralCrossRef
29.
go back to reference Schlange T, et al. Autocrine WNT signaling contributes to breast cancer cell proliferation via the canonical WNT pathway and EGFR transactivation. Breast Cancer Res. 2007;9(5):1.CrossRef Schlange T, et al. Autocrine WNT signaling contributes to breast cancer cell proliferation via the canonical WNT pathway and EGFR transactivation. Breast Cancer Res. 2007;9(5):1.CrossRef
30.
31.
go back to reference Schlessinger K, McManus EJ, Hall A. Cdc42 and noncanonical Wnt signal transduction pathways cooperate to promote cell polarity. J Cell Biol. 2007;178(3):355–61.PubMedPubMedCentralCrossRef Schlessinger K, McManus EJ, Hall A. Cdc42 and noncanonical Wnt signal transduction pathways cooperate to promote cell polarity. J Cell Biol. 2007;178(3):355–61.PubMedPubMedCentralCrossRef
32.
go back to reference Kikuchi A, et al. New insights into the mechanism of Wnt signaling pathway activation. Int Rev Cell Mol Biol. 2011;291(21):e71. Kikuchi A, et al. New insights into the mechanism of Wnt signaling pathway activation. Int Rev Cell Mol Biol. 2011;291(21):e71.
33.
go back to reference Sugimura R, Li L. Noncanonical Wnt signaling in vertebrate development, stem cells, and diseases. Birth Defects Research Part C: Embryo Today: Reviews. 2010;90(4):243–56.CrossRef Sugimura R, Li L. Noncanonical Wnt signaling in vertebrate development, stem cells, and diseases. Birth Defects Research Part C: Embryo Today: Reviews. 2010;90(4):243–56.CrossRef
34.
go back to reference Sato A, et al. Wnt5a regulates distinct signalling pathways by binding to Frizzled2. EMBO J. 2010;29(1):41–54.PubMedCrossRef Sato A, et al. Wnt5a regulates distinct signalling pathways by binding to Frizzled2. EMBO J. 2010;29(1):41–54.PubMedCrossRef
35.
go back to reference Saadeddin A, et al. The links between transcription, beta-catenin/JNK signaling, and carcinogenesis. Mol Cancer Res. 2009;7(8):1189–96.PubMedCrossRef Saadeddin A, et al. The links between transcription, beta-catenin/JNK signaling, and carcinogenesis. Mol Cancer Res. 2009;7(8):1189–96.PubMedCrossRef
36.
go back to reference Ishitani T, et al. The TAK1-NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca2+ pathway to antagonize Wnt/β-catenin signaling. Mol Cell Biol. 2003;23(1):131–9.PubMedPubMedCentralCrossRef Ishitani T, et al. The TAK1-NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca2+ pathway to antagonize Wnt/β-catenin signaling. Mol Cell Biol. 2003;23(1):131–9.PubMedPubMedCentralCrossRef
37.
go back to reference Saneyoshi T, et al. The Wnt/calcium pathway activates NF-AT and promotes ventral cell fate in Xenopus embryos. Nature. 2002;417(6886):295–9.PubMedCrossRef Saneyoshi T, et al. The Wnt/calcium pathway activates NF-AT and promotes ventral cell fate in Xenopus embryos. Nature. 2002;417(6886):295–9.PubMedCrossRef
38.
go back to reference Klaus A, Birchmeier W. Wnt signalling and its impact on development and cancer. Nat Rev Cancer. 2008;8(5):387–98.PubMedCrossRef Klaus A, Birchmeier W. Wnt signalling and its impact on development and cancer. Nat Rev Cancer. 2008;8(5):387–98.PubMedCrossRef
39.
go back to reference Sherwood V. WNT signaling: an emerging mediator of cancer cell metabolism? Mol Cell Biol. 2015;35(1):2–10.PubMedCrossRef Sherwood V. WNT signaling: an emerging mediator of cancer cell metabolism? Mol Cell Biol. 2015;35(1):2–10.PubMedCrossRef
40.
go back to reference Holland JD, et al. Wnt signaling in stem and cancer stem cells. Curr Opin Cell Biol. 2013;25(2):254–64.PubMedCrossRef Holland JD, et al. Wnt signaling in stem and cancer stem cells. Curr Opin Cell Biol. 2013;25(2):254–64.PubMedCrossRef
41.
go back to reference Lee S-Y, et al. Mutation spectrum in the Wnt/β-catenin signaling pathway in gastric fundic gland-associated neoplasms/polyps. Virchows Arch. 2015;467(1):27–38.PubMedCrossRef Lee S-Y, et al. Mutation spectrum in the Wnt/β-catenin signaling pathway in gastric fundic gland-associated neoplasms/polyps. Virchows Arch. 2015;467(1):27–38.PubMedCrossRef
42.
go back to reference Abdelmaksoud-Damak R, et al. Expression and Mutation Pattern of β-Catenin and Adenomatous Polyposis Coli in Colorectal Cancer Patients. Arch Med Res. 2015;46(1):54–62.PubMedCrossRef Abdelmaksoud-Damak R, et al. Expression and Mutation Pattern of β-Catenin and Adenomatous Polyposis Coli in Colorectal Cancer Patients. Arch Med Res. 2015;46(1):54–62.PubMedCrossRef
43.
go back to reference Satoh S, et al. AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nat Genet. 2000;24(3):245–50.PubMedCrossRef Satoh S, et al. AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nat Genet. 2000;24(3):245–50.PubMedCrossRef
45.
go back to reference Samowitz WS, et al. APC mutations and other genetic and epigenetic changes in colon cancer. Mol Cancer Res. 2007;5(2):165–70.PubMedCrossRef Samowitz WS, et al. APC mutations and other genetic and epigenetic changes in colon cancer. Mol Cancer Res. 2007;5(2):165–70.PubMedCrossRef
46.
go back to reference Lüchtenborg M, et al. Mutations in APC, CTNNB1 and K-ras genes and expression of hMLH1 in sporadic colorectal carcinomas from the Netherlands Cohort Study. BMC Cancer. 2005;5(1):1.CrossRef Lüchtenborg M, et al. Mutations in APC, CTNNB1 and K-ras genes and expression of hMLH1 in sporadic colorectal carcinomas from the Netherlands Cohort Study. BMC Cancer. 2005;5(1):1.CrossRef
47.
go back to reference Morikawa T, et al. Association of CTNNB1 (β-catenin) alterations, body mass index, and physical activity with survival in patients with colorectal cancer. JAMA. 2011;305(16):1685–94.PubMedPubMedCentralCrossRef Morikawa T, et al. Association of CTNNB1 (β-catenin) alterations, body mass index, and physical activity with survival in patients with colorectal cancer. JAMA. 2011;305(16):1685–94.PubMedPubMedCentralCrossRef
48.
go back to reference You XJ, et al. Expression of Wnt pathway components frizzled and disheveled in colon cancer arising in patients with inflammatory bowel disease. Oncol Rep. 2007;18(3):691–4.PubMed You XJ, et al. Expression of Wnt pathway components frizzled and disheveled in colon cancer arising in patients with inflammatory bowel disease. Oncol Rep. 2007;18(3):691–4.PubMed
50.
go back to reference Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA. 2004;10(12):1957–66.PubMedPubMedCentralCrossRef Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA. 2004;10(12):1957–66.PubMedPubMedCentralCrossRef
51.
go back to reference Förstemann K, et al. Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLoS Biol. 2005;3(7):e236.PubMedPubMedCentralCrossRef Förstemann K, et al. Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLoS Biol. 2005;3(7):e236.PubMedPubMedCentralCrossRef
52.
54.
go back to reference Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA. Nature. 2004;431(7006):343–9.PubMedCrossRef Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA. Nature. 2004;431(7006):343–9.PubMedCrossRef
55.
go back to reference Meister G. Argonaute proteins: functional insights and emerging roles. Nat Rev Genet. 2013;14(7):447–59. Meister G. Argonaute proteins: functional insights and emerging roles. Nat Rev Genet. 2013;14(7):447–59.
57.
60.
61.
go back to reference Vimalraj S, Selvamurugan N. MicroRNAs: synthesis, gene regulation and osteoblast differentiation. Curr Issues Mol Biol. 2012;15(1):7–18.PubMed Vimalraj S, Selvamurugan N. MicroRNAs: synthesis, gene regulation and osteoblast differentiation. Curr Issues Mol Biol. 2012;15(1):7–18.PubMed
64.
65.
go back to reference Medici D, Hay ED, Olsen BR. Snail and Slug promote epithelial-mesenchymal transition through betacatenin-T-cell factor-4-dependent expression of transforming growth factor-beta3. Mol Biol Cell. 2008;19(11):4875–4887. Medici D, Hay ED, Olsen BR. Snail and Slug promote epithelial-mesenchymal transition through betacatenin-T-cell factor-4-dependent expression of transforming growth factor-beta3. Mol Biol Cell. 2008;19(11):4875–4887.
66.
go back to reference YIN JJ, POLLOCK CB, KELLY K. Mechanisms of cancer metastasis to the bone. Cell Res. 2005;15(1):57–62.PubMedCrossRef YIN JJ, POLLOCK CB, KELLY K. Mechanisms of cancer metastasis to the bone. Cell Res. 2005;15(1):57–62.PubMedCrossRef
67.
go back to reference Müller A, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410(6824):50–6.PubMedCrossRef Müller A, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410(6824):50–6.PubMedCrossRef
68.
go back to reference Kang Y, et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell. 2003;3(6):537–49.PubMedCrossRef Kang Y, et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell. 2003;3(6):537–49.PubMedCrossRef
69.
go back to reference Zhang X, et al. MicroRNA-410 acts as oncogene in NSCLC through downregulating SLC34A2 via activating Wnt/β-catenin pathway. Oncotarget. 2016;7(12):14569–85.PubMedPubMedCentral Zhang X, et al. MicroRNA-410 acts as oncogene in NSCLC through downregulating SLC34A2 via activating Wnt/β-catenin pathway. Oncotarget. 2016;7(12):14569–85.PubMedPubMedCentral
70.
go back to reference Saydam O, et al. Downregulated microRNA-200a in meningiomas promotes tumor growth by reducing E-cadherin and activating the Wnt/β-catenin signaling pathway. Mol Cell Biol. 2009;29(21):5923–40.PubMedPubMedCentralCrossRef Saydam O, et al. Downregulated microRNA-200a in meningiomas promotes tumor growth by reducing E-cadherin and activating the Wnt/β-catenin signaling pathway. Mol Cell Biol. 2009;29(21):5923–40.PubMedPubMedCentralCrossRef
71.
go back to reference Kim NH, et al. p53 regulates nuclear GSK-3 levels through miR-34-mediated Axin2 suppression in colorectal cancer cells. Cell Cycle. 2013;12(10):1578–87.PubMedPubMedCentralCrossRef Kim NH, et al. p53 regulates nuclear GSK-3 levels through miR-34-mediated Axin2 suppression in colorectal cancer cells. Cell Cycle. 2013;12(10):1578–87.PubMedPubMedCentralCrossRef
73.
go back to reference Wang X, et al. MiR-214 inhibits cell growth in hepatocellular carcinoma through suppression of β-catenin. Biochem Biophys Res Commun. 2012;428(4):525–31.PubMedCrossRef Wang X, et al. MiR-214 inhibits cell growth in hepatocellular carcinoma through suppression of β-catenin. Biochem Biophys Res Commun. 2012;428(4):525–31.PubMedCrossRef
74.
go back to reference Williams Z, et al. Comprehensive profiling of circulating microRNA via small RNA sequencing of cDNA libraries reveals biomarker potential and limitations. Proc Natl Acad Sci. 2013;110(11):4255–60.PubMedPubMedCentralCrossRef Williams Z, et al. Comprehensive profiling of circulating microRNA via small RNA sequencing of cDNA libraries reveals biomarker potential and limitations. Proc Natl Acad Sci. 2013;110(11):4255–60.PubMedPubMedCentralCrossRef
75.
go back to reference Du WW, et al. MicroRNA miR-24 enhances tumor invasion and metastasis by targeting PTPN9 and PTPRF to promote EGF signaling. J Cell Sci. 2013;126(6):1440–53.PubMedCrossRef Du WW, et al. MicroRNA miR-24 enhances tumor invasion and metastasis by targeting PTPN9 and PTPRF to promote EGF signaling. J Cell Sci. 2013;126(6):1440–53.PubMedCrossRef
77.
go back to reference Su W-L, Kleinhanz RR, Schadt EE. Characterizing the role of miRNAs within gene regulatory networks using integrative genomics techniques. Mol Syst Biol. 2011;7(490):1–12. Su W-L, Kleinhanz RR, Schadt EE. Characterizing the role of miRNAs within gene regulatory networks using integrative genomics techniques. Mol Syst Biol. 2011;7(490):1–12.
78.
go back to reference Chen TH, et al. The prognostic significance of APC gene mutation and miR‐21 expression in advanced‐stage colorectal cancer. Color Dis. 2013;15(11):1367–74.CrossRef Chen TH, et al. The prognostic significance of APC gene mutation and miR‐21 expression in advanced‐stage colorectal cancer. Color Dis. 2013;15(11):1367–74.CrossRef
79.
go back to reference Aslakson CJ, Miller FR. Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res. 1992;52(6):1399–405.PubMed Aslakson CJ, Miller FR. Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res. 1992;52(6):1399–405.PubMed
81.
go back to reference Liu Y, et al. MicroRNAs modulate the Wnt signaling pathway through targeting its inhibitors. Biochem Biophys Res Commun. 2011;408(2):259–64.PubMedCrossRef Liu Y, et al. MicroRNAs modulate the Wnt signaling pathway through targeting its inhibitors. Biochem Biophys Res Commun. 2011;408(2):259–64.PubMedCrossRef
82.
83.
go back to reference Sun X, et al. MiR-208a stimulates the cocktail of SOX2 and β-catenin to inhibit the let-7 induction of self-renewal repression of breast cancer stem cells and formed miR208a/let-7 feedback loop via LIN28 and DICER1. Oncotarget. 2015;6(32):32944–54. Sun X, et al. MiR-208a stimulates the cocktail of SOX2 and β-catenin to inhibit the let-7 induction of self-renewal repression of breast cancer stem cells and formed miR208a/let-7 feedback loop via LIN28 and DICER1. Oncotarget. 2015;6(32):32944–54.
84.
go back to reference Wang D, et al. Human microRNA oncogenes and tumor suppressors show significantly different biological patterns: from functions to targets. PLoS One. 2010;5(9):e13067.PubMedPubMedCentralCrossRef Wang D, et al. Human microRNA oncogenes and tumor suppressors show significantly different biological patterns: from functions to targets. PLoS One. 2010;5(9):e13067.PubMedPubMedCentralCrossRef
85.
86.
go back to reference Nguyen LV, et al. Cancer stem cells: an evolving concept. Nat Rev Cancer. 2012;12(2):133–43.PubMed Nguyen LV, et al. Cancer stem cells: an evolving concept. Nat Rev Cancer. 2012;12(2):133–43.PubMed
87.
go back to reference Ibrahim EE, et al. Embryonic NANOG activity defines colorectal cancer stem cells and modulates through AP1- and TCF-dependent mechanisms. Stem Cells. 2012;30(10):2076–87.PubMedCrossRef Ibrahim EE, et al. Embryonic NANOG activity defines colorectal cancer stem cells and modulates through AP1- and TCF-dependent mechanisms. Stem Cells. 2012;30(10):2076–87.PubMedCrossRef
88.
go back to reference Yang K, et al. The evolving roles of canonical WNT signaling in stem cells and tumorigenesis: implications in targeted cancer therapies. Lab Invest. 2015;96(2):116–36. Yang K, et al. The evolving roles of canonical WNT signaling in stem cells and tumorigenesis: implications in targeted cancer therapies. Lab Invest. 2015;96(2):116–36.
89.
go back to reference Sato N, et al. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med. 2004;10(1):55–63.PubMedCrossRef Sato N, et al. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med. 2004;10(1):55–63.PubMedCrossRef
90.
91.
go back to reference Day TF, et al. Wnt/β-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell. 2005;8(5):739–50.PubMedCrossRef Day TF, et al. Wnt/β-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell. 2005;8(5):739–50.PubMedCrossRef
92.
go back to reference Gregorieff A, et al. Expression pattern of Wnt signaling components in the adult intestine. Gastroenterology. 2005;129(2):626–38.PubMedCrossRef Gregorieff A, et al. Expression pattern of Wnt signaling components in the adult intestine. Gastroenterology. 2005;129(2):626–38.PubMedCrossRef
93.
go back to reference Deng H, et al. miR-193a-3p regulates the multi-drug resistance of bladder cancer by targeting the LOXL4 gene and the Oxidative Stress pathway. Mol Cancer. 2014;13(1):234.PubMedPubMedCentralCrossRef Deng H, et al. miR-193a-3p regulates the multi-drug resistance of bladder cancer by targeting the LOXL4 gene and the Oxidative Stress pathway. Mol Cancer. 2014;13(1):234.PubMedPubMedCentralCrossRef
94.
go back to reference Bitarte N, et al. MicroRNA‐451 Is Involved in the Self‐renewal, Tumorigenicity, and Chemoresistance of Colorectal Cancer Stem Cells. Stem Cells. 2011;29(11):1661–71.PubMedCrossRef Bitarte N, et al. MicroRNA‐451 Is Involved in the Self‐renewal, Tumorigenicity, and Chemoresistance of Colorectal Cancer Stem Cells. Stem Cells. 2011;29(11):1661–71.PubMedCrossRef
95.
go back to reference de Sousa EMF, et al. Targeting Wnt signaling in colon cancer stem cells. Clin Cancer Res. 2011;17(4):647–53.PubMedCrossRef de Sousa EMF, et al. Targeting Wnt signaling in colon cancer stem cells. Clin Cancer Res. 2011;17(4):647–53.PubMedCrossRef
98.
go back to reference Takahashi R-U, Miyazaki H, Ochiya T. The role of microRNAs in the regulation of cancer stem cells. Front Genet. 2014;4(295):1–11. Takahashi R-U, Miyazaki H, Ochiya T. The role of microRNAs in the regulation of cancer stem cells. Front Genet. 2014;4(295):1–11.
101.
go back to reference Ghahhari NM, Babashah S. Interplay between microRNAs and WNT/β-catenin signalling pathway regulates epithelial–mesenchymal transition in cancer. Eur J Cancer. 2015;51(12):1638–49.PubMedCrossRef Ghahhari NM, Babashah S. Interplay between microRNAs and WNT/β-catenin signalling pathway regulates epithelial–mesenchymal transition in cancer. Eur J Cancer. 2015;51(12):1638–49.PubMedCrossRef
102.
go back to reference Tam S, et al. Robust global microRNA expression profiling using next-generation sequencing technologies. Lab Investig. 2014;94(3):350–8.PubMedCrossRef Tam S, et al. Robust global microRNA expression profiling using next-generation sequencing technologies. Lab Investig. 2014;94(3):350–8.PubMedCrossRef
103.
go back to reference Harris SR, et al. Whole-genome sequencing for analysis of an outbreak of meticillin-resistant Staphylococcus aureus: a descriptive study. Lancet Infect Dis. 2013;13(2):130–6.PubMedPubMedCentralCrossRef Harris SR, et al. Whole-genome sequencing for analysis of an outbreak of meticillin-resistant Staphylococcus aureus: a descriptive study. Lancet Infect Dis. 2013;13(2):130–6.PubMedPubMedCentralCrossRef
104.
go back to reference Mortazavi A, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5(7):621–8.PubMedCrossRef Mortazavi A, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5(7):621–8.PubMedCrossRef
105.
go back to reference Pan Q, et al. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 2008;40(12):1413–5.PubMedCrossRef Pan Q, et al. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 2008;40(12):1413–5.PubMedCrossRef
106.
go back to reference Johnson DS, et al. Genome-wide mapping of in vivo protein-DNA interactions. Science. 2007;316(5830):1497–502.PubMedCrossRef Johnson DS, et al. Genome-wide mapping of in vivo protein-DNA interactions. Science. 2007;316(5830):1497–502.PubMedCrossRef
108.
go back to reference Brunner AL, et al. Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver. Genome Res. 2009;19(6):1044–56.PubMedPubMedCentralCrossRef Brunner AL, et al. Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver. Genome Res. 2009;19(6):1044–56.PubMedPubMedCentralCrossRef
109.
110.
go back to reference Kang H, Hata A. The role of microRNAs in cell fate determination of mesenchymal stem cells: balancing adipogenesis and osteogenesis. BMB Rep. 2015;48(6):319.PubMedPubMedCentralCrossRef Kang H, Hata A. The role of microRNAs in cell fate determination of mesenchymal stem cells: balancing adipogenesis and osteogenesis. BMB Rep. 2015;48(6):319.PubMedPubMedCentralCrossRef
111.
go back to reference Hassan MQ, et al. miR-218 directs a Wnt signaling circuit to promote differentiation of osteoblasts and osteomimicry of metastatic cancer cells. J Biol Chem. 2012;287(50):42084–92.PubMedPubMedCentralCrossRef Hassan MQ, et al. miR-218 directs a Wnt signaling circuit to promote differentiation of osteoblasts and osteomimicry of metastatic cancer cells. J Biol Chem. 2012;287(50):42084–92.PubMedPubMedCentralCrossRef
113.
go back to reference Yang J-H, et al. ChIPBase: a database for decoding the transcriptional regulation of long non-coding RNA and microRNA genes from ChIP-Seq data. Nucleic Acids Res. 2013;41(D1):D177–87.PubMedCrossRef Yang J-H, et al. ChIPBase: a database for decoding the transcriptional regulation of long non-coding RNA and microRNA genes from ChIP-Seq data. Nucleic Acids Res. 2013;41(D1):D177–87.PubMedCrossRef
114.
go back to reference Hoffmeyer K, et al. Wnt/β-catenin signaling regulates telomerase in stem cells and cancer cells. Science. 2012;336(6088):1549–54.PubMedCrossRef Hoffmeyer K, et al. Wnt/β-catenin signaling regulates telomerase in stem cells and cancer cells. Science. 2012;336(6088):1549–54.PubMedCrossRef
115.
go back to reference Blahnik KR, et al. Sole-Search: an integrated analysis program for peak detection and functional annotation using ChIP-seq data. Nucleic Acids Res. 2010;38(3):e13.PubMedCrossRef Blahnik KR, et al. Sole-Search: an integrated analysis program for peak detection and functional annotation using ChIP-seq data. Nucleic Acids Res. 2010;38(3):e13.PubMedCrossRef
116.
go back to reference Zhang B, et al. Analysis of differentially expressed genes in ductal carcinoma with DNA microarray. Eur Rev Med Pharmacol Sci. 2013;17(6):758–66.PubMed Zhang B, et al. Analysis of differentially expressed genes in ductal carcinoma with DNA microarray. Eur Rev Med Pharmacol Sci. 2013;17(6):758–66.PubMed
117.
119.
120.
go back to reference Bräutigam C, Raggioli A, Winter J. The Wnt/β-catenin pathway regulates the expression of the miR-302 cluster in mouse ESCs and P19 cells. PLoS One. 2013;8(9):e75315.PubMedPubMedCentralCrossRef Bräutigam C, Raggioli A, Winter J. The Wnt/β-catenin pathway regulates the expression of the miR-302 cluster in mouse ESCs and P19 cells. PLoS One. 2013;8(9):e75315.PubMedPubMedCentralCrossRef
121.
go back to reference Solberg N, et al. Mouse Tcf3 represses canonical Wnt signaling by either competing for β-catenin binding or through occupation of DNA-binding sites. Mol Cell Biochem. 2012;365(1–2):53–63.PubMedCrossRef Solberg N, et al. Mouse Tcf3 represses canonical Wnt signaling by either competing for β-catenin binding or through occupation of DNA-binding sites. Mol Cell Biochem. 2012;365(1–2):53–63.PubMedCrossRef
122.
go back to reference Schepeler T, et al. Attenuation of the beta-catenin/TCF4 complex in colorectal cancer cells induces several growth-suppressive microRNAs that target cancer promoting genes. Oncogene. 2012;31(22):2750–60.PubMedCrossRef Schepeler T, et al. Attenuation of the beta-catenin/TCF4 complex in colorectal cancer cells induces several growth-suppressive microRNAs that target cancer promoting genes. Oncogene. 2012;31(22):2750–60.PubMedCrossRef
123.
go back to reference Tzeng S-L, et al. Physiological and functional interactions between Tcf4 and Daxx in colon cancer cells. J Biol Chem. 2006;281(22):15405–11.PubMedCrossRef Tzeng S-L, et al. Physiological and functional interactions between Tcf4 and Daxx in colon cancer cells. J Biol Chem. 2006;281(22):15405–11.PubMedCrossRef
125.
go back to reference Pellegrini M, Ferrari R. Epigenetic analysis: ChIP-chip and ChIP-seq. Methods Mol Biol. 2012;802:377–387. Pellegrini M, Ferrari R. Epigenetic analysis: ChIP-chip and ChIP-seq. Methods Mol Biol. 2012;802:377–387.
128.
go back to reference Eminaga S, et al. Quantification of microRNA Expression with Next‐Generation Sequencing. Curr Protoc Mol Biol. 2013;Chapter 4:Unit 4.17. Eminaga S, et al. Quantification of microRNA Expression with Next‐Generation Sequencing. Curr Protoc Mol Biol. 2013;Chapter 4:Unit 4.17.
129.
go back to reference Liu J, et al. Next generation sequencing for profiling expression of miRNAs: technical progress and applications in drug development. J Biomed Sci Eng. 2011;4(10):666.PubMedPubMedCentralCrossRef Liu J, et al. Next generation sequencing for profiling expression of miRNAs: technical progress and applications in drug development. J Biomed Sci Eng. 2011;4(10):666.PubMedPubMedCentralCrossRef
130.
go back to reference Müller S, et al. Next-generation sequencing reveals novel differentially regulated mRNAs, lncRNAs, miRNAs, sdRNAs and a piRNA in pancreatic cancer. Mol Cancer. 2015;14(1):1.CrossRef Müller S, et al. Next-generation sequencing reveals novel differentially regulated mRNAs, lncRNAs, miRNAs, sdRNAs and a piRNA in pancreatic cancer. Mol Cancer. 2015;14(1):1.CrossRef
131.
go back to reference Müller S, et al. omiRas: a Web server for differential expression analysis of miRNAs derived from small RNA-Seq data. Bioinformatics. 2013;29(20):2651–2.PubMedCrossRef Müller S, et al. omiRas: a Web server for differential expression analysis of miRNAs derived from small RNA-Seq data. Bioinformatics. 2013;29(20):2651–2.PubMedCrossRef
132.
go back to reference Sánchez-Tilló E, et al. β-catenin/TCF4 complex induces the epithelial-to-mesenchymal transition (EMT)-activator ZEB1 to regulate tumor invasiveness. Proc Natl Acad Sci. 2011;108(48):19204–9.PubMedPubMedCentralCrossRef Sánchez-Tilló E, et al. β-catenin/TCF4 complex induces the epithelial-to-mesenchymal transition (EMT)-activator ZEB1 to regulate tumor invasiveness. Proc Natl Acad Sci. 2011;108(48):19204–9.PubMedPubMedCentralCrossRef
133.
go back to reference Sánchez-Tilló E, et al. ZEB1 and TCF4 reciprocally modulate their transcriptional activities to regulate Wnt target gene expression. Oncogene. 2015;34(46):5760–70. Sánchez-Tilló E, et al. ZEB1 and TCF4 reciprocally modulate their transcriptional activities to regulate Wnt target gene expression. Oncogene. 2015;34(46):5760–70.
134.
go back to reference Wang J, et al. Next generation sequencing of pancreatic cyst fluid microRNAs from low grade-benign and high grade-invasive lesions. Cancer Lett. 2015;356(2):404–9.PubMedCrossRef Wang J, et al. Next generation sequencing of pancreatic cyst fluid microRNAs from low grade-benign and high grade-invasive lesions. Cancer Lett. 2015;356(2):404–9.PubMedCrossRef
135.
go back to reference Yang J-H. et al. deepBase: a database for deeply annotating and mining deep sequencing data. Nucleic Acids Res. 2010;38:123–130. Yang J-H. et al. deepBase: a database for deeply annotating and mining deep sequencing data. Nucleic Acids Res. 2010;38:123–130.
136.
go back to reference Alexiou P, et al. miRGen 2.0: a database of microRNA genomic information and regulation. Nucleic acids Res. 2010;38:137–141. Alexiou P, et al. miRGen 2.0: a database of microRNA genomic information and regulation. Nucleic acids Res. 2010;38:137–141.
137.
go back to reference Griffiths-Jones S, et al. miRBase: tools for microRNA genomics. Nucleic Acids Res. 2008;36 suppl 1:D154–8.PubMed Griffiths-Jones S, et al. miRBase: tools for microRNA genomics. Nucleic Acids Res. 2008;36 suppl 1:D154–8.PubMed
138.
go back to reference Wang W-C, et al. miRExpress: analyzing high-throughput sequencing data for profiling microRNA expression. BMC Bioinformatics. 2009;10(1):1.CrossRef Wang W-C, et al. miRExpress: analyzing high-throughput sequencing data for profiling microRNA expression. BMC Bioinformatics. 2009;10(1):1.CrossRef
139.
go back to reference Maragkakis M, et al. CLIPSeqTools—a novel bioinformatics CLIP-seq analysis suite. RNA. 2016;22(1):1–9. Maragkakis M, et al. CLIPSeqTools—a novel bioinformatics CLIP-seq analysis suite. RNA. 2016;22(1):1–9.
140.
go back to reference Vishnubalaji R, et al. Genome-wide mRNA and miRNA expression profiling reveal multiple regulatory networks in colorectal cancer. Cell Death Dis. 2015;6(1):e1614.PubMedPubMedCentralCrossRef Vishnubalaji R, et al. Genome-wide mRNA and miRNA expression profiling reveal multiple regulatory networks in colorectal cancer. Cell Death Dis. 2015;6(1):e1614.PubMedPubMedCentralCrossRef
141.
go back to reference Zhu L, et al. miR-34a screened by miRNA profiling negatively regulates Wnt/β-catenin signaling pathway in Aflatoxin B1 induced hepatotoxicity. Sci Rep. 2015;5(16732):1–13. Zhu L, et al. miR-34a screened by miRNA profiling negatively regulates Wnt/β-catenin signaling pathway in Aflatoxin B1 induced hepatotoxicity. Sci Rep. 2015;5(16732):1–13.
142.
go back to reference Murugavel K, et al. Prevalence of aflatoxin B1 in liver biopsies of proven hepatocellular carcinoma in India determined by an in-house immunoperoxidase test. J Med Microbiol. 2007;56(11):1455–9.PubMedCrossRef Murugavel K, et al. Prevalence of aflatoxin B1 in liver biopsies of proven hepatocellular carcinoma in India determined by an in-house immunoperoxidase test. J Med Microbiol. 2007;56(11):1455–9.PubMedCrossRef
143.
go back to reference Wu H-C, et al. Aflatoxin B1 exposure, hepatitis B virus infection, and hepatocellular carcinoma in Taiwan. Cancer Epidemiol Biomark Prev. 2009;18(3):846–53.CrossRef Wu H-C, et al. Aflatoxin B1 exposure, hepatitis B virus infection, and hepatocellular carcinoma in Taiwan. Cancer Epidemiol Biomark Prev. 2009;18(3):846–53.CrossRef
144.
go back to reference Hamid AS, et al. Aflatoxin B1-induced hepatocellular carcinoma in developing countries: Geographical distribution, mechanism of action and prevention (Review). Oncol Lett. 2013;5(4):1087–92.PubMedPubMedCentral Hamid AS, et al. Aflatoxin B1-induced hepatocellular carcinoma in developing countries: Geographical distribution, mechanism of action and prevention (Review). Oncol Lett. 2013;5(4):1087–92.PubMedPubMedCentral
145.
go back to reference Chen W-Y, et al. MicroRNA-34a regulates WNT/TCF7 signaling and inhibits bone metastasis in Ras-activated prostate cancer. Oncotarget. 2015;6(1):441.PubMed Chen W-Y, et al. MicroRNA-34a regulates WNT/TCF7 signaling and inhibits bone metastasis in Ras-activated prostate cancer. Oncotarget. 2015;6(1):441.PubMed
147.
go back to reference Morin RD, et al. Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res. 2008;18(4):610–21.PubMedPubMedCentralCrossRef Morin RD, et al. Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res. 2008;18(4):610–21.PubMedPubMedCentralCrossRef
149.
151.
go back to reference Wu C, et al. ToppMiR: ranking microRNAs and their mRNA targets based on biological functions and context. Nucleic Acids Res. 2014;42:107–113. Wu C, et al. ToppMiR: ranking microRNAs and their mRNA targets based on biological functions and context. Nucleic Acids Res. 2014;42:107–113.
152.
go back to reference Cho S, et al. MiRGator v3. 0: a microRNA portal for deep sequencing, expression profiling and mRNA targeting. Nucleic Acids Res. 2013;41(D1):D252–7.PubMedCrossRef Cho S, et al. MiRGator v3. 0: a microRNA portal for deep sequencing, expression profiling and mRNA targeting. Nucleic Acids Res. 2013;41(D1):D252–7.PubMedCrossRef
153.
go back to reference Bonet F, et al. MiR‐23b and miR‐199a impair epithelial‐to‐mesenchymal transition during atrioventricular endocardial cushion formation. Dev Dyn. 2015;244(10):1259–75.PubMedCrossRef Bonet F, et al. MiR‐23b and miR‐199a impair epithelial‐to‐mesenchymal transition during atrioventricular endocardial cushion formation. Dev Dyn. 2015;244(10):1259–75.PubMedCrossRef
154.
go back to reference Duan Z, et al. MicroRNA-199a-3p is downregulated in human osteosarcoma and regulates cell proliferation and migration. Mol Cancer Ther. 2011;10(8):1337–45.PubMedPubMedCentralCrossRef Duan Z, et al. MicroRNA-199a-3p is downregulated in human osteosarcoma and regulates cell proliferation and migration. Mol Cancer Ther. 2011;10(8):1337–45.PubMedPubMedCentralCrossRef
155.
go back to reference Friedersdorf MB, Keene JD. Advancing the functional utility of PAR-CLIP by quantifying background binding to mRNAs and lncRNAs. Genome Biol. 2014;15(1):1.CrossRef Friedersdorf MB, Keene JD. Advancing the functional utility of PAR-CLIP by quantifying background binding to mRNAs and lncRNAs. Genome Biol. 2014;15(1):1.CrossRef
156.
go back to reference Zhang Y, et al. CLIP: viewing the RNA world from an RNA-protein interactome perspective. Sci China Life Sci. 2015;58(1):75–88.PubMedCrossRef Zhang Y, et al. CLIP: viewing the RNA world from an RNA-protein interactome perspective. Sci China Life Sci. 2015;58(1):75–88.PubMedCrossRef
158.
go back to reference Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods. 2007;4(9):721–726.PubMedCrossRef Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods. 2007;4(9):721–726.PubMedCrossRef
159.
go back to reference Chang H, et al. CRISPR/cas9, a novel genomic tool to knock down microRNA in vitro and in vivo. Sci Rep. 2016;6(22312):1–12. Chang H, et al. CRISPR/cas9, a novel genomic tool to knock down microRNA in vitro and in vivo. Sci Rep. 2016;6(22312):1–12.
162.
go back to reference Su J, et al. MicroRNA-200a suppresses the Wnt/β-catenin signaling pathway by interacting with β-catenin. Int J Oncol. 2012;40(4):1162–70.PubMed Su J, et al. MicroRNA-200a suppresses the Wnt/β-catenin signaling pathway by interacting with β-catenin. Int J Oncol. 2012;40(4):1162–70.PubMed
163.
164.
go back to reference Isobe T, et al. miR-142 regulates the tumorigenicity of human breast cancer stem cells through the canonical WNT signaling pathway. Elife. 2014;3:e01977.PubMedCentralCrossRef Isobe T, et al. miR-142 regulates the tumorigenicity of human breast cancer stem cells through the canonical WNT signaling pathway. Elife. 2014;3:e01977.PubMedCentralCrossRef
165.
go back to reference Vorvis C. et al. Transcriptomic and CRISPR/Cas9 technologies reveal FOXA2 as a tumor suppressor gene in pancreatic cancer. Am J Physiol Gastrointest Liver Physiol. 2016;ajpgi. 00035.2016. Vorvis C. et al. Transcriptomic and CRISPR/Cas9 technologies reveal FOXA2 as a tumor suppressor gene in pancreatic cancer. Am J Physiol Gastrointest Liver Physiol. 2016;ajpgi. 00035.2016.
166.
go back to reference Alexander M, et al. MicroRNA-199a is induced in dystrophic muscle and affects WNT signaling, cell proliferation, and myogenic differentiation. Cell Death Differ. 2013;20(9):1194–208.PubMedPubMedCentralCrossRef Alexander M, et al. MicroRNA-199a is induced in dystrophic muscle and affects WNT signaling, cell proliferation, and myogenic differentiation. Cell Death Differ. 2013;20(9):1194–208.PubMedPubMedCentralCrossRef
169.
go back to reference Gao Y, Zhao Y. Self‐processing of ribozyme‐flanked RNAs into guide RNAs in vitro and in vivo for CRISPR‐mediated genome editing. J Integr Plant Biol. 2014;56(4):343–9.PubMedCrossRef Gao Y, Zhao Y. Self‐processing of ribozyme‐flanked RNAs into guide RNAs in vitro and in vivo for CRISPR‐mediated genome editing. J Integr Plant Biol. 2014;56(4):343–9.PubMedCrossRef
171.
go back to reference Zhang F, Wen Y, Guo X. CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet. 2014;23(R1):R40–6. Zhang F, Wen Y, Guo X. CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet. 2014;23(R1):R40–6.
173.
go back to reference DuPage M, Dooley AL, Jacks T. Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase. Nat Protoc. 2009;4(7):1064–72.PubMedPubMedCentralCrossRef DuPage M, Dooley AL, Jacks T. Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase. Nat Protoc. 2009;4(7):1064–72.PubMedPubMedCentralCrossRef
174.
go back to reference Maddison K, Clarke AR. New approaches for modelling cancer mechanisms in the mouse. J Pathol. 2005;205(2):181–93.PubMedCrossRef Maddison K, Clarke AR. New approaches for modelling cancer mechanisms in the mouse. J Pathol. 2005;205(2):181–93.PubMedCrossRef
175.
go back to reference Babaei-Jadidi R, et al. FBXW7 influences murine intestinal homeostasis and cancer, targeting Notch, Jun, and DEK for degradation. J Exp Med. 2011;208(2):295–312.PubMedPubMedCentralCrossRef Babaei-Jadidi R, et al. FBXW7 influences murine intestinal homeostasis and cancer, targeting Notch, Jun, and DEK for degradation. J Exp Med. 2011;208(2):295–312.PubMedPubMedCentralCrossRef
176.
go back to reference Attardi LD, Donehower LA. Probing p53 biological functions through the use of genetically engineered mouse models. Mutat Res. 2005;576(1):4–21.PubMedCrossRef Attardi LD, Donehower LA. Probing p53 biological functions through the use of genetically engineered mouse models. Mutat Res. 2005;576(1):4–21.PubMedCrossRef
177.
179.
go back to reference Takahashi Y, et al. MicroRNA-184 modulates canonical Wnt signaling through the regulation of frizzled-7 expression in the retina with ischemia-induced neovascularization. FEBS Lett. 2015;589(10):1143–9.PubMedPubMedCentralCrossRef Takahashi Y, et al. MicroRNA-184 modulates canonical Wnt signaling through the regulation of frizzled-7 expression in the retina with ischemia-induced neovascularization. FEBS Lett. 2015;589(10):1143–9.PubMedPubMedCentralCrossRef
180.
go back to reference Scott A, Fruttiger M. Oxygen-induced retinopathy: a model for vascular pathology in the retina. Eye. 2010;24(3):416–21.PubMedCrossRef Scott A, Fruttiger M. Oxygen-induced retinopathy: a model for vascular pathology in the retina. Eye. 2010;24(3):416–21.PubMedCrossRef
181.
go back to reference Stahl, A., et al., The Mouse Model of Oxygen-Induced Retinopathy (OIR), in The Textbook of Angiogenesis and Lymphangiogenesis: Methods and Applications. 2012, Springer. p. 181–188. Stahl, A., et al., The Mouse Model of Oxygen-Induced Retinopathy (OIR), in The Textbook of Angiogenesis and Lymphangiogenesis: Methods and Applications. 2012, Springer. p. 181–188.
182.
go back to reference Ventura A, et al. Targeted deletion reveals essential and overlapping functions of the miR-17 ∼ 92 family of miRNA clusters. Cell. 2008;132(5):875–86.PubMedPubMedCentralCrossRef Ventura A, et al. Targeted deletion reveals essential and overlapping functions of the miR-17 ∼ 92 family of miRNA clusters. Cell. 2008;132(5):875–86.PubMedPubMedCentralCrossRef
183.
go back to reference Landskroner-Eiger S, et al. Endothelial miR-17 ∼ 92 cluster negatively regulates arteriogenesis via miRNA-19 repression of WNT signaling. Proc Natl Acad Sci. 2015;112(41):12812–7.PubMedPubMedCentralCrossRef Landskroner-Eiger S, et al. Endothelial miR-17 ∼ 92 cluster negatively regulates arteriogenesis via miRNA-19 repression of WNT signaling. Proc Natl Acad Sci. 2015;112(41):12812–7.PubMedPubMedCentralCrossRef
184.
go back to reference Cai W-Y, et al. The Wnt–β-catenin pathway represses let-7 microRNA expression through transactivation of Lin28 to augment breast cancer stem cell expansion. J Cell Sci. 2013;126(13):2877–89.PubMedCrossRef Cai W-Y, et al. The Wnt–β-catenin pathway represses let-7 microRNA expression through transactivation of Lin28 to augment breast cancer stem cell expansion. J Cell Sci. 2013;126(13):2877–89.PubMedCrossRef
185.
go back to reference Hynds RE, Giangreco A. Concise review: the relevance of human stem cell‐derived organoid models for epithelial translational medicine. Stem Cells. 2013;31(3):417–22.PubMedPubMedCentralCrossRef Hynds RE, Giangreco A. Concise review: the relevance of human stem cell‐derived organoid models for epithelial translational medicine. Stem Cells. 2013;31(3):417–22.PubMedPubMedCentralCrossRef
186.
go back to reference Sato T, Clevers H. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science. 2013;340(6137):1190–4.PubMedCrossRef Sato T, Clevers H. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science. 2013;340(6137):1190–4.PubMedCrossRef
187.
go back to reference Katano T, et al. Establishment of a long-term three-dimensional primary culture of mouse glandular stomach epithelial cells within the stem cell niche. Biochem Biophys Res Commun. 2013;432(4):558–63.PubMedCrossRef Katano T, et al. Establishment of a long-term three-dimensional primary culture of mouse glandular stomach epithelial cells within the stem cell niche. Biochem Biophys Res Commun. 2013;432(4):558–63.PubMedCrossRef
189.
go back to reference Lorenzi F, et al. Fbxw7-associated drug resistance is reversed by induction of terminal differentiation in murine intestinal organoid culture. Mol Ther Methods Clin Dev. 2016;3:16024.PubMedPubMedCentralCrossRef Lorenzi F, et al. Fbxw7-associated drug resistance is reversed by induction of terminal differentiation in murine intestinal organoid culture. Mol Ther Methods Clin Dev. 2016;3:16024.PubMedPubMedCentralCrossRef
190.
go back to reference Pylayeva-Gupta Y, Lee KE, Bar-Sagi D. Microdissection and culture of murine pancreatic ductal epithelial cells. Pancreat Cancer: Methods Protoc. 2013;267–279 Pylayeva-Gupta Y, Lee KE, Bar-Sagi D. Microdissection and culture of murine pancreatic ductal epithelial cells. Pancreat Cancer: Methods Protoc. 2013;267–279
191.
go back to reference Jin L, et al. Colony-forming cells in the adult mouse pancreas are expandable in Matrigel and form endocrine/acinar colonies in laminin hydrogel. Proc Natl Acad Sci. 2013;110(10):3907–12.PubMedPubMedCentralCrossRef Jin L, et al. Colony-forming cells in the adult mouse pancreas are expandable in Matrigel and form endocrine/acinar colonies in laminin hydrogel. Proc Natl Acad Sci. 2013;110(10):3907–12.PubMedPubMedCentralCrossRef
192.
go back to reference Huch M, et al. Unlimited in vitro expansion of adult bi‐potent pancreas progenitors through the Lgr5/R‐spondin axis. EMBO J. 2013;32(20):2708–21.PubMedPubMedCentralCrossRef Huch M, et al. Unlimited in vitro expansion of adult bi‐potent pancreas progenitors through the Lgr5/R‐spondin axis. EMBO J. 2013;32(20):2708–21.PubMedPubMedCentralCrossRef
194.
go back to reference Network CGA. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7.CrossRef Network CGA. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7.CrossRef
195.
go back to reference Schwickert A, et al. microRNA miR-142-3p Inhibits Breast Cancer Cell Invasiveness by Synchronous Targeting of WASL, Integrin Alpha V, and Additional Cytoskeletal Elements. PloS One. 2015;10(12) Schwickert A, et al. microRNA miR-142-3p Inhibits Breast Cancer Cell Invasiveness by Synchronous Targeting of WASL, Integrin Alpha V, and Additional Cytoskeletal Elements. PloS One. 2015;10(12)
196.
go back to reference Cao XC, et al. miR‐142‐3p inhibits cancer cell proliferation by targeting CDC25C. Cell Prolif. 2016;49(1):58–68.PubMedCrossRef Cao XC, et al. miR‐142‐3p inhibits cancer cell proliferation by targeting CDC25C. Cell Prolif. 2016;49(1):58–68.PubMedCrossRef
197.
go back to reference Lustig B, et al. Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol Cell Biol. 2002;22(4):1184–93.PubMedPubMedCentralCrossRef Lustig B, et al. Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol Cell Biol. 2002;22(4):1184–93.PubMedPubMedCentralCrossRef
199.
go back to reference Shamir ER, Ewald AJ. Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nat Rev Mol Cell Biol. 2014;15(10):647–64.PubMedPubMedCentralCrossRef Shamir ER, Ewald AJ. Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nat Rev Mol Cell Biol. 2014;15(10):647–64.PubMedPubMedCentralCrossRef
200.
go back to reference Fatehullah A, Tan SH, Barker N. Organoids as an in vitro model of human development and disease. Nat Cell Biol. 2016;18(3):246–54.PubMedCrossRef Fatehullah A, Tan SH, Barker N. Organoids as an in vitro model of human development and disease. Nat Cell Biol. 2016;18(3):246–54.PubMedCrossRef
202.
go back to reference Fang Z, Cui X. Design and validation issues in RNA-seq experiments. Brief Bioinform. 2011;12(3):280–7. Fang Z, Cui X. Design and validation issues in RNA-seq experiments. Brief Bioinform. 2011;12(3):280–7.
203.
204.
go back to reference Takasato M, et al. Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat Cell Biol. 2014;16(1):118–26.PubMedCrossRef Takasato M, et al. Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat Cell Biol. 2014;16(1):118–26.PubMedCrossRef
205.
go back to reference Briggs JA, et al. Integration‐free induced pluripotent stem cells model genetic and neural developmental features of down syndrome etiology. Stem Cells. 2013;31(3):467–78.PubMedCrossRef Briggs JA, et al. Integration‐free induced pluripotent stem cells model genetic and neural developmental features of down syndrome etiology. Stem Cells. 2013;31(3):467–78.PubMedCrossRef
206.
go back to reference Ankala A, Hegde M. Genomic technologies and the new era of genomic medicine. J Mol Diagn. 2014;16(1):7–10.PubMedCrossRef Ankala A, Hegde M. Genomic technologies and the new era of genomic medicine. J Mol Diagn. 2014;16(1):7–10.PubMedCrossRef
207.
go back to reference Cottrell CE, et al. Validation of a next-generation sequencing assay for clinical molecular oncology. J Mol Diagn. 2014;16(1):89–105.PubMedCrossRef Cottrell CE, et al. Validation of a next-generation sequencing assay for clinical molecular oncology. J Mol Diagn. 2014;16(1):89–105.PubMedCrossRef
208.
go back to reference Gargis AS, et al. Assuring the quality of next-generation sequencing in clinical laboratory practice. Nat Biotechnol. 2012;30(11):1033–6.PubMedCrossRef Gargis AS, et al. Assuring the quality of next-generation sequencing in clinical laboratory practice. Nat Biotechnol. 2012;30(11):1033–6.PubMedCrossRef
209.
go back to reference Ciani L, Salinas PC. WNTs in the vertebrate nervous system: from patterning to neuronal connectivity. Nat Rev Neurosci. 2005;6(5):351–62.PubMedCrossRef Ciani L, Salinas PC. WNTs in the vertebrate nervous system: from patterning to neuronal connectivity. Nat Rev Neurosci. 2005;6(5):351–62.PubMedCrossRef
210.
211.
go back to reference Konig J, et al. iCLIP-Transcriptome-wide Mapping of Protein-RNA Interactions with individual nucleotide resolution. J Vis Exp. 2011;(50):1–7. Konig J, et al. iCLIP-Transcriptome-wide Mapping of Protein-RNA Interactions with individual nucleotide resolution. J Vis Exp. 2011;(50):1–7.
212.
go back to reference Friedländer MR, et al. Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol. 2008;26(4):407–15.PubMedCrossRef Friedländer MR, et al. Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol. 2008;26(4):407–15.PubMedCrossRef
213.
go back to reference Hünten S, et al. The p53/microRNA network in cancer: experimental and bioinformatics approaches, in MicroRNA Cancer Regulation. Springer. 2013;77–101. Hünten S, et al. The p53/microRNA network in cancer: experimental and bioinformatics approaches, in MicroRNA Cancer Regulation. Springer. 2013;77–101.
214.
go back to reference Ji S. et al., miR-574-5p negatively regulates Qki6/7 to impact β-catenin/Wnt signalling and the development of colorectal cancer. Gut. 2012;gutjnl-2011-301083. Ji S. et al., miR-574-5p negatively regulates Qki6/7 to impact β-catenin/Wnt signalling and the development of colorectal cancer. Gut. 2012;gutjnl-2011-301083.
215.
go back to reference Zhang N, et al. microRNA-7 is a novel inhibitor of YY1 contributing to colorectal tumorigenesis. Oncogene. 2013;32(42):5078–88.PubMedCrossRef Zhang N, et al. microRNA-7 is a novel inhibitor of YY1 contributing to colorectal tumorigenesis. Oncogene. 2013;32(42):5078–88.PubMedCrossRef
216.
217.
go back to reference Subramanian M, et al. MiR‐29b Downregulates Canonical Wnt Signaling by Suppressing Coactivators of β‐Catenin in Human Colorectal Cancer Cells. J Cell Biochem. 2014;115(11):1974–84.PubMed Subramanian M, et al. MiR‐29b Downregulates Canonical Wnt Signaling by Suppressing Coactivators of β‐Catenin in Human Colorectal Cancer Cells. J Cell Biochem. 2014;115(11):1974–84.PubMed
218.
go back to reference Shen G, et al. miR-106b downregulates adenomatous polyposis coli and promotes cell proliferation in human hepatocellular carcinoma. Carcinogenesis. 2013;34(1):211–9.PubMedCrossRef Shen G, et al. miR-106b downregulates adenomatous polyposis coli and promotes cell proliferation in human hepatocellular carcinoma. Carcinogenesis. 2013;34(1):211–9.PubMedCrossRef
219.
go back to reference Zhang Y, et al. Hepatitis C virus‐induced up‐regulation of microRNA‐155 promotes hepatocarcinogenesis by activating Wnt signaling. Hepatology. 2012;56(5):1631–40.PubMedCrossRef Zhang Y, et al. Hepatitis C virus‐induced up‐regulation of microRNA‐155 promotes hepatocarcinogenesis by activating Wnt signaling. Hepatology. 2012;56(5):1631–40.PubMedCrossRef
220.
go back to reference Xu J, et al. MicroRNA‐122 suppresses cell proliferation and induces cell apoptosis in hepatocellular carcinoma by directly targeting Wnt/β‐catenin pathway. Liver Int. 2012;32(5):752–60.PubMedCrossRef Xu J, et al. MicroRNA‐122 suppresses cell proliferation and induces cell apoptosis in hepatocellular carcinoma by directly targeting Wnt/β‐catenin pathway. Liver Int. 2012;32(5):752–60.PubMedCrossRef
221.
go back to reference Zhang J-G, et al. MiR-148b suppresses cell proliferation and invasion in hepatocellular carcinoma by targeting WNT1/β-catenin pathway. Sci Rep. 2015;5(8087):1–9. Zhang J-G, et al. MiR-148b suppresses cell proliferation and invasion in hepatocellular carcinoma by targeting WNT1/β-catenin pathway. Sci Rep. 2015;5(8087):1–9.
222.
go back to reference Gu W, Li X, Wang J. miR-139 regulates the proliferation and invasion of hepatocellular carcinoma through the WNT/TCF-4 pathway. Oncol Rep. 2014;31(1):397–404.PubMed Gu W, Li X, Wang J. miR-139 regulates the proliferation and invasion of hepatocellular carcinoma through the WNT/TCF-4 pathway. Oncol Rep. 2014;31(1):397–404.PubMed
223.
go back to reference Valastyan S, Weinberg RA. miR-31: a crucial overseer of tumor metastasis and other emerging roles. Cell Cycle. 2010;9(11):2124–9.PubMedCrossRef Valastyan S, Weinberg RA. miR-31: a crucial overseer of tumor metastasis and other emerging roles. Cell Cycle. 2010;9(11):2124–9.PubMedCrossRef
224.
go back to reference Kim S-J, et al. Development of microRNA-145 for therapeutic application in breast cancer. J Control Release. 2011;155(3):427–34.PubMedCrossRef Kim S-J, et al. Development of microRNA-145 for therapeutic application in breast cancer. J Control Release. 2011;155(3):427–34.PubMedCrossRef
225.
go back to reference Hsieh I-S, et al. MicroRNA-320 suppresses the stem cell-like characteristics of prostate cancer cells by down-regulating the Wnt/beta-catenin signaling pathway. Carcinogenesis. 2013;34(3):530–538. Hsieh I-S, et al. MicroRNA-320 suppresses the stem cell-like characteristics of prostate cancer cells by down-regulating the Wnt/beta-catenin signaling pathway. Carcinogenesis. 2013;34(3):530–538.
226.
go back to reference Xu W, et al. MicroRNA‐191, by promoting the EMT and increasing CSC‐like properties, is involved in neoplastic and metastatic properties of transformed human bronchial epithelial cells. Mol Carcinog. 2015;54(S1) Xu W, et al. MicroRNA‐191, by promoting the EMT and increasing CSC‐like properties, is involved in neoplastic and metastatic properties of transformed human bronchial epithelial cells. Mol Carcinog. 2015;54(S1)
227.
go back to reference Deng X, et al. MiR-146b-5p promotes metastasis and induces epithelial-mesenchymal transition in thyroid cancer by targeting ZNRF3. Cell Physiol Biochem. 2015;35(1):71–82.PubMedCrossRef Deng X, et al. MiR-146b-5p promotes metastasis and induces epithelial-mesenchymal transition in thyroid cancer by targeting ZNRF3. Cell Physiol Biochem. 2015;35(1):71–82.PubMedCrossRef
228.
go back to reference Parikh A, et al. microRNA-181a has a critical role in ovarian cancer progression through the regulation of the epithelial–mesenchymal transition. Nat Commun. 2014;5(2977):1–16. Parikh A, et al. microRNA-181a has a critical role in ovarian cancer progression through the regulation of the epithelial–mesenchymal transition. Nat Commun. 2014;5(2977):1–16.
229.
go back to reference Jia Y, et al. Inhibition of SOX17 by microRNA 141 and methylation activates the WNT signaling pathway in esophageal cancer. J Mol Diagn. 2012;14(6):577–85.PubMedCrossRef Jia Y, et al. Inhibition of SOX17 by microRNA 141 and methylation activates the WNT signaling pathway in esophageal cancer. J Mol Diagn. 2012;14(6):577–85.PubMedCrossRef
Metadata
Title
Wnt-signalling pathways and microRNAs network in carcinogenesis: experimental and bioinformatics approaches
Authors
Emenike K. Onyido
Eloise Sweeney
Abdolrahman Shams Nateri
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2016
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/s12943-016-0541-3

Other articles of this Issue 1/2016

Molecular Cancer 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine