Skip to main content
Top
Published in: Molecular Cancer 1/2016

Open Access 01-12-2016 | Research

PKM2 promotes tumor angiogenesis by regulating HIF-1α through NF-κB activation

Authors: Ninel Azoitei, Alexander Becher, Konrad Steinestel, Arefeh Rouhi, Kristina Diepold, Felicitas Genze, Thomas Simmet, Thomas Seufferlein

Published in: Molecular Cancer | Issue 1/2016

Login to get access

Abstract

Background

Initially identified as a molecule that regulates the final step of glycolysis, the M2 isoform of pyruvate kinase (PKM2) was recently reported to have a central role in the metabolic reprogramming of cancer cells as well as participating in cell cycle progression and gene transcription. Despite intensive efforts, the intricate molecular mechanisms through which PKM2 regulates tumor progression remain elusive.

Methods

The proliferation and apoptosis of various pancreatic cancer cells using lentiviral-mediated PKM2 abrogation were assessed in vitro via Western blot and flow cytometric assay while the in vivo experiments involved tumor xenograft on chicken chorionallantoic membranes and immunohistochemistry on human tissue specimens. In order to decipher the molecular mechanism of HIF-1α and p65/RelA regulation by PKM2 in cancer cells cultivated in hypoxic atmosphere or normoxia we involved various biochemical assays such as Western blotting, immunoprecipitation, reporter gene assay and ELISA.

Results

Strong expression of PKM2 was observed in 68 % of human pancreatic adenocarcinoma specimens and almost all analyzed pancreatic cancer cell lines. Abrogation of PKM2 resulted in impaired proliferation and augmented apoptosis in vitro as well as impaired tumor growth and decreased blood vessel formation in vivo. Furthermore, deletion of PKM2 negatively impacted hypoxia-induced HIF-1α accumulation and promoter activity ultimately resulting in impaired secretion of VEGF.

Conclusions

Our study suggests that in hypoxic pancreatic tumors PKM2 interferes both with NF-κB/p65 and HIF-1α activation that ultimately triggers VEGF-A secretion and subsequent blood vessel formation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Altenberg B, Greulich KO. Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics. 2004;84(6):1014–20.CrossRefPubMed Altenberg B, Greulich KO. Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics. 2004;84(6):1014–20.CrossRefPubMed
2.
go back to reference Marie J, Levin MJ, Simon MP, Kahn A. Genetic and epigenetic control of the pyruvate kinase isoenzymes in mammals. Isozymes. Curr Top Biol Med Res. 1983;7:221–40. Marie J, Levin MJ, Simon MP, Kahn A. Genetic and epigenetic control of the pyruvate kinase isoenzymes in mammals. Isozymes. Curr Top Biol Med Res. 1983;7:221–40.
3.
go back to reference Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumor growth. Nature. 2008;452:230–3.CrossRefPubMed Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumor growth. Nature. 2008;452:230–3.CrossRefPubMed
4.
go back to reference Yang W, Xia Y, Ji H, Zheng Y, Liang J, Huang W, et al. Nuclear PKM2 regulates β-catenin transactivation upon EGFR activation. Nature. 2011;480(7375):118–22.CrossRefPubMedPubMedCentral Yang W, Xia Y, Ji H, Zheng Y, Liang J, Huang W, et al. Nuclear PKM2 regulates β-catenin transactivation upon EGFR activation. Nature. 2011;480(7375):118–22.CrossRefPubMedPubMedCentral
5.
go back to reference Desai S, Ding M, Wang B, Lu Z, Zhao Q, Shaw K, et al. Tissue-specific isoform switch and DNA hypomethylation of the pyruvate kinase PKM gene in human cancers. Oncotarget. 2014;5:8202–10.CrossRefPubMedPubMedCentral Desai S, Ding M, Wang B, Lu Z, Zhao Q, Shaw K, et al. Tissue-specific isoform switch and DNA hypomethylation of the pyruvate kinase PKM gene in human cancers. Oncotarget. 2014;5:8202–10.CrossRefPubMedPubMedCentral
6.
go back to reference Noguchi T, Inoue H, Tanaka T. The M1- and M2-type isozymes of rat pyruvate kinase are produced from the same gene by alternative RNA splicing. J Biol Chem. 1986;261(29):13807–12.PubMed Noguchi T, Inoue H, Tanaka T. The M1- and M2-type isozymes of rat pyruvate kinase are produced from the same gene by alternative RNA splicing. J Biol Chem. 1986;261(29):13807–12.PubMed
7.
go back to reference Hoshino A, Hirst JA, Fujii H. Regulation of cell proliferation by interleukin-3-induced nuclear translocation of pyruvate kinase. J Biol Chem. 2007;282:17706–11.CrossRefPubMed Hoshino A, Hirst JA, Fujii H. Regulation of cell proliferation by interleukin-3-induced nuclear translocation of pyruvate kinase. J Biol Chem. 2007;282:17706–11.CrossRefPubMed
8.
go back to reference Steták A, Veress R, Ovádi J, Csermely P, Kéri G, Ullrich A. Nuclear translocation of the tumor marker pyruvate kinase M2 induces programmed cell death. Cancer Res. 2007;67(4):1602–8.CrossRefPubMed Steták A, Veress R, Ovádi J, Csermely P, Kéri G, Ullrich A. Nuclear translocation of the tumor marker pyruvate kinase M2 induces programmed cell death. Cancer Res. 2007;67(4):1602–8.CrossRefPubMed
9.
go back to reference Lee J, Kim HK, Han YM, Kim J. Pyruvate kinase isozyme type M2 (PKM2) interacts and cooperates with Oct-4 in regulating transcription. Int J Biochem Cell Biol. 2008;40(5):1043–54.CrossRefPubMed Lee J, Kim HK, Han YM, Kim J. Pyruvate kinase isozyme type M2 (PKM2) interacts and cooperates with Oct-4 in regulating transcription. Int J Biochem Cell Biol. 2008;40(5):1043–54.CrossRefPubMed
10.
go back to reference Kim H, Jang H, Kim TW, Kang BH, Lee SE, Jeon YK, et al. Core pluripotency factors directly regulate metabolism in embryonic stem cells to maintain pluripotency. Stem Cells, 2015;Epub ahead of print. Kim H, Jang H, Kim TW, Kang BH, Lee SE, Jeon YK, et al. Core pluripotency factors directly regulate metabolism in embryonic stem cells to maintain pluripotency. Stem Cells, 2015;Epub ahead of print.
12.
go back to reference Luo W, Hu H, Chang R, Zhong J, Knabel M, O’Meally R, et al. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell. 2011;145(5):732–44.CrossRefPubMedPubMedCentral Luo W, Hu H, Chang R, Zhong J, Knabel M, O’Meally R, et al. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell. 2011;145(5):732–44.CrossRefPubMedPubMedCentral
13.
go back to reference Iqbal MA, Siddiqui FA, Gupta V, Chattopadhyay S, Gopinath P, Kumar B, et al. Insulin enhances metabolic capacities of cancer cells by dual regulation of glycolytic enzyme pyruvate kinase M2. Mol Cancer. 2013;12:72.CrossRefPubMedPubMedCentral Iqbal MA, Siddiqui FA, Gupta V, Chattopadhyay S, Gopinath P, Kumar B, et al. Insulin enhances metabolic capacities of cancer cells by dual regulation of glycolytic enzyme pyruvate kinase M2. Mol Cancer. 2013;12:72.CrossRefPubMedPubMedCentral
14.
go back to reference Sun Q, Chen Y, Ma J, Peng H, Wang F, Zha X, et al. Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth. Proc Natl Acad Sci. 2011;108:4129–34.CrossRefPubMedPubMedCentral Sun Q, Chen Y, Ma J, Peng H, Wang F, Zha X, et al. Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth. Proc Natl Acad Sci. 2011;108:4129–34.CrossRefPubMedPubMedCentral
15.
go back to reference Xu Q, Liu LZ, Yin Y, He J, Li Q, Qian X, et al. Regulatory circuit of PKM2/NF-κB/miR-148a/152-modulated tumor angiogenesis and cancer progression. Oncogene. 2015; doi:10.1038/onc.2015.6. Xu Q, Liu LZ, Yin Y, He J, Li Q, Qian X, et al. Regulatory circuit of PKM2/NF-κB/miR-148a/152-modulated tumor angiogenesis and cancer progression. Oncogene. 2015; doi:10.​1038/​onc.​2015.​6.
16.
go back to reference Bonello S, Zahringer C, Belaiba RS, Djordjevic T, Hess J, Michiels C, et al. Reactive oxygen species activate the HIF-1alpha promoter via a functional NFkappaB site. Arterioscler Thromb Vasc Biol. 2011;27:755–61.CrossRef Bonello S, Zahringer C, Belaiba RS, Djordjevic T, Hess J, Michiels C, et al. Reactive oxygen species activate the HIF-1alpha promoter via a functional NFkappaB site. Arterioscler Thromb Vasc Biol. 2011;27:755–61.CrossRef
17.
go back to reference Rius J, Guma M, Schachtrup C, Akassoglou K, Zinkernagel AS, Nizet V, et al. NF−κΒ links innate immunity to the hypoxic response through transcriptional regulation of HIF-1α. Nature. 2008;453:807–11.CrossRefPubMedPubMedCentral Rius J, Guma M, Schachtrup C, Akassoglou K, Zinkernagel AS, Nizet V, et al. NF−κΒ links innate immunity to the hypoxic response through transcriptional regulation of HIF-1α. Nature. 2008;453:807–11.CrossRefPubMedPubMedCentral
19.
go back to reference Kenneth NS, Mudie S, van Uden P, Rocha S. SWI/SNF regulates the cellular response to hypoxia. J Biol Chem. 2009;284:4123–31.CrossRefPubMed Kenneth NS, Mudie S, van Uden P, Rocha S. SWI/SNF regulates the cellular response to hypoxia. J Biol Chem. 2009;284:4123–31.CrossRefPubMed
20.
go back to reference Azoitei N, Diepold K, Brunner C, Rouhi A, Genze F, Becher A, et al. HSP90 supports tumor growth and angiogenesis through PRKD2 protein stabilization. Cancer Res. 2014;74(23):7125–36.CrossRefPubMedPubMedCentral Azoitei N, Diepold K, Brunner C, Rouhi A, Genze F, Becher A, et al. HSP90 supports tumor growth and angiogenesis through PRKD2 protein stabilization. Cancer Res. 2014;74(23):7125–36.CrossRefPubMedPubMedCentral
21.
go back to reference Vogler M, Giagkousiklidis S, Genze F, Gschwend JE, Debatin KM, Fulda S. Inhibition of clonogenic tumor growth: a novel function of Smac contributing to its antitumor activity. Oncogene. 2005;24(48):7190–202.CrossRefPubMed Vogler M, Giagkousiklidis S, Genze F, Gschwend JE, Debatin KM, Fulda S. Inhibition of clonogenic tumor growth: a novel function of Smac contributing to its antitumor activity. Oncogene. 2005;24(48):7190–202.CrossRefPubMed
22.
go back to reference Azoitei N, Pusapati GV, Kleger A, Möller P, Küfer R, Genze F, et al. Protein kinase D2 is a crucial regulator of tumor cell – endothelial cell communication in gastrointestinal tumors. Gut. 2010;59(10):1316–30.CrossRefPubMed Azoitei N, Pusapati GV, Kleger A, Möller P, Küfer R, Genze F, et al. Protein kinase D2 is a crucial regulator of tumor cell – endothelial cell communication in gastrointestinal tumors. Gut. 2010;59(10):1316–30.CrossRefPubMed
23.
go back to reference Anastasiou D, Yu Y, Israelsen WJ, Jiang JK, Boxer MB, Hong BS, et al. Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nature Chemical Biology. 2012;8:839–47.CrossRefPubMedPubMedCentral Anastasiou D, Yu Y, Israelsen WJ, Jiang JK, Boxer MB, Hong BS, et al. Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nature Chemical Biology. 2012;8:839–47.CrossRefPubMedPubMedCentral
24.
go back to reference Belaiba RS, Bonello S, Zähringer C, Schmidt S, Hess J, Kietzmann T, et al. Hypoxia up-regulates hypoxia-inducible factor-1alpha transcription by involving phosphatidylinositol 3-kinase and nuclear factor kappaB in pulmonary artery smooth muscle cells. Mol Biol Cell. 2007;18(12):4691–7.CrossRefPubMedPubMedCentral Belaiba RS, Bonello S, Zähringer C, Schmidt S, Hess J, Kietzmann T, et al. Hypoxia up-regulates hypoxia-inducible factor-1alpha transcription by involving phosphatidylinositol 3-kinase and nuclear factor kappaB in pulmonary artery smooth muscle cells. Mol Biol Cell. 2007;18(12):4691–7.CrossRefPubMedPubMedCentral
25.
go back to reference Mazurek S, Boschek CB, Hugo F, Eigenbrodt E. Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin Cancer Biol. 2005;15(4):300–8. Review.CrossRefPubMed Mazurek S, Boschek CB, Hugo F, Eigenbrodt E. Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin Cancer Biol. 2005;15(4):300–8. Review.CrossRefPubMed
26.
go back to reference Iqbal MA, Gupta V, Gopinath P, Mazurek S, Bamezai RN. Pyruvate kinase M2 and cancer: an updated assessment. FEBS Lett. 2014;588(16):2685–92.CrossRefPubMed Iqbal MA, Gupta V, Gopinath P, Mazurek S, Bamezai RN. Pyruvate kinase M2 and cancer: an updated assessment. FEBS Lett. 2014;588(16):2685–92.CrossRefPubMed
27.
go back to reference Yuen A, Diaz B. The impact of hypoxia in pancreatic cancer, invasion and metastasis. Hypoxia. 2014;2:91–106. Yuen A, Diaz B. The impact of hypoxia in pancreatic cancer, invasion and metastasis. Hypoxia. 2014;2:91–106.
28.
go back to reference Duan HF, Hu XW, Chen JL, Gao LH, Xi YY, Lu Y, et al. Antitumor activities of TEM8-Fc: an engineered antibody-like molecule targeting tumor endothelial marker 8. J Natl Cancer Inst. 2007;99(20):1551–5.CrossRefPubMed Duan HF, Hu XW, Chen JL, Gao LH, Xi YY, Lu Y, et al. Antitumor activities of TEM8-Fc: an engineered antibody-like molecule targeting tumor endothelial marker 8. J Natl Cancer Inst. 2007;99(20):1551–5.CrossRefPubMed
29.
30.
go back to reference Kitada T, Seki S, Sakaguchi H, Sawada T, Hirakawa K, Wakasa K. Clinicopathological significance of hypoxia-inducible factor-1alpha expression in human pancreatic carcinoma. Histopathology. 2003;43(6):550–5.CrossRefPubMed Kitada T, Seki S, Sakaguchi H, Sawada T, Hirakawa K, Wakasa K. Clinicopathological significance of hypoxia-inducible factor-1alpha expression in human pancreatic carcinoma. Histopathology. 2003;43(6):550–5.CrossRefPubMed
31.
go back to reference Shibaji T, Nagao M, Ikeda N, Kanehiro H, Hisanaga M, Ko S, et al. Prognostic significance of HIF-1 alpha overexpression in human pancreatic cancer. Anticancer Res. 2003;6C:4721–7. Shibaji T, Nagao M, Ikeda N, Kanehiro H, Hisanaga M, Ko S, et al. Prognostic significance of HIF-1 alpha overexpression in human pancreatic cancer. Anticancer Res. 2003;6C:4721–7.
Metadata
Title
PKM2 promotes tumor angiogenesis by regulating HIF-1α through NF-κB activation
Authors
Ninel Azoitei
Alexander Becher
Konrad Steinestel
Arefeh Rouhi
Kristina Diepold
Felicitas Genze
Thomas Simmet
Thomas Seufferlein
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2016
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/s12943-015-0490-2

Other articles of this Issue 1/2016

Molecular Cancer 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine