Skip to main content
Top
Published in: Molecular Cancer 1/2016

Open Access 01-12-2016 | Research

Insulin-like growth factors are essential to prevent anoikis in oestrogen-responsive breast cancer cells: importance of the type I IGF receptor and PI3-kinase/Akt pathway

Authors: Brendan C. Luey, Felicity E. B. May

Published in: Molecular Cancer | Issue 1/2016

Login to get access

Abstract

Background

Detachment of epithelial cells from the extracellular matrix initiates programmed cell death by a process termed anoikis. Malignant cells must acquire anoikis resistance to leave the primary tumour and metastasise. Multiple signal transduction pathways can activate anoikis and confer anoikis resistance, but these are not understood in breast cancer.

Methods

Models for anoikis of oestrogen-responsive breast cancer cells were established and the protective effects of IGF-1 tested. Cleaved PARP was measured by western transfer and cleaved caspase 3 by flow cytometry. Pathways involved in anoikis and in anoikis resistance were investigated with PI3-kinase, Akt, and MEK1 and MEK2 inhibitors. The importance of the type I IGF receptor was investigated by IGF-concentration dependence, siRNA knockdown and pharmacological inhibition. Association between IGF-1R expression and relapse with distant metastasis was analysed in 1609 patients by log rank test.

Results

Unattached breast cancer cells required culture in serum-free medium to induce anoikis. Rapid loss of FAK, Akt and Bad phosphorylation was concurrent with anoiks induction, but ERK1 and ERK2 phosphorylation increased which suggested that anoikis resistance is mediated by the PI3-kinase/Akt rather than the Grb2/Ras/MAP-kinase pathway. IGF-1 conferred anoikis resistance in serum-free medium. IGF-1 activated the PI3-kinase/Akt and Grb2/Ras/MAP-kinase pathways but experiments with PI3-kinase, Akt and MEK1 and MEK2 inhibitors showed that IGF protection is via the PI3-kinase/Akt pathway. The concentration dependence of IGF protection, knockdown experiments with siRNA and pharmacological inhibition with figitumumab, showed that IGF-1 signals through the type I IGF receptor. The crucial role of the type I IGF receptor was demonstrated by induction of anoikis in full serum by figitumumab. High IGF-1R expression was associated with reduced time to relapse with distant metastases in oestrogen receptor-positive patients, especially those with aggressive disease which confirms its relevance in vivo.

Conclusions

Anoikis resistance of oestrogen-responsive breast cancer cells depends upon IGF activation of the type I IGF receptor and PI3-kinase/Akt pathway. Because IGF-dependent evasion of anoikis will facilitate metastasis by malignant breast cancer cells, effective inhibition of IGF signal transduction should be included in combinations of targeted drugs designed to treat metastatic oestrogen receptor-positive breast cancers.
Literature
1.
3.
go back to reference Zhan M, Zhao H, Han ZC. Signalling mechanisms of anoikis. Histol Histopathol. 2004;19:973–83.PubMed Zhan M, Zhao H, Han ZC. Signalling mechanisms of anoikis. Histol Histopathol. 2004;19:973–83.PubMed
5.
go back to reference Nguyen DX, Bos PD, Massague J. Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer. 2009;9:274–U265.CrossRefPubMed Nguyen DX, Bos PD, Massague J. Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer. 2009;9:274–U265.CrossRefPubMed
6.
go back to reference Miranti CK, Brugge JS. Sensing the environment: a historical perspective on integrin signal transduction. Nat Cell Biol. 2002;4:E83–90.CrossRefPubMed Miranti CK, Brugge JS. Sensing the environment: a historical perspective on integrin signal transduction. Nat Cell Biol. 2002;4:E83–90.CrossRefPubMed
7.
go back to reference Cabodi S, Di Stefano P, Leal MDC, Tinnirello A, Bisaro B, Morello V, et al. Integrins and Signal Transduction, Integrins and Ion Channels. Molecular Complexes and Signaling. 2010;674:43–54. Cabodi S, Di Stefano P, Leal MDC, Tinnirello A, Bisaro B, Morello V, et al. Integrins and Signal Transduction, Integrins and Ion Channels. Molecular Complexes and Signaling. 2010;674:43–54.
8.
go back to reference Hehlgans S, Haase M, Cordes N. Signalling via integrins: Implications for cell survival and anticancer strategies. Biochimica Et Biophysica Acta-Rev Cancer. 1775;2007:163–80. Hehlgans S, Haase M, Cordes N. Signalling via integrins: Implications for cell survival and anticancer strategies. Biochimica Et Biophysica Acta-Rev Cancer. 1775;2007:163–80.
9.
go back to reference Westley RL, May FEB. A Twenty-First Century Cancer Epidemic Caused by Obesity: The Involvement of Insulin, Diabetes, and Insulin-Like Growth Factors. Int J Endocrinol. 2013;2013:632461.PubMedCentralCrossRefPubMed Westley RL, May FEB. A Twenty-First Century Cancer Epidemic Caused by Obesity: The Involvement of Insulin, Diabetes, and Insulin-Like Growth Factors. Int J Endocrinol. 2013;2013:632461.PubMedCentralCrossRefPubMed
11.
go back to reference Stewart AJ, Johnson MD, May FEB, Westley BR. Role of insulin-like growth factors and the type I insulin-like growth factor receptor in the estrogen-stimulated proliferation of human breast cancer cells. J Biol Chem. 1990;265:21172–8.PubMed Stewart AJ, Johnson MD, May FEB, Westley BR. Role of insulin-like growth factors and the type I insulin-like growth factor receptor in the estrogen-stimulated proliferation of human breast cancer cells. J Biol Chem. 1990;265:21172–8.PubMed
12.
go back to reference Davison Z, de Blacquiere GE, Westley BR, May FEB. Insulin-like growth factor-dependent proliferation and survival of triple-negative breast cancer cells: implications for therapy. Neoplasia. 2011;13:504–15.PubMedCentralCrossRefPubMed Davison Z, de Blacquiere GE, Westley BR, May FEB. Insulin-like growth factor-dependent proliferation and survival of triple-negative breast cancer cells: implications for therapy. Neoplasia. 2011;13:504–15.PubMedCentralCrossRefPubMed
13.
go back to reference de Blaquiere GE, May FEB, Westley BR. Increased expression of both insulin receptor substrates 1 and 2 confers increased sensitivity to IGF-1 stimulated cell migration. Endocr Relat Cancer. 2009;16:635–47.CrossRefPubMed de Blaquiere GE, May FEB, Westley BR. Increased expression of both insulin receptor substrates 1 and 2 confers increased sensitivity to IGF-1 stimulated cell migration. Endocr Relat Cancer. 2009;16:635–47.CrossRefPubMed
14.
go back to reference Sachdev D, Zhang X, Matise I, Gaillard-Kelly M, Yee D. The type I insulin-like growth factor receptor regulates cancer metastasis independently of primary tumor growth by promoting invasion and survival. Oncogene. 2010;29:251–62.PubMedCentralCrossRefPubMed Sachdev D, Zhang X, Matise I, Gaillard-Kelly M, Yee D. The type I insulin-like growth factor receptor regulates cancer metastasis independently of primary tumor growth by promoting invasion and survival. Oncogene. 2010;29:251–62.PubMedCentralCrossRefPubMed
15.
go back to reference Gooch JL, Van Den Berg CL, Yee D. Insulin-like growth factor (IGF)-I rescues breast cancer cells from chemotherapy-induced cell death--proliferative and anti-apoptotic effects. Breast Cancer Res Treat. 1999;56:1–10.CrossRefPubMed Gooch JL, Van Den Berg CL, Yee D. Insulin-like growth factor (IGF)-I rescues breast cancer cells from chemotherapy-induced cell death--proliferative and anti-apoptotic effects. Breast Cancer Res Treat. 1999;56:1–10.CrossRefPubMed
16.
go back to reference Cohen BD, Baker DA, Soderstrom C, Tkalcevic G, Rossi AM, Miller PE, et al. Combination therapy enhances the inhibition of tumor growth with the fully human anti-type 1 insulin-like growth factor receptor monoclonal antibody CP-751,871. Clin Cancer Res. 2005;11:2063–73.CrossRefPubMed Cohen BD, Baker DA, Soderstrom C, Tkalcevic G, Rossi AM, Miller PE, et al. Combination therapy enhances the inhibition of tumor growth with the fully human anti-type 1 insulin-like growth factor receptor monoclonal antibody CP-751,871. Clin Cancer Res. 2005;11:2063–73.CrossRefPubMed
17.
go back to reference Rowinsky EK, Schwartz JD, Zojwalla N, Youssoufian H, Fox F, Pultar P, et al. Blockade of insulin-like growth factor type-1 receptor with cixutumumab (IMC-A12): a novel approach to treatment for multiple cancers. Curr Drug Targets. 2011;12:2016–33.CrossRefPubMed Rowinsky EK, Schwartz JD, Zojwalla N, Youssoufian H, Fox F, Pultar P, et al. Blockade of insulin-like growth factor type-1 receptor with cixutumumab (IMC-A12): a novel approach to treatment for multiple cancers. Curr Drug Targets. 2011;12:2016–33.CrossRefPubMed
18.
go back to reference Tap WD, Demetri G, Barnette P, Desai J, Kavan P, Tozer R, et al. Phase II Study of Ganitumab, a Fully Human Anti-Type-1 Insulin-Like Growth Factor Receptor Antibody, in Patients With Metastatic Ewing Family Tumors or Desmoplastic Small Round Cell Tumors. J Clin Oncol. 2012;30:1849–56.CrossRefPubMed Tap WD, Demetri G, Barnette P, Desai J, Kavan P, Tozer R, et al. Phase II Study of Ganitumab, a Fully Human Anti-Type-1 Insulin-Like Growth Factor Receptor Antibody, in Patients With Metastatic Ewing Family Tumors or Desmoplastic Small Round Cell Tumors. J Clin Oncol. 2012;30:1849–56.CrossRefPubMed
19.
go back to reference Scartozzi M, Bianconi M, Maccaroni E, Giampieri R, Berardi R, Cascinu S. Dalotuzumab, a recombinant humanized mAb targeted against IGFR1 for the treatment of cancer. Curr Opin Mol Ther. 2010;12:361–71.PubMed Scartozzi M, Bianconi M, Maccaroni E, Giampieri R, Berardi R, Cascinu S. Dalotuzumab, a recombinant humanized mAb targeted against IGFR1 for the treatment of cancer. Curr Opin Mol Ther. 2010;12:361–71.PubMed
20.
go back to reference Carboni JM, Wittman M, Yang Z, Lee F, Greer A, Hurlburt W, et al. BMS-754807, a small molecule inhibitor of insulin-like growth factor-1R/IR. Mol Cancer Ther. 2009;8:3341–9.CrossRefPubMed Carboni JM, Wittman M, Yang Z, Lee F, Greer A, Hurlburt W, et al. BMS-754807, a small molecule inhibitor of insulin-like growth factor-1R/IR. Mol Cancer Ther. 2009;8:3341–9.CrossRefPubMed
21.
go back to reference Mulvihill MJ, Cooke A, Rosenfeld-Franklin M, Buck E, Foreman K, Landfair D, et al. Discovery of OSI-906: a selective and orally efficacious dual inhibitor of the IGF-I receptor and insulin receptor. Future Med Chem. 2009;1:1153–71.CrossRefPubMed Mulvihill MJ, Cooke A, Rosenfeld-Franklin M, Buck E, Foreman K, Landfair D, et al. Discovery of OSI-906: a selective and orally efficacious dual inhibitor of the IGF-I receptor and insulin receptor. Future Med Chem. 2009;1:1153–71.CrossRefPubMed
22.
go back to reference Valentinis B, Reiss K, Baserga R. Insulin-like growth factor-I-mediated survival from anoikis: Role of cell aggregation and focal adhesion kinase. J Cell Physiol. 1998;176:648–57.CrossRefPubMed Valentinis B, Reiss K, Baserga R. Insulin-like growth factor-I-mediated survival from anoikis: Role of cell aggregation and focal adhesion kinase. J Cell Physiol. 1998;176:648–57.CrossRefPubMed
23.
go back to reference Irie HY, Shrestha Y, Selfors LM, Frye F, Iida N, Wang ZG, et al. PTK6 Regulates IGF-1-Induced Anchorage-Independent Survival. Plos One. 2010;5(7):e11729.PubMedCentralCrossRefPubMed Irie HY, Shrestha Y, Selfors LM, Frye F, Iida N, Wang ZG, et al. PTK6 Regulates IGF-1-Induced Anchorage-Independent Survival. Plos One. 2010;5(7):e11729.PubMedCentralCrossRefPubMed
24.
25.
go back to reference Ravid D, Maor S, Werner H, Liscovitch M. Caveolin-1 inhibits cell detachment-induced p53 activation and anoikis by upregulation of insulin-like growth factor-I receptors and signaling. Oncogene. 2005;24:1338–47.CrossRefPubMed Ravid D, Maor S, Werner H, Liscovitch M. Caveolin-1 inhibits cell detachment-induced p53 activation and anoikis by upregulation of insulin-like growth factor-I receptors and signaling. Oncogene. 2005;24:1338–47.CrossRefPubMed
26.
go back to reference Frisch SM, Francis H. Disruption of Epithelial Cell-Matrix Interactions Induces Apoptosis. J Cell Biol. 1994;124:619–26.CrossRefPubMed Frisch SM, Francis H. Disruption of Epithelial Cell-Matrix Interactions Induces Apoptosis. J Cell Biol. 1994;124:619–26.CrossRefPubMed
27.
go back to reference Dearth RK, Cui XJ, Kim HJ, Hadsell DL, Lee AV. Oncogenic transformation by the signaling adaptor proteins insulin receptor substrate (IRS)-1 and IRS-2. Cell Cycle. 2007;6:705–13.CrossRefPubMed Dearth RK, Cui XJ, Kim HJ, Hadsell DL, Lee AV. Oncogenic transformation by the signaling adaptor proteins insulin receptor substrate (IRS)-1 and IRS-2. Cell Cycle. 2007;6:705–13.CrossRefPubMed
28.
go back to reference Vlahos CJ, Matter WF, Hui KY, Brown RF. A Specific Inhibitor of Phosphatidylnositol 3-Kinase, 2-(4-Morpholinyl)-8-Phenyl-4 h-1-Benzopyran-4-One (Ly294002). J Biol Chem. 1994;269:5241–8.PubMed Vlahos CJ, Matter WF, Hui KY, Brown RF. A Specific Inhibitor of Phosphatidylnositol 3-Kinase, 2-(4-Morpholinyl)-8-Phenyl-4 h-1-Benzopyran-4-One (Ly294002). J Biol Chem. 1994;269:5241–8.PubMed
29.
go back to reference Walker EH, Pacold ME, Perisic O, Stephens L, Hawkins PT, Wymann MP, et al. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol Cell. 2000;6:909–19.CrossRefPubMed Walker EH, Pacold ME, Perisic O, Stephens L, Hawkins PT, Wymann MP, et al. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol Cell. 2000;6:909–19.CrossRefPubMed
30.
go back to reference Heerding DA, Rhodes N, Leber JD, Clark TJ, Keenan RM, Lafrance LV, et al. Identification of 4-(2-(4-amino-1,2,5-oxadiazol-3-yl)-1-ethyl-7-{[(3S)-3-piperidinylmethyl]oxy}-1H-imidazo[4,5-c]pyridin-4-yl)-2-methyl-3-butyn-2-ol (GSK690693), a novel inhibitor of AKT kinase. J Med Chem. 2008;51:5663–79.CrossRefPubMed Heerding DA, Rhodes N, Leber JD, Clark TJ, Keenan RM, Lafrance LV, et al. Identification of 4-(2-(4-amino-1,2,5-oxadiazol-3-yl)-1-ethyl-7-{[(3S)-3-piperidinylmethyl]oxy}-1H-imidazo[4,5-c]pyridin-4-yl)-2-methyl-3-butyn-2-ol (GSK690693), a novel inhibitor of AKT kinase. J Med Chem. 2008;51:5663–79.CrossRefPubMed
31.
go back to reference Rhodes N, Heerding DA, Duckett DR, Eberwein DJ, Knick VB, Lansing TJ, et al. Characterization of an Akt kinase inhibitor with potent pharmacodynamic and antitumor activity. Cancer Res. 2008;68:2366–74.CrossRefPubMed Rhodes N, Heerding DA, Duckett DR, Eberwein DJ, Knick VB, Lansing TJ, et al. Characterization of an Akt kinase inhibitor with potent pharmacodynamic and antitumor activity. Cancer Res. 2008;68:2366–74.CrossRefPubMed
32.
go back to reference Favata MF, Horiuchi KY, Manos EJ, Daulerio AJ, Stradley DA, Feeser WS, et al. Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem. 1998;273:18623–32.CrossRefPubMed Favata MF, Horiuchi KY, Manos EJ, Daulerio AJ, Stradley DA, Feeser WS, et al. Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem. 1998;273:18623–32.CrossRefPubMed
33.
go back to reference Duncia JV, Santella JB, Higley CA, Pitts WJ, Wityak J, Frietze WE, et al. MEK inhibitors: The chemistry and biological activity of U0126, its analogs, and cyclization products. Bioorg Med Chem Lett. 1998;8:2839–44.CrossRefPubMed Duncia JV, Santella JB, Higley CA, Pitts WJ, Wityak J, Frietze WE, et al. MEK inhibitors: The chemistry and biological activity of U0126, its analogs, and cyclization products. Bioorg Med Chem Lett. 1998;8:2839–44.CrossRefPubMed
34.
go back to reference Soos MA, Field CE, Siddle K. Purified hybrid insulin/insulin-like growth factor-I receptors bind insulin-like growth factor-I, but not insulin, with high affinity. Biochem J. 1993;290(Pt 2):419–26.PubMedCentralCrossRefPubMed Soos MA, Field CE, Siddle K. Purified hybrid insulin/insulin-like growth factor-I receptors bind insulin-like growth factor-I, but not insulin, with high affinity. Biochem J. 1993;290(Pt 2):419–26.PubMedCentralCrossRefPubMed
35.
go back to reference Peyrat JP, Bonneterre J, Vennin PH, Jammes H, Beuscart R, Hecquet B, et al. Insulin-Like Growth Factor-I Receptors (Igf1-R) and Igf1 in Human Breast-Tumors. J Steroid Biochem Mol Biol. 1990;37:823–7.CrossRefPubMed Peyrat JP, Bonneterre J, Vennin PH, Jammes H, Beuscart R, Hecquet B, et al. Insulin-Like Growth Factor-I Receptors (Igf1-R) and Igf1 in Human Breast-Tumors. J Steroid Biochem Mol Biol. 1990;37:823–7.CrossRefPubMed
36.
go back to reference Papa V, Pezzino V, Costantino A, Belfiore A, Giuffrida D, Frittitta L, et al. Elevated insulin receptor content in human breast cancer. J Clin Invest. 1990;86:1503–10.PubMedCentralCrossRefPubMed Papa V, Pezzino V, Costantino A, Belfiore A, Giuffrida D, Frittitta L, et al. Elevated insulin receptor content in human breast cancer. J Clin Invest. 1990;86:1503–10.PubMedCentralCrossRefPubMed
37.
go back to reference Tan K, Goldstein D, Crowe P, Yang JL. Uncovering a key to the process of metastasis in human cancers: a review of critical regulators of anoikis. J Cancer Res Clin Oncol. 2013;139:1795–805.CrossRefPubMed Tan K, Goldstein D, Crowe P, Yang JL. Uncovering a key to the process of metastasis in human cancers: a review of critical regulators of anoikis. J Cancer Res Clin Oncol. 2013;139:1795–805.CrossRefPubMed
38.
go back to reference Paoli P, Giannoni E, Chiarugi P. Anoikis molecular pathways and its role in cancer progression. Biochimica Et Biophysica Acta-Molecular Cell Res. 1833;2013:3481–98. Paoli P, Giannoni E, Chiarugi P. Anoikis molecular pathways and its role in cancer progression. Biochimica Et Biophysica Acta-Molecular Cell Res. 1833;2013:3481–98.
39.
go back to reference Eckert LB, Repasky GA, Ulku AS, McFall A, Zhou H, Sartor CI, et al. Involvement of ras activation in human breast cancer cell signaling, invasion, and anoikis. Cancer Res. 2004;64:4585–92.CrossRefPubMed Eckert LB, Repasky GA, Ulku AS, McFall A, Zhou H, Sartor CI, et al. Involvement of ras activation in human breast cancer cell signaling, invasion, and anoikis. Cancer Res. 2004;64:4585–92.CrossRefPubMed
40.
go back to reference Schlaepfer DD, Broome MA, Hunter T. Fibronectin-stimulated signaling from a focal adhesion kinase-c-Src complex: Involvement of the Grb2, p130(cas), and Nck adaptor proteins. Mol Cell Biol. 1997;17:1702–13.PubMedCentralCrossRefPubMed Schlaepfer DD, Broome MA, Hunter T. Fibronectin-stimulated signaling from a focal adhesion kinase-c-Src complex: Involvement of the Grb2, p130(cas), and Nck adaptor proteins. Mol Cell Biol. 1997;17:1702–13.PubMedCentralCrossRefPubMed
41.
go back to reference Xia H, Nho RS, Kahm J, Kleidon J, Henke CA. Focal adhesion kinase is upstream of phosphatidylinositol 3-kinase/Akt in regulating fibroblast survival in response to contraction of type I collagen matrices via a beta(1) integrin viability signaling pathway. J Biol Chem. 2004;279:33024–34.CrossRefPubMed Xia H, Nho RS, Kahm J, Kleidon J, Henke CA. Focal adhesion kinase is upstream of phosphatidylinositol 3-kinase/Akt in regulating fibroblast survival in response to contraction of type I collagen matrices via a beta(1) integrin viability signaling pathway. J Biol Chem. 2004;279:33024–34.CrossRefPubMed
42.
go back to reference Chen HC, Appeddu PA, Isoda H, Guan JL. Phosphorylation of tyrosine 397 in focal adhesion kinase is required for binding phosphatidylinositol 3-kinase. J Biol Chem. 1996;271:26329–34.CrossRefPubMed Chen HC, Appeddu PA, Isoda H, Guan JL. Phosphorylation of tyrosine 397 in focal adhesion kinase is required for binding phosphatidylinositol 3-kinase. J Biol Chem. 1996;271:26329–34.CrossRefPubMed
43.
go back to reference Schlaepfer DD, Hunter T. Focal adhesion kinase overexpression enhances Ras-dependent integrin signaling to ERK2/mitogen-activated protein kinase through interactions with and activation of c-Src. J Biol Chem. 1997;272:13189–95.CrossRefPubMed Schlaepfer DD, Hunter T. Focal adhesion kinase overexpression enhances Ras-dependent integrin signaling to ERK2/mitogen-activated protein kinase through interactions with and activation of c-Src. J Biol Chem. 1997;272:13189–95.CrossRefPubMed
44.
go back to reference Mercurio AM, Bachelder RE, Chung J, O'Connor KL, Rabinovitz I, Shaw LM, et al. Integrin laminin receptors and breast carcinoma progression. J Mammary Gland Biol Neoplasia. 2001;6:299–309.CrossRefPubMed Mercurio AM, Bachelder RE, Chung J, O'Connor KL, Rabinovitz I, Shaw LM, et al. Integrin laminin receptors and breast carcinoma progression. J Mammary Gland Biol Neoplasia. 2001;6:299–309.CrossRefPubMed
46.
go back to reference Thompson EW, Newgreen DF. Carcinoma invasion and metastasis: A role for epithelial-mesenchymal transition? Cancer Res. 2005;65:5991–5.CrossRefPubMed Thompson EW, Newgreen DF. Carcinoma invasion and metastasis: A role for epithelial-mesenchymal transition? Cancer Res. 2005;65:5991–5.CrossRefPubMed
47.
go back to reference Doerr ME, Jones JI. The roles of integrins and extracellular matrix proteins in the insulin-like growth factor I-stimulated chemotaxis of human breast cancer cells. J Biol Chem. 1996;271:2443–7.CrossRefPubMed Doerr ME, Jones JI. The roles of integrins and extracellular matrix proteins in the insulin-like growth factor I-stimulated chemotaxis of human breast cancer cells. J Biol Chem. 1996;271:2443–7.CrossRefPubMed
48.
go back to reference Daws MR, Westley BR, May FEB. Paradoxical effects of overexpression of the type I insulin-like growth factor (IGF) receptor on the responsiveness of human breast cancer cells to IGFs and estradiol. Endocrinology. 1996;137:1177–86.PubMed Daws MR, Westley BR, May FEB. Paradoxical effects of overexpression of the type I insulin-like growth factor (IGF) receptor on the responsiveness of human breast cancer cells to IGFs and estradiol. Endocrinology. 1996;137:1177–86.PubMed
49.
go back to reference Pandini G, Frasca F, Mineo R, Sciacca L, Vigneri R, Belfiore A. Insulin/insulin-like growth factor I hybrid receptors have different biological characteristics depending on the insulin receptor isoform involved. J Biol Chem. 2002;277:39684–95.CrossRefPubMed Pandini G, Frasca F, Mineo R, Sciacca L, Vigneri R, Belfiore A. Insulin/insulin-like growth factor I hybrid receptors have different biological characteristics depending on the insulin receptor isoform involved. J Biol Chem. 2002;277:39684–95.CrossRefPubMed
50.
go back to reference Molloy CA, May FEB, Westley BR. Insulin receptor substrate-1 expression is regulated by estrogen in the MCF-7 human breast cancer cell line. J Biol Chem. 2000;275:12565–71.CrossRefPubMed Molloy CA, May FEB, Westley BR. Insulin receptor substrate-1 expression is regulated by estrogen in the MCF-7 human breast cancer cell line. J Biol Chem. 2000;275:12565–71.CrossRefPubMed
Metadata
Title
Insulin-like growth factors are essential to prevent anoikis in oestrogen-responsive breast cancer cells: importance of the type I IGF receptor and PI3-kinase/Akt pathway
Authors
Brendan C. Luey
Felicity E. B. May
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2016
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/s12943-015-0482-2

Other articles of this Issue 1/2016

Molecular Cancer 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine