Skip to main content
Top
Published in: Molecular Cancer 1/2015

Open Access 01-12-2015 | Research

Impaired aldehyde dehydrogenase 1 subfamily member 2A-dependent retinoic acid signaling is related with a mesenchymal-like phenotype and an unfavorable prognosis of head and neck squamous cell carcinoma

Authors: Katharina Seidensaal, Andre Nollert, Agnes Hiou Feige, Marie Muller, Thomas Fleming, Nikolas Gunkel, Karim Zaoui, Niels Grabe, Wilko Weichert, Klaus-Josef Weber, Peter Plinkert, Christian Simon, Jochen Hess

Published in: Molecular Cancer | Issue 1/2015

Login to get access

Abstract

Background

An inverse correlation between expression of the aldehyde dehydrogenase 1 subfamily A2 (ALDH1A2) and gene promoter methylation has been identified as a common feature of oropharyngeal squamous cell carcinoma (OPSCC). Moreover, low ALDH1A2 expression was associated with an unfavorable prognosis of OPSCC patients, however the causal link between reduced ALDH1A2 function and treatment failure has not been addressed so far.

Methods

Serial sections from tissue microarrays of patients with primary OPSCC (n = 101) were stained by immunohistochemistry for key regulators of retinoic acid (RA) signaling, including ALDH1A2. Survival with respect to these regulators was investigated by univariate Kaplan-Meier analysis and multivariate Cox regression proportional hazard models. The impact of ALDH1A2-RAR signaling on tumor-relevant processes was addressed in established tumor cell lines and in an orthotopic mouse xenograft model.

Results

Immunohistochemical analysis showed an improved prognosis of ALDH1A2high OPSCC only in the presence of CRABP2, an intracellular RA transporter. Moreover, an ALDH1A2highCRABP2high staining pattern served as an independent predictor for progression-free (HR: 0.395, p = 0.007) and overall survival (HR: 0.303, p = 0.002), suggesting a critical impact of RA metabolism and signaling on clinical outcome. Functionally, ALDH1A2 expression and activity in tumor cell lines were related to RA levels. While administration of retinoids inhibited clonogenic growth and proliferation, the pharmacological inhibition of ALDH1A2-RAR signaling resulted in loss of cell-cell adhesion and a mesenchymal-like phenotype. Xenograft tumors derived from FaDu cells with stable silencing of ALDH1A2 and primary tumors from OPSCC patients with low ALDH1A2 expression exhibited a mesenchymal-like phenotype characterized by vimentin expression.

Conclusions

This study has unraveled a critical role of ALDH1A2-RAR signaling in the pathogenesis of head and neck cancer and our data implicate that patients with ALDH1A2low tumors might benefit from adjuvant treatment with retinoids.
Appendix
Available only for authorised users
Literature
1.
go back to reference Leemans CR, Braakhuis BJ, Brakenhoff RH. The molecular biology of head and neck cancer. Nat Rev Cancer. 2011;11:9–22.CrossRefPubMed Leemans CR, Braakhuis BJ, Brakenhoff RH. The molecular biology of head and neck cancer. Nat Rev Cancer. 2011;11:9–22.CrossRefPubMed
4.
go back to reference Iglesias-Bartolome R, Martin D, Gutkind JS. Exploiting the head and neck cancer oncogenome: widespread PI3K-mTOR pathway alterations and novel molecular targets. Cancer Discov. 2013;3:722–5.PubMedCentralCrossRefPubMed Iglesias-Bartolome R, Martin D, Gutkind JS. Exploiting the head and neck cancer oncogenome: widespread PI3K-mTOR pathway alterations and novel molecular targets. Cancer Discov. 2013;3:722–5.PubMedCentralCrossRefPubMed
5.
go back to reference Network CGA. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015;517:576–82.CrossRef Network CGA. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015;517:576–82.CrossRef
6.
go back to reference Kostareli E, Holzinger D, Hess J. New concepts for translational head and neck oncology: lessons from HPV-related oropharyngeal squamous cell carcinomas. Front Head Neck Cancer. 2012;2:1–10. Kostareli E, Holzinger D, Hess J. New concepts for translational head and neck oncology: lessons from HPV-related oropharyngeal squamous cell carcinomas. Front Head Neck Cancer. 2012;2:1–10.
7.
go back to reference Koffler J, Sharma S, Hess J. Predictive value of epigenetic alterations in head and neck squamous cell carcinoma. Mol Cell Oncol. 2014;1:e954827.CrossRef Koffler J, Sharma S, Hess J. Predictive value of epigenetic alterations in head and neck squamous cell carcinoma. Mol Cell Oncol. 2014;1:e954827.CrossRef
8.
go back to reference Kostareli E, Holzinger D, Bogatyrova O, Hielscher T, Wichmann G, Keck M, et al. HPV-related methylation signature predicts survival in oropharyngeal squamous cell carcinomas. J Clin Invest. 2013;123:2488–501.PubMedCentralCrossRefPubMed Kostareli E, Holzinger D, Bogatyrova O, Hielscher T, Wichmann G, Keck M, et al. HPV-related methylation signature predicts survival in oropharyngeal squamous cell carcinomas. J Clin Invest. 2013;123:2488–501.PubMedCentralCrossRefPubMed
9.
go back to reference Theodosiou M, Laudet V, Schubert M. From carrot to clinic: an overview of the retinoic acid signaling pathway. Cell Mol Life Sci. 2010;67:1423–45.CrossRefPubMed Theodosiou M, Laudet V, Schubert M. From carrot to clinic: an overview of the retinoic acid signaling pathway. Cell Mol Life Sci. 2010;67:1423–45.CrossRefPubMed
10.
go back to reference Gudas LJ. Emerging roles for retinoids in regeneration and differentiation in normal and disease states. Biochim Biophys Acta. 1821;2012:213–21. Gudas LJ. Emerging roles for retinoids in regeneration and differentiation in normal and disease states. Biochim Biophys Acta. 1821;2012:213–21.
12.
go back to reference Tang XH, Gudas LJ. Retinoids, retinoic acid receptors, and cancer. Annu Rev Pathol. 2011;6:345–64.CrossRefPubMed Tang XH, Gudas LJ. Retinoids, retinoic acid receptors, and cancer. Annu Rev Pathol. 2011;6:345–64.CrossRefPubMed
14.
go back to reference Ablain J, de The H. Retinoic acid signaling in cancer: the parable of acute promyelocytic leukemia. Int J Cancer. 2014;135:2262–72.CrossRefPubMed Ablain J, de The H. Retinoic acid signaling in cancer: the parable of acute promyelocytic leukemia. Int J Cancer. 2014;135:2262–72.CrossRefPubMed
15.
go back to reference Connolly R, Nguyen NK, Sukumar S. Molecular pathways: current role and future directions of the retinoic acid pathway in cancer prevention and treatment. Clin Cancer Res. 2013;19:1651–9.PubMedCentralCrossRefPubMed Connolly R, Nguyen NK, Sukumar S. Molecular pathways: current role and future directions of the retinoic acid pathway in cancer prevention and treatment. Clin Cancer Res. 2013;19:1651–9.PubMedCentralCrossRefPubMed
16.
go back to reference Schug TT, Berry DC, Shaw NS, Travis SN, Noy N. Opposing effects of retinoic acid on cell growth result from alternate activation of two different nuclear receptors. Cell. 2007;129:723–33.PubMedCentralCrossRefPubMed Schug TT, Berry DC, Shaw NS, Travis SN, Noy N. Opposing effects of retinoic acid on cell growth result from alternate activation of two different nuclear receptors. Cell. 2007;129:723–33.PubMedCentralCrossRefPubMed
17.
go back to reference Touma SE, Perner S, Rubin MA, Nanus DM, Gudas LJ. Retinoid metabolism and ALDH1A2 (RALDH2) expression are altered in the transgenic adenocarcinoma mouse prostate model. Biochem Pharmacol. 2009;78:1127–38.PubMedCentralCrossRefPubMed Touma SE, Perner S, Rubin MA, Nanus DM, Gudas LJ. Retinoid metabolism and ALDH1A2 (RALDH2) expression are altered in the transgenic adenocarcinoma mouse prostate model. Biochem Pharmacol. 2009;78:1127–38.PubMedCentralCrossRefPubMed
18.
go back to reference Kim H, Lapointe J, Kaygusuz G, Ong DE, Li C, van de Rijn M, et al. The retinoic acid synthesis gene ALDH1a2 is a candidate tumor suppressor in prostate cancer. Cancer Res. 2005;65:8118–24.CrossRefPubMed Kim H, Lapointe J, Kaygusuz G, Ong DE, Li C, van de Rijn M, et al. The retinoic acid synthesis gene ALDH1a2 is a candidate tumor suppressor in prostate cancer. Cancer Res. 2005;65:8118–24.CrossRefPubMed
19.
go back to reference Wu S, Xue W, Huang X, Yu X, Luo M, Huang Y, et al. Distinct prognostic values of ALDH1 isoenzymes in breast cancer. Tumour Biol. 2015;36:2421–6.CrossRefPubMed Wu S, Xue W, Huang X, Yu X, Luo M, Huang Y, et al. Distinct prognostic values of ALDH1 isoenzymes in breast cancer. Tumour Biol. 2015;36:2421–6.CrossRefPubMed
20.
go back to reference Schrader CH, Kolb M, Zaoui K, Flechtenmacher C, Grabe N, Weber KJ, et al. Kallikrein-related peptidase 6 regulates epithelial-to-mesenchymal transition and serves as prognostic biomarker for head and neck squamous cell carcinoma patients. Mol Cancer. 2015;14:107.PubMedCentralCrossRefPubMed Schrader CH, Kolb M, Zaoui K, Flechtenmacher C, Grabe N, Weber KJ, et al. Kallikrein-related peptidase 6 regulates epithelial-to-mesenchymal transition and serves as prognostic biomarker for head and neck squamous cell carcinoma patients. Mol Cancer. 2015;14:107.PubMedCentralCrossRefPubMed
21.
go back to reference Bayo P, Jou A, Stenzinger A, Shao C, Gross M, Jensen A, et al. Loss of SOX2 expression induces cell motility via vimentin up-regulation and is an unfavorable risk factor for survival of head and neck squamous cell carcinoma. Mol Oncol. 2015;9:1704–19.CrossRefPubMed Bayo P, Jou A, Stenzinger A, Shao C, Gross M, Jensen A, et al. Loss of SOX2 expression induces cell motility via vimentin up-regulation and is an unfavorable risk factor for survival of head and neck squamous cell carcinoma. Mol Oncol. 2015;9:1704–19.CrossRefPubMed
22.
go back to reference Ryuto M, Jimi S, Ono M, Naito S, Nakayama Y, Yamada Y, et al. All-trans-retinoic acid-dependent inhibition of E-cadherin-based cell adhesion with concomitant dephosphorylation of beta-catenin in metastatic human renal carcinoma cells. Jpn J Cancer Res. 1997;88:982–91.CrossRefPubMed Ryuto M, Jimi S, Ono M, Naito S, Nakayama Y, Yamada Y, et al. All-trans-retinoic acid-dependent inhibition of E-cadherin-based cell adhesion with concomitant dephosphorylation of beta-catenin in metastatic human renal carcinoma cells. Jpn J Cancer Res. 1997;88:982–91.CrossRefPubMed
23.
go back to reference Zanetti A, Affatato R, Centritto F, Fratelli M, Kurosaki M, Barzago MM, et al. All-trans retinoic acid modulates the plasticity and inhibits the motility of breast cancer cells: role of NOTCH1 and TGFbeta. J Biol Chem. 2015;290:17690–709.CrossRefPubMed Zanetti A, Affatato R, Centritto F, Fratelli M, Kurosaki M, Barzago MM, et al. All-trans retinoic acid modulates the plasticity and inhibits the motility of breast cancer cells: role of NOTCH1 and TGFbeta. J Biol Chem. 2015;290:17690–709.CrossRefPubMed
24.
go back to reference Malehmir M, Haghpanah V, Larijani B, Ahmadian S, Alimoghaddam K, Heshmat R, et al. Multifaceted suppression of aggressive behavior of thyroid carcinoma by all-trans retinoic acid induced re-differentiation. Mol Cell Endocrinol. 2012;348:260–9.PubMed Malehmir M, Haghpanah V, Larijani B, Ahmadian S, Alimoghaddam K, Heshmat R, et al. Multifaceted suppression of aggressive behavior of thyroid carcinoma by all-trans retinoic acid induced re-differentiation. Mol Cell Endocrinol. 2012;348:260–9.PubMed
25.
go back to reference Centritto F, Paroni G, Bolis M, Garattini SK, Kurosaki M, Barzago MM, et al. Cellular and molecular determinants of all-trans retinoic acid sensitivity in breast cancer: Luminal phenotype and RARalpha expression. EMBO Mol Med. 2015;7:950–72.PubMedCentralCrossRefPubMed Centritto F, Paroni G, Bolis M, Garattini SK, Kurosaki M, Barzago MM, et al. Cellular and molecular determinants of all-trans retinoic acid sensitivity in breast cancer: Luminal phenotype and RARalpha expression. EMBO Mol Med. 2015;7:950–72.PubMedCentralCrossRefPubMed
26.
go back to reference Hong WK, Endicott J, Itri LM, Doos W, Batsakis JG, Bell R, et al. 13-cis-retinoic acid in the treatment of oral leukoplakia. N Engl J Med. 1986;315:1501–5.CrossRefPubMed Hong WK, Endicott J, Itri LM, Doos W, Batsakis JG, Bell R, et al. 13-cis-retinoic acid in the treatment of oral leukoplakia. N Engl J Med. 1986;315:1501–5.CrossRefPubMed
27.
go back to reference Benner SE, Pajak TF, Lippman SM, Earley C, Hong WK. Prevention of second primary tumors with isotretinoin in patients with squamous cell carcinoma of the head and neck: long-term follow-up. J Natl Cancer Inst. 1994;86:140–1.CrossRefPubMed Benner SE, Pajak TF, Lippman SM, Earley C, Hong WK. Prevention of second primary tumors with isotretinoin in patients with squamous cell carcinoma of the head and neck: long-term follow-up. J Natl Cancer Inst. 1994;86:140–1.CrossRefPubMed
28.
go back to reference Hong WK, Lippman SM, Itri LM, Karp DD, Lee JS, Byers RM, et al. Prevention of second primary tumors with isotretinoin in squamous-cell carcinoma of the head and neck. N Engl J Med. 1990;323:795–801.CrossRefPubMed Hong WK, Lippman SM, Itri LM, Karp DD, Lee JS, Byers RM, et al. Prevention of second primary tumors with isotretinoin in squamous-cell carcinoma of the head and neck. N Engl J Med. 1990;323:795–801.CrossRefPubMed
29.
go back to reference Khuri FR, Lee JJ, Lippman SM, Kim ES, Cooper JS, Benner SE, et al. Randomized phase III trial of low-dose isotretinoin for prevention of second primary tumors in stage I and II head and neck cancer patients. J Natl Cancer Inst. 2006;98:441–50.CrossRefPubMed Khuri FR, Lee JJ, Lippman SM, Kim ES, Cooper JS, Benner SE, et al. Randomized phase III trial of low-dose isotretinoin for prevention of second primary tumors in stage I and II head and neck cancer patients. J Natl Cancer Inst. 2006;98:441–50.CrossRefPubMed
30.
go back to reference Shin DM, Khuri FR, Murphy B, Garden AS, Clayman G, Francisco M, et al. Combined interferon-alfa, 13-cis-retinoic acid, and alpha-tocopherol in locally advanced head and neck squamous cell carcinoma: novel bioadjuvant phase II trial. J Clin Oncol. 2001;19:3010–7.PubMed Shin DM, Khuri FR, Murphy B, Garden AS, Clayman G, Francisco M, et al. Combined interferon-alfa, 13-cis-retinoic acid, and alpha-tocopherol in locally advanced head and neck squamous cell carcinoma: novel bioadjuvant phase II trial. J Clin Oncol. 2001;19:3010–7.PubMed
31.
go back to reference Smith W, Saba N. Retinoids as chemoprevention for head and neck cancer: where do we go from here? Crit Rev Oncol Hematol. 2005;55:143–52.CrossRefPubMed Smith W, Saba N. Retinoids as chemoprevention for head and neck cancer: where do we go from here? Crit Rev Oncol Hematol. 2005;55:143–52.CrossRefPubMed
32.
go back to reference Holzinger D, Schmitt M, Dyckhoff G, Benner A, Pawlita M, Bosch FX. Viral RNA patterns and high viral load reliably define oropharynx carcinomas with active HPV16 involvement. Cancer Res. 2012;72:4993–5003.CrossRefPubMed Holzinger D, Schmitt M, Dyckhoff G, Benner A, Pawlita M, Bosch FX. Viral RNA patterns and high viral load reliably define oropharynx carcinomas with active HPV16 involvement. Cancer Res. 2012;72:4993–5003.CrossRefPubMed
33.
go back to reference Holzinger D, Flechtenmacher C, Henfling N, Kaden I, Grabe N, Lahrmann B, et al. Identification of oropharyngeal squamous cell carcinomas with active HPV16 involvement by immunohistochemical analysis of the retinoblastoma protein pathway. Int J Cancer. 2013;133:1389–99.CrossRefPubMed Holzinger D, Flechtenmacher C, Henfling N, Kaden I, Grabe N, Lahrmann B, et al. Identification of oropharyngeal squamous cell carcinomas with active HPV16 involvement by immunohistochemical analysis of the retinoblastoma protein pathway. Int J Cancer. 2013;133:1389–99.CrossRefPubMed
35.
go back to reference Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1:2315–9.CrossRefPubMed Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1:2315–9.CrossRefPubMed
36.
go back to reference Klucky B, Mueller R, Vogt I, Teurich S, Hartenstein B, Breuhahn K, et al. Kallikrein 6 induces e-cadherin shedding and promotes cell proliferation, migration, and invasion. Cancer Res. 2007;67:8198–206.CrossRefPubMed Klucky B, Mueller R, Vogt I, Teurich S, Hartenstein B, Breuhahn K, et al. Kallikrein 6 induces e-cadherin shedding and promotes cell proliferation, migration, and invasion. Cancer Res. 2007;67:8198–206.CrossRefPubMed
37.
go back to reference Krenzer S, Peterziel H, Mauch C, Blaber SI, Blaber M, Angel P, et al. Expression and function of the kallikrein-related peptidase 6 in the human melanoma microenvironment. J Invest Dermatol. 2011;131:2281–8.PubMedCentralCrossRefPubMed Krenzer S, Peterziel H, Mauch C, Blaber SI, Blaber M, Angel P, et al. Expression and function of the kallikrein-related peptidase 6 in the human melanoma microenvironment. J Invest Dermatol. 2011;131:2281–8.PubMedCentralCrossRefPubMed
38.
go back to reference Wiechert L, Nemeth J, Pusterla T, Bauer C, De Ponti A, Manthey S, et al. Hepatocyte-specific S100a8 and S100a9 transgene expression in mice causes Cxcl1 induction and systemic neutrophil enrichment. Cell Commun Signal. 2012;10:40.PubMedCentralCrossRefPubMed Wiechert L, Nemeth J, Pusterla T, Bauer C, De Ponti A, Manthey S, et al. Hepatocyte-specific S100a8 and S100a9 transgene expression in mice causes Cxcl1 induction and systemic neutrophil enrichment. Cell Commun Signal. 2012;10:40.PubMedCentralCrossRefPubMed
39.
go back to reference Asson-Batres MA, Smith WB, Clark G. Retinoic acid is present in the postnatal rat olfactory organ and persists in vitamin A--depleted neural tissue. J Nutr. 2009;139:1067–72.PubMedCentralCrossRefPubMed Asson-Batres MA, Smith WB, Clark G. Retinoic acid is present in the postnatal rat olfactory organ and persists in vitamin A--depleted neural tissue. J Nutr. 2009;139:1067–72.PubMedCentralCrossRefPubMed
40.
go back to reference Sharow KA, Temkin B, Asson-Batres MA. Retinoic acid stability in stem cell cultures. Int J Dev Biol. 2012;56:273–8.CrossRefPubMed Sharow KA, Temkin B, Asson-Batres MA. Retinoic acid stability in stem cell cultures. Int J Dev Biol. 2012;56:273–8.CrossRefPubMed
41.
go back to reference Leibold JS, Riehl A, Hettinger J, Durben M, Hess J, Angel P. Keratinocyte-specific deletion of the receptor RAGE modulates the kinetics of skin inflammation in vivo. J Invest Dermatol. 2013;133:2400–6.CrossRefPubMed Leibold JS, Riehl A, Hettinger J, Durben M, Hess J, Angel P. Keratinocyte-specific deletion of the receptor RAGE modulates the kinetics of skin inflammation in vivo. J Invest Dermatol. 2013;133:2400–6.CrossRefPubMed
Metadata
Title
Impaired aldehyde dehydrogenase 1 subfamily member 2A-dependent retinoic acid signaling is related with a mesenchymal-like phenotype and an unfavorable prognosis of head and neck squamous cell carcinoma
Authors
Katharina Seidensaal
Andre Nollert
Agnes Hiou Feige
Marie Muller
Thomas Fleming
Nikolas Gunkel
Karim Zaoui
Niels Grabe
Wilko Weichert
Klaus-Josef Weber
Peter Plinkert
Christian Simon
Jochen Hess
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2015
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/s12943-015-0476-0

Other articles of this Issue 1/2015

Molecular Cancer 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine