Skip to main content
Top
Published in: Molecular Cancer 1/2015

Open Access 01-12-2015 | Review

The H19 Long non-coding RNA in cancer initiation, progression and metastasis – a proposed unifying theory

Authors: Eli Raveh, Imad J. Matouk, Michal Gilon, Abraham Hochberg

Published in: Molecular Cancer | Issue 1/2015

Login to get access

Abstract

The imprinted oncofetal long non-coding RNA (lncRNA) H19 is expressed in the embryo, down-regulated at birth and then reappears in tumors. Its role in tumor initiation and progression has long been a subject of controversy, although accumulating data suggest that H19 is one of the major genes in cancer. It is actively involved in all stages of tumorigenesis and is expressed in almost every human cancer. In this review we delineate the various functions of H19 during the different stages in the complex process of tumor progression. H19 up-regulation allows cells to enter a “selfish” survival mode in response to stress conditions, such as destabilization of the genome and hypoxia, by accelerating their proliferation rate and increasing overall cellular resistance to stress. This response is tightly correlated with nullification, dysfunction or significant down-regulation of the master tumor suppressor gene P53. The growing evidence of H19’s involvement in both proliferation and differentiation processes, together with its involvement in epithelial to mesenchymal transition (EMT) and also mesenchymal to epithelial transition (MET), has led us to conclude that some of the recent disputes and discrepancies arising from current research findings can be resolved from a viewpoint supporting the oncogenic properties of H19. According to a holistic approach, the versatile, seemingly contradictory functions of H19 are essential to, and differentially harnessed by, the tumor cell depending on its context within the process of tumor progression.
Literature
4.
go back to reference Juan V, Crain C, Wilson C. Evidence for evolutionarily conserved secondary structure in the H19 tumor suppressor RNA. Nucleic Acids Res. 2000;28(5):1221–7.PubMedCentralPubMedCrossRef Juan V, Crain C, Wilson C. Evidence for evolutionarily conserved secondary structure in the H19 tumor suppressor RNA. Nucleic Acids Res. 2000;28(5):1221–7.PubMedCentralPubMedCrossRef
8.
12.
go back to reference Gao WL, Liu M, Yang Y, Yang H, Liao Q, Bai Y, et al. The imprinted H19 gene regulates human placental trophoblast cell proliferation via encoding miR-675 that targets Nodal Modulator 1 (NOMO1). RNA Biol. 2012;9(7):1002–10. doi:10.4161/rna.20807.PubMedCrossRef Gao WL, Liu M, Yang Y, Yang H, Liao Q, Bai Y, et al. The imprinted H19 gene regulates human placental trophoblast cell proliferation via encoding miR-675 that targets Nodal Modulator 1 (NOMO1). RNA Biol. 2012;9(7):1002–10. doi:10.​4161/​rna.​20807.PubMedCrossRef
14.
go back to reference Li H, Yu B, Li J, Su L, Yan M, Zhu Z, et al. Overexpression of lncRNA H19 enhances carcinogenesis and metastasis of gastric cancer. Oncotarget. 2014;5(8):2318–29.PubMedCentralPubMedCrossRef Li H, Yu B, Li J, Su L, Yan M, Zhu Z, et al. Overexpression of lncRNA H19 enhances carcinogenesis and metastasis of gastric cancer. Oncotarget. 2014;5(8):2318–29.PubMedCentralPubMedCrossRef
17.
go back to reference Imig J, Brunschweiger A, Brummer A, Guennewig B, Mittal N, Kishore S, et al. miR-CLIP capture of a miRNA targetome uncovers a lincRNA H19-miR-106a interaction. Nat Chem Biol. 2015;11(2):107–14. doi:10.1038/nchembio.1713.PubMedCrossRef Imig J, Brunschweiger A, Brummer A, Guennewig B, Mittal N, Kishore S, et al. miR-CLIP capture of a miRNA targetome uncovers a lincRNA H19-miR-106a interaction. Nat Chem Biol. 2015;11(2):107–14. doi:10.​1038/​nchembio.​1713.PubMedCrossRef
18.
go back to reference Liang WC, Fu WM, Wong CW, Wang Y, Wang WM, Hu GX, et al. The LncRNA H19 promotes epithelial to mesenchymal transition by functioning as MiRNA sponges in colorectal cancer. Oncotarget. 2015;6(26):22513–25. Liang WC, Fu WM, Wong CW, Wang Y, Wang WM, Hu GX, et al. The LncRNA H19 promotes epithelial to mesenchymal transition by functioning as MiRNA sponges in colorectal cancer. Oncotarget. 2015;6(26):22513–25.
21.
24.
go back to reference Dugimont T, Montpellier C, Adriaenssens E, Lottin S, Dumont L, Iotsova V, et al. The H19 TATA-less promoter is efficiently repressed by wild-type tumor suppressor gene product p53. Oncogene. 1998;16(18):2395–401. doi:10.1038/sj.onc.1201742.PubMedCrossRef Dugimont T, Montpellier C, Adriaenssens E, Lottin S, Dumont L, Iotsova V, et al. The H19 TATA-less promoter is efficiently repressed by wild-type tumor suppressor gene product p53. Oncogene. 1998;16(18):2395–401. doi:10.​1038/​sj.​onc.​1201742.PubMedCrossRef
26.
go back to reference Park IY, Sohn BH, Choo JH, Joe CO, Seong JK, Lee YI, et al. Deregulation of DNA methyltransferases and loss of parental methylation at the insulin-like growth factor II (Igf2)/H19 loci in p53 knockout mice prior to tumor development. J Cell Biochem. 2005;94(3):585–96. doi:10.1002/jcb.20263.PubMedCrossRef Park IY, Sohn BH, Choo JH, Joe CO, Seong JK, Lee YI, et al. Deregulation of DNA methyltransferases and loss of parental methylation at the insulin-like growth factor II (Igf2)/H19 loci in p53 knockout mice prior to tumor development. J Cell Biochem. 2005;94(3):585–96. doi:10.​1002/​jcb.​20263.PubMedCrossRef
28.
go back to reference Liu C, Chen Z, Fang J, Xu A, Zhang W, Wang Z. H19-derived miR-675 contributes to bladder cancer cell proliferation by regulating p53 activation. Tumour Biol. 2015. doi:10.1007/s13277-015-3779-2. Liu C, Chen Z, Fang J, Xu A, Zhang W, Wang Z. H19-derived miR-675 contributes to bladder cancer cell proliferation by regulating p53 activation. Tumour Biol. 2015. doi:10.​1007/​s13277-015-3779-2.
32.
38.
go back to reference Vinogradov AE, Anatskaya OV, Kudryavtsev BN. Relationship of hepatocyte ploidy levels with body size and growth rate in mammals. Genome/National Research Council Canada =. Genome/Conseil national de recherches Canada. 2001;44(3):350–60. Vinogradov AE, Anatskaya OV, Kudryavtsev BN. Relationship of hepatocyte ploidy levels with body size and growth rate in mammals. Genome/National Research Council Canada =. Genome/Conseil national de recherches Canada. 2001;44(3):350–60.
39.
go back to reference Mosieniak G, Sikora E. Polyploidy: the link between senescence and cancer. Curr Pharm Des. 2010;16(6):734–40.PubMedCrossRef Mosieniak G, Sikora E. Polyploidy: the link between senescence and cancer. Curr Pharm Des. 2010;16(6):734–40.PubMedCrossRef
41.
go back to reference Shoshani O, Massalha H, Shani N, Kagan S, Ravid O, Madar S, et al. Polyploidization of murine mesenchymal cells is associated with suppression of the long noncoding RNA H19 and reduced tumorigenicity. Cancer Res. 2012;72(24):6403–13. doi:10.1158/0008-5472.CAN-12-1155.PubMedCrossRef Shoshani O, Massalha H, Shani N, Kagan S, Ravid O, Madar S, et al. Polyploidization of murine mesenchymal cells is associated with suppression of the long noncoding RNA H19 and reduced tumorigenicity. Cancer Res. 2012;72(24):6403–13. doi:10.​1158/​0008-5472.​CAN-12-1155.PubMedCrossRef
42.
go back to reference Ravid O, Shoshani O, Sela M, Weinstock A, Sadan TW, Gur E, et al. Relative genomic stability of adipose tissue derived mesenchymal stem cells: analysis of ploidy, H19 long non-coding RNA and p53 activity. Stem Cell Res Ther. 2014;5(6):139. doi:10.1186/scrt529.PubMedCentralPubMedCrossRef Ravid O, Shoshani O, Sela M, Weinstock A, Sadan TW, Gur E, et al. Relative genomic stability of adipose tissue derived mesenchymal stem cells: analysis of ploidy, H19 long non-coding RNA and p53 activity. Stem Cell Res Ther. 2014;5(6):139. doi:10.​1186/​scrt529.PubMedCentralPubMedCrossRef
43.
go back to reference Tsujimoto H, Nishizuka S, Redpath JL, Stanbridge EJ. Differential gene expression in tumorigenic and nontumorigenic HeLa x normal human fibroblast hybrid cells. Mol Carcinog. 1999;26(4):298–304.PubMedCrossRef Tsujimoto H, Nishizuka S, Redpath JL, Stanbridge EJ. Differential gene expression in tumorigenic and nontumorigenic HeLa x normal human fibroblast hybrid cells. Mol Carcinog. 1999;26(4):298–304.PubMedCrossRef
44.
go back to reference Hernandez JM, Elahi A, Clark CW, Wang J, Humphries LA, Centeno B, et al. miR-675 mediates downregulation of Twist1 and Rb in AFP-secreting hepatocellular carcinoma. Ann Surg Oncol. 2013;20 Suppl 3:S625–35. doi:10.1245/s10434-013-3106-3.PubMedCrossRef Hernandez JM, Elahi A, Clark CW, Wang J, Humphries LA, Centeno B, et al. miR-675 mediates downregulation of Twist1 and Rb in AFP-secreting hepatocellular carcinoma. Ann Surg Oncol. 2013;20 Suppl 3:S625–35. doi:10.​1245/​s10434-013-3106-3.PubMedCrossRef
46.
go back to reference Wolanin K, Magalska A, Mosieniak G, Klinger R, McKenna S, Vejda S, et al. Curcumin affects components of the chromosomal passenger complex and induces mitotic catastrophe in apoptosis-resistant Bcr-Abl-expressing cells. Mol Cancer Res. 2006;4(7):457–69. doi:10.1158/1541-7786.MCR-05-0172.PubMedCrossRef Wolanin K, Magalska A, Mosieniak G, Klinger R, McKenna S, Vejda S, et al. Curcumin affects components of the chromosomal passenger complex and induces mitotic catastrophe in apoptosis-resistant Bcr-Abl-expressing cells. Mol Cancer Res. 2006;4(7):457–69. doi:10.​1158/​1541-7786.​MCR-05-0172.PubMedCrossRef
47.
go back to reference Shani Nir SO, Zipori Dov. The tissue specific nature of mesenchymal stem/stromal cells: gaining better understanding for improved clinical outcomes. RNA Dis. 2015;2:e780. doi:10.14800/rd.780. Shani Nir SO, Zipori Dov. The tissue specific nature of mesenchymal stem/stromal cells: gaining better understanding for improved clinical outcomes. RNA Dis. 2015;2:e780. doi:10.​14800/​rd.​780.
49.
go back to reference Celton-Morizur S, Merlen G, Couton D, Margall-Ducos G, Desdouets C. The insulin/Akt pathway controls a specific cell division program that leads to generation of binucleated tetraploid liver cells in rodents. J Clin Invest. 2009;119(7):1880–7.PubMedCentralPubMed Celton-Morizur S, Merlen G, Couton D, Margall-Ducos G, Desdouets C. The insulin/Akt pathway controls a specific cell division program that leads to generation of binucleated tetraploid liver cells in rodents. J Clin Invest. 2009;119(7):1880–7.PubMedCentralPubMed
50.
go back to reference Wang G, Lunardi A, Zhang J, Chen Z, Ala U, Webster KA, et al. Zbtb7a suppresses prostate cancer through repression of a Sox9-dependent pathway for cellular senescence bypass and tumor invasion. Nat Genet. 2013;45(7):739–46. doi:10.1038/ng.2654.PubMedCentralPubMedCrossRef Wang G, Lunardi A, Zhang J, Chen Z, Ala U, Webster KA, et al. Zbtb7a suppresses prostate cancer through repression of a Sox9-dependent pathway for cellular senescence bypass and tumor invasion. Nat Genet. 2013;45(7):739–46. doi:10.​1038/​ng.​2654.PubMedCentralPubMedCrossRef
51.
go back to reference Cully M, You H, Levine AJ, Mak TW. Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer. 2006;6(3):184–92. doi:10.1038/nrc1819.PubMedCrossRef Cully M, You H, Levine AJ, Mak TW. Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer. 2006;6(3):184–92. doi:10.​1038/​nrc1819.PubMedCrossRef
52.
go back to reference Wesierska-Gadek J, Ranftler C, Schmid G. Physiological ageing: role of p53 and PARP-1 tumor suppressors in the regulation of terminal senescence. J Physiol Pharmacol. 2005;56 Suppl 2:77–88.PubMed Wesierska-Gadek J, Ranftler C, Schmid G. Physiological ageing: role of p53 and PARP-1 tumor suppressors in the regulation of terminal senescence. J Physiol Pharmacol. 2005;56 Suppl 2:77–88.PubMed
54.
go back to reference Halappanavar SS, Shah GM. Defective control of mitotic and post-mitotic checkpoints in poly(ADP-ribose) polymerase-1(−/−) fibroblasts after mitotic spindle disruption. Cell Cycle. 2004;3(3):335–42.PubMedCrossRef Halappanavar SS, Shah GM. Defective control of mitotic and post-mitotic checkpoints in poly(ADP-ribose) polymerase-1(−/−) fibroblasts after mitotic spindle disruption. Cell Cycle. 2004;3(3):335–42.PubMedCrossRef
56.
go back to reference Cunningham ML. Role of increased DNA replication in the carcinogenic risk of nonmutagenic chemical carcinogens. Mutat Res. 1996;365(1–3):59–69.PubMedCrossRef Cunningham ML. Role of increased DNA replication in the carcinogenic risk of nonmutagenic chemical carcinogens. Mutat Res. 1996;365(1–3):59–69.PubMedCrossRef
64.
go back to reference Lottin S, Vercoutter-Edouart AS, Adriaenssens E, Czeszak X, Lemoine J, Roudbaraki M, et al. Thioredoxin post-transcriptional regulation by H19 provides a new function to mRNA-like non-coding RNA. Oncogene. 2002;21(10):1625–31. doi:10.1038/sj.onc.1205233.PubMedCrossRef Lottin S, Vercoutter-Edouart AS, Adriaenssens E, Czeszak X, Lemoine J, Roudbaraki M, et al. Thioredoxin post-transcriptional regulation by H19 provides a new function to mRNA-like non-coding RNA. Oncogene. 2002;21(10):1625–31. doi:10.​1038/​sj.​onc.​1205233.PubMedCrossRef
68.
go back to reference Berteaux N, Lottin S, Monte D, Pinte S, Quatannens B, Coll J, et al. H19 mRNA-like noncoding RNA promotes breast cancer cell proliferation through positive control by E2F1. J Biol Chem. 2005;280(33):29625–36. doi:10.1074/jbc.M504033200.PubMedCrossRef Berteaux N, Lottin S, Monte D, Pinte S, Quatannens B, Coll J, et al. H19 mRNA-like noncoding RNA promotes breast cancer cell proliferation through positive control by E2F1. J Biol Chem. 2005;280(33):29625–36. doi:10.​1074/​jbc.​M504033200.PubMedCrossRef
69.
go back to reference Lottin S, Adriaenssens E, Dupressoir T, Berteaux N, Montpellier C, Coll J, et al. Overexpression of an ectopic H19 gene enhances the tumorigenic properties of breast cancer cells. Carcinogenesis. 2002;23(11):1885–95.PubMedCrossRef Lottin S, Adriaenssens E, Dupressoir T, Berteaux N, Montpellier C, Coll J, et al. Overexpression of an ectopic H19 gene enhances the tumorigenic properties of breast cancer cells. Carcinogenesis. 2002;23(11):1885–95.PubMedCrossRef
70.
go back to reference Vennin C, Dahmani F, Spruyt N, Adriaenssens E. Role of long non-coding RNA in cells: Example of the H19/IGF2 locus. Adv Biosci Biotechnol. 2013;04(05):11. doi:10.4236/abb.2013.45A004. Vennin C, Dahmani F, Spruyt N, Adriaenssens E. Role of long non-coding RNA in cells: Example of the H19/IGF2 locus. Adv Biosci Biotechnol. 2013;04(05):11. doi:10.​4236/​abb.​2013.​45A004.
73.
go back to reference Chen H, Paradies NE, Fedor-Chaiken M, Brackenbury R. E-cadherin mediates adhesion and suppresses cell motility via distinct mechanisms. J Cell Sci. 1997;110(Pt 3):345–56.PubMed Chen H, Paradies NE, Fedor-Chaiken M, Brackenbury R. E-cadherin mediates adhesion and suppresses cell motility via distinct mechanisms. J Cell Sci. 1997;110(Pt 3):345–56.PubMed
76.
77.
go back to reference Yan L, Zhou J, Gao Y, Ghazal S, Lu L, Bellone S, et al. Regulation of tumor cell migration and invasion by the H19/let-7 axis is antagonized by metformin-induced DNA methylation. Oncogene. 2014. doi:10.1038/onc.2014.236. Yan L, Zhou J, Gao Y, Ghazal S, Lu L, Bellone S, et al. Regulation of tumor cell migration and invasion by the H19/let-7 axis is antagonized by metformin-induced DNA methylation. Oncogene. 2014. doi:10.​1038/​onc.​2014.​236.
80.
go back to reference Barsyte-Lovejoy D, Lau SK, Boutros PC, Khosravi F, Jurisica I, Andrulis IL, et al. The c-Myc oncogene directly induces the H19 noncoding RNA by allele-specific binding to potentiate tumorigenesis. Cancer Res. 2006;66(10):5330–7. doi:10.1158/0008-5472.CAN-06-0037.PubMedCrossRef Barsyte-Lovejoy D, Lau SK, Boutros PC, Khosravi F, Jurisica I, Andrulis IL, et al. The c-Myc oncogene directly induces the H19 noncoding RNA by allele-specific binding to potentiate tumorigenesis. Cancer Res. 2006;66(10):5330–7. doi:10.​1158/​0008-5472.​CAN-06-0037.PubMedCrossRef
83.
go back to reference Milligan L, Antoine E, Bisbal C, Weber M, Brunel C, Forne T, et al. H19 gene expression is up-regulated exclusively by stabilization of the RNA during muscle cell differentiation. Oncogene. 2000;19(50):5810–6. doi:10.1038/sj.onc.1203965.PubMedCrossRef Milligan L, Antoine E, Bisbal C, Weber M, Brunel C, Forne T, et al. H19 gene expression is up-regulated exclusively by stabilization of the RNA during muscle cell differentiation. Oncogene. 2000;19(50):5810–6. doi:10.​1038/​sj.​onc.​1203965.PubMedCrossRef
84.
87.
go back to reference Bauderlique-Le Roy H, Vennin C, Brocqueville G, Spruyt N, Adriaenssens E, Bourette RP. Enrichment of Human Stem-Like Prostate Cells with s-SHIP Promoter Activity Uncovers a Role in Stemness for the Long Noncoding RNA H19. Stem Cells Dev. 2015;24(10):1252–62. doi:10.1089/scd.2014.0386.PubMedCrossRef Bauderlique-Le Roy H, Vennin C, Brocqueville G, Spruyt N, Adriaenssens E, Bourette RP. Enrichment of Human Stem-Like Prostate Cells with s-SHIP Promoter Activity Uncovers a Role in Stemness for the Long Noncoding RNA H19. Stem Cells Dev. 2015;24(10):1252–62. doi:10.​1089/​scd.​2014.​0386.PubMedCrossRef
88.
go back to reference Gabory A, Ripoche MA, Le Digarcher A, Watrin F, Ziyyat A, Forne T, et al. H19 acts as a trans regulator of the imprinted gene network controlling growth in mice. Development. 2009;136(20):3413–21. doi:10.1242/dev.036061.PubMedCrossRef Gabory A, Ripoche MA, Le Digarcher A, Watrin F, Ziyyat A, Forne T, et al. H19 acts as a trans regulator of the imprinted gene network controlling growth in mice. Development. 2009;136(20):3413–21. doi:10.​1242/​dev.​036061.PubMedCrossRef
92.
go back to reference Garibaldi F, Cicchini C, Conigliaro A, Santangelo L, Cozzolino AM, Grassi G, et al. An epistatic mini-circuitry between the transcription factors Snail and HNF4alpha controls liver stem cell and hepatocyte features exhorting opposite regulation on stemness-inhibiting microRNAs. Cell Death Differ. 2012;19(6):937–46. doi:10.1038/cdd.2011.175.PubMedCentralPubMedCrossRef Garibaldi F, Cicchini C, Conigliaro A, Santangelo L, Cozzolino AM, Grassi G, et al. An epistatic mini-circuitry between the transcription factors Snail and HNF4alpha controls liver stem cell and hepatocyte features exhorting opposite regulation on stemness-inhibiting microRNAs. Cell Death Differ. 2012;19(6):937–46. doi:10.​1038/​cdd.​2011.​175.PubMedCentralPubMedCrossRef
93.
go back to reference Zhang L, Yang F, Yuan JH, Yuan SX, Zhou WP, Huo XS, et al. Epigenetic activation of the MiR-200 family contributes to H19-mediated metastasis suppression in hepatocellular carcinoma. Carcinogenesis. 2013;34(3):577–86. doi:10.1093/carcin/bgs381.PubMedCrossRef Zhang L, Yang F, Yuan JH, Yuan SX, Zhou WP, Huo XS, et al. Epigenetic activation of the MiR-200 family contributes to H19-mediated metastasis suppression in hepatocellular carcinoma. Carcinogenesis. 2013;34(3):577–86. doi:10.​1093/​carcin/​bgs381.PubMedCrossRef
95.
go back to reference Santangelo L, Marchetti A, Cicchini C, Conigliaro A, Conti B, Mancone C, et al. The stable repression of mesenchymal program is required for hepatocyte identity: a novel role for hepatocyte nuclear factor 4alpha. Hepatology. 2011;53(6):2063–74. doi:10.1002/hep.24280.PubMedCrossRef Santangelo L, Marchetti A, Cicchini C, Conigliaro A, Conti B, Mancone C, et al. The stable repression of mesenchymal program is required for hepatocyte identity: a novel role for hepatocyte nuclear factor 4alpha. Hepatology. 2011;53(6):2063–74. doi:10.​1002/​hep.​24280.PubMedCrossRef
99.
go back to reference Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008;10(5):593–601. doi:10.1038/ncb1722.PubMedCrossRef Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008;10(5):593–601. doi:10.​1038/​ncb1722.PubMedCrossRef
101.
go back to reference Fernandez LA, Northcott PA, Dalton J, Fraga C, Ellison D, Angers S, et al. YAP1 is amplified and up-regulated in hedgehog-associated medulloblastomas and mediates Sonic hedgehog-driven neural precursor proliferation. Genes Dev. 2009;23(23):2729–41. doi:10.1101/gad.1824509.CrossRef Fernandez LA, Northcott PA, Dalton J, Fraga C, Ellison D, Angers S, et al. YAP1 is amplified and up-regulated in hedgehog-associated medulloblastomas and mediates Sonic hedgehog-driven neural precursor proliferation. Genes Dev. 2009;23(23):2729–41. doi:10.​1101/​gad.​1824509.CrossRef
Metadata
Title
The H19 Long non-coding RNA in cancer initiation, progression and metastasis – a proposed unifying theory
Authors
Eli Raveh
Imad J. Matouk
Michal Gilon
Abraham Hochberg
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2015
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/s12943-015-0458-2

Other articles of this Issue 1/2015

Molecular Cancer 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine