Skip to main content
Top
Published in: Molecular Cancer 1/2015

Open Access 01-12-2015 | Short communication

Stratifin accelerates progression of lung adenocarcinoma at an early stage

Authors: Aya Shiba-Ishii, Yunjung Kim, Toshihiro Shiozawa, Shinji Iyama, Kaishi Satomi, Junko Kano, Shingo Sakashita, Yukio Morishita, Masayuki Noguchi

Published in: Molecular Cancer | Issue 1/2015

Login to get access

Abstract

Backgrounds

Adenocarcinoma in situ (AIS) of the lung has an extremely favorable prognosis. However, early but invasive adenocarcinoma (eIA) sometimes has a fatal outcome. We had previously compared the expression profiles of AIS with those of eIA showing lymph node metastasis or a fatal outcome, and found that stratifin (SFN, 14-3-3 sigma) was a differentially expressed gene related to cell proliferation. Here, we performed an in vivo study to clarify the role of SFN in initiation and progression of lung adenocarcinoma.

Findings

Suppression of SFN expression in A549 (a human lung adenocarcinoma cell line) by siSFN significantly reduced cell proliferation activity and the S-phase subpopulation. In vivo, tumor development or metastasis to the lung was reduced in shSFN-transfected A549 cells. Moreover, we generated SFN-transgenic mice (Tg-SPC-SFN+/−) showing lung-specific expression of human SFN under the control of a tissue-specific enhancer, the SPC promoter. We found that Tg-SPC-SFN+/− mice developed lung tumors at a significantly higher rate than control mice after administration of chemical carcinogen, NNK. Interestingly, several Tg-SPC-SFN+/− mice developed tumors without NNK. These tumor cells showed high hSFN expression.

Conclusion

These results suggest that SFN facilitates lung tumor development and progression. SFN appears to be a novel oncogene with potential as a therapeutic target.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.PubMedCrossRef Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.PubMedCrossRef
2.
go back to reference Noguchi M, Morikawa A, Kawasaki M, Matsuno Y, Yamada T, Hirohashi S, et al. Small adenocarcinoma of the lung. Histologic characteristics and prognosis. Cancer. 1995;75:2844–52.PubMedCrossRef Noguchi M, Morikawa A, Kawasaki M, Matsuno Y, Yamada T, Hirohashi S, et al. Small adenocarcinoma of the lung. Histologic characteristics and prognosis. Cancer. 1995;75:2844–52.PubMedCrossRef
3.
go back to reference Yim J, Zhu LC, Chiriboga L, Watson HN, Goldberg JD, Moreira AL. Histologic features are important prognostic indicators in early stages lung adenocarcinomas. Mod Pathol. 2007;20:233–41.PubMedCrossRef Yim J, Zhu LC, Chiriboga L, Watson HN, Goldberg JD, Moreira AL. Histologic features are important prognostic indicators in early stages lung adenocarcinomas. Mod Pathol. 2007;20:233–41.PubMedCrossRef
4.
go back to reference Shiba-Ishii A, Kano J, Morishita Y, Sato Y, Minami Y, Noguchi M. High expression of stratifin is a universal abnormality during the course of malignant progression of early-stage lung adenocarcinoma. Int J Cancer. 2011;129:2445–53.PubMedCrossRef Shiba-Ishii A, Kano J, Morishita Y, Sato Y, Minami Y, Noguchi M. High expression of stratifin is a universal abnormality during the course of malignant progression of early-stage lung adenocarcinoma. Int J Cancer. 2011;129:2445–53.PubMedCrossRef
5.
go back to reference Shiba-Ishii A, Noguchi M. Aberrant stratifin overexpression is regulated by tumor-associated CpG demethylation in lung adenocarcinoma. Am J Pathol. 2012;180:1653–62.PubMedCrossRef Shiba-Ishii A, Noguchi M. Aberrant stratifin overexpression is regulated by tumor-associated CpG demethylation in lung adenocarcinoma. Am J Pathol. 2012;180:1653–62.PubMedCrossRef
6.
go back to reference Hermeking H, Lengauer C, Polyak K, He TC, Zhang L, Thiagalingam S, et al. 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell. 1997;1:3–11.PubMedCrossRef Hermeking H, Lengauer C, Polyak K, He TC, Zhang L, Thiagalingam S, et al. 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell. 1997;1:3–11.PubMedCrossRef
7.
go back to reference Chan TA, Hermeking H, Lengauer C, Kinzler KW, Vogelstein B. 14-3-3Sigma is required to prevent mitotic catastrophe after DNA damage. Nature. 1999;401:616–20.PubMedCrossRef Chan TA, Hermeking H, Lengauer C, Kinzler KW, Vogelstein B. 14-3-3Sigma is required to prevent mitotic catastrophe after DNA damage. Nature. 1999;401:616–20.PubMedCrossRef
8.
go back to reference Samuel T, Weber HO, Rauch P, Verdoodt B, Eppel JT, McShea A, et al. The G2/M regulator 14-3-3sigma prevents apoptosis through sequestration of Bax. J Biol Chem. 2001;276:45201–6.PubMedCrossRef Samuel T, Weber HO, Rauch P, Verdoodt B, Eppel JT, McShea A, et al. The G2/M regulator 14-3-3sigma prevents apoptosis through sequestration of Bax. J Biol Chem. 2001;276:45201–6.PubMedCrossRef
9.
go back to reference Subramanian RR, Masters SC, Zhang H, Fu H. Functional conservation of 14-3-3 isoforms in inhibiting bad-induced apoptosis. Exp Cell Res. 2001;271:142–51.PubMedCrossRef Subramanian RR, Masters SC, Zhang H, Fu H. Functional conservation of 14-3-3 isoforms in inhibiting bad-induced apoptosis. Exp Cell Res. 2001;271:142–51.PubMedCrossRef
10.
go back to reference Mase K, Iijima T, Nakamura N, Takeuchi T, Onizuka M, Mitsui T, et al. Intrabronchial orthotopic propagation of human lung adenocarcinoma--characterizations of tumorigenicity, invasion and metastasis. Lung Cancer. 2002;36:271–6.PubMedCrossRef Mase K, Iijima T, Nakamura N, Takeuchi T, Onizuka M, Mitsui T, et al. Intrabronchial orthotopic propagation of human lung adenocarcinoma--characterizations of tumorigenicity, invasion and metastasis. Lung Cancer. 2002;36:271–6.PubMedCrossRef
11.
go back to reference Akopyan G, Bonavida B. Understanding tobacco smoke carcinogen NNK and lung tumorigenesis. Int J Oncol. 2006;29:745–52.PubMed Akopyan G, Bonavida B. Understanding tobacco smoke carcinogen NNK and lung tumorigenesis. Int J Oncol. 2006;29:745–52.PubMed
12.
go back to reference Soda M, Takada S, Takeuchi K, Choi YL, Enomoto M, Ueno T, et al. A mouse model for EML4-ALK-positive lung cancer. Proc Natl Acad Sci U S A. 2008;105:19893–7.PubMedCentralPubMedCrossRef Soda M, Takada S, Takeuchi K, Choi YL, Enomoto M, Ueno T, et al. A mouse model for EML4-ALK-positive lung cancer. Proc Natl Acad Sci U S A. 2008;105:19893–7.PubMedCentralPubMedCrossRef
13.
go back to reference Mitsudomi T, Yatabe Y. Mutations of the epidermal growth factor receptor gene and related genes as determinants of epidermal growth factor receptor tyrosine kinase inhibitors sensitivity in lung cancer. Cancer Sci. 2007;98:1817–24.PubMedCrossRef Mitsudomi T, Yatabe Y. Mutations of the epidermal growth factor receptor gene and related genes as determinants of epidermal growth factor receptor tyrosine kinase inhibitors sensitivity in lung cancer. Cancer Sci. 2007;98:1817–24.PubMedCrossRef
14.
go back to reference Cancer Genome Atlas Research N. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511:543–50.CrossRef Cancer Genome Atlas Research N. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511:543–50.CrossRef
15.
go back to reference Noguchi M. Stepwise progression of pulmonary adenocarcinoma--clinical and molecular implications. Cancer Metastasis Rev. 2010;29:15–21.PubMedCrossRef Noguchi M. Stepwise progression of pulmonary adenocarcinoma--clinical and molecular implications. Cancer Metastasis Rev. 2010;29:15–21.PubMedCrossRef
16.
go back to reference Huang Y, Yang X, Zhao F, Shen Q, Wang Z, Lv X, et al. Overexpression of Dickkopf-1 predicts poor prognosis for patients with hepatocellular carcinoma after orthotopic liver transplantation by promoting cancer metastasis and recurrence. Med Oncol. 2014;31:966.PubMedCrossRef Huang Y, Yang X, Zhao F, Shen Q, Wang Z, Lv X, et al. Overexpression of Dickkopf-1 predicts poor prognosis for patients with hepatocellular carcinoma after orthotopic liver transplantation by promoting cancer metastasis and recurrence. Med Oncol. 2014;31:966.PubMedCrossRef
Metadata
Title
Stratifin accelerates progression of lung adenocarcinoma at an early stage
Authors
Aya Shiba-Ishii
Yunjung Kim
Toshihiro Shiozawa
Shinji Iyama
Kaishi Satomi
Junko Kano
Shingo Sakashita
Yukio Morishita
Masayuki Noguchi
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2015
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/s12943-015-0414-1

Other articles of this Issue 1/2015

Molecular Cancer 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine