Skip to main content
Top
Published in: Molecular Cancer 1/2015

Open Access 01-12-2015 | Research

Deregulation of the FOXM1 target gene network and its coregulatory partners in oesophageal adenocarcinoma

Authors: Elizabeth F Wiseman, Xi Chen, Namshik Han, Aaron Webber, Zongling Ji, Andrew D Sharrocks, Yeng S Ang

Published in: Molecular Cancer | Issue 1/2015

Login to get access

Abstract

Background

Survival rates for oesophageal adenocarcinoma (OAC) remain disappointingly poor and current conventional treatment modalities have minimal impact on long-term survival. This is partly due to a lack of understanding of the molecular changes that occur in this disease. Previous studies have indicated that the transcription factor FOXM1 is commonly upregulated in this cancer type but the impact of this overexpression on gene expression in the context of OAC is largely unknown. FOXM1 does not function alone but works alongside the antagonistically-functioning co-regulatory MMB and DREAM complexes.

Methods

To establish how FOXM1 affects gene expression in OAC we have identified the FOXM1 target gene network in OAC-derived cells using ChIP-seq and determined the expression of both its coregulatory partners and members of this target gene network in OAC by digital transcript counting using the Nanostring gene expression assay.

Results

We find co-upregulation of FOXM1 with its target gene network in OAC. Furthermore, we find changes in the expression of its coregulatory partners, including co-upregulation of LIN9 and, surprisingly, reduced expression of LIN54. Mechanistically, we identify LIN9 as the direct binding partner for FOXM1 in the MMB complex. In the context of OAC, both coregulator (eg LIN54) and target gene (eg UHRF1) expression levels are predictive of disease stage.

Conclusions

Together our data demonstrate that there are global changes to the FOXM1 regulatory network in OAC and the expression of components of this network help predict cancer prognosis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Coupland VH, Allum W, Blazeby JM, Mendall MA, Hardwick RH, Linklater KM, et al. Incidence and survival of oesophageal and gastric cancer in England between 1998 and 2007, a population-based study. BMC Cancer. 2012;12:11.CrossRefPubMedPubMedCentral Coupland VH, Allum W, Blazeby JM, Mendall MA, Hardwick RH, Linklater KM, et al. Incidence and survival of oesophageal and gastric cancer in England between 1998 and 2007, a population-based study. BMC Cancer. 2012;12:11.CrossRefPubMedPubMedCentral
2.
go back to reference Weaver JM, Ross-Innes CS, Fitzgerald RC. The ‘-omics’ revolution and oesophageal adenocarcinoma. Nat Rev Gastroenterol Hepatol. 2014;11:19–27.CrossRefPubMed Weaver JM, Ross-Innes CS, Fitzgerald RC. The ‘-omics’ revolution and oesophageal adenocarcinoma. Nat Rev Gastroenterol Hepatol. 2014;11:19–27.CrossRefPubMed
3.
go back to reference Peters CJ, Rees JRE, Hardwick RH, Hardwick JS, Vowler SL, Ong CA, et al. Oesophageal Cancer Clinical and Molecular Stratification (OCCAMS) study group. A 4-gene signature predicts survival of patients with resected adenocarcinoma of the esophagus, junction, and gastric cardia. Gastroenterology. 2010;139:1995–2004.CrossRefPubMed Peters CJ, Rees JRE, Hardwick RH, Hardwick JS, Vowler SL, Ong CA, et al. Oesophageal Cancer Clinical and Molecular Stratification (OCCAMS) study group. A 4-gene signature predicts survival of patients with resected adenocarcinoma of the esophagus, junction, and gastric cardia. Gastroenterology. 2010;139:1995–2004.CrossRefPubMed
4.
go back to reference Kim SM, Park Y-Y, Park ES, Cho JY, Izzo JG, Zhang D, et al. Prognostic biomarkers for esophageal adenocarcinoma identified by analysis of tumor transcriptome. PLoS One. 2010;5:e15074.CrossRefPubMedPubMedCentral Kim SM, Park Y-Y, Park ES, Cho JY, Izzo JG, Zhang D, et al. Prognostic biomarkers for esophageal adenocarcinoma identified by analysis of tumor transcriptome. PLoS One. 2010;5:e15074.CrossRefPubMedPubMedCentral
5.
go back to reference Dulak AM, Stojanov P, Peng S, Lawrence MS, Fox C, Stewart C, et al. Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nat Genet. 2013;45:478–86.CrossRefPubMedPubMedCentral Dulak AM, Stojanov P, Peng S, Lawrence MS, Fox C, Stewart C, et al. Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nat Genet. 2013;45:478–86.CrossRefPubMedPubMedCentral
6.
go back to reference Weaver JM, Ross-Innes CS, Shannon N, Lynch AG, Forshew T, Barbera M, et al. Ordering of mutations in preinvasive disease stages of esophageal carcinogenesis. Nat Genet. 2014;46:837–43.CrossRefPubMedPubMedCentral Weaver JM, Ross-Innes CS, Shannon N, Lynch AG, Forshew T, Barbera M, et al. Ordering of mutations in preinvasive disease stages of esophageal carcinogenesis. Nat Genet. 2014;46:837–43.CrossRefPubMedPubMedCentral
7.
go back to reference Koo C-Y, Muir KW. Lam EW FOXM1: from cancer initiation to progression and treatment. Biochim Biophys Acta. 1819;2012:28–37. Koo C-Y, Muir KW. Lam EW FOXM1: from cancer initiation to progression and treatment. Biochim Biophys Acta. 1819;2012:28–37.
8.
go back to reference Dibb M, Han N, Choudhury J, Hayes S, Valentine H, West C, et al. The FOXM1-PLK1 axis is commonly upregulated in oesophageal adenocarcinoma. Br J Cancer. 2012;107:1766–75.CrossRefPubMedPubMedCentral Dibb M, Han N, Choudhury J, Hayes S, Valentine H, West C, et al. The FOXM1-PLK1 axis is commonly upregulated in oesophageal adenocarcinoma. Br J Cancer. 2012;107:1766–75.CrossRefPubMedPubMedCentral
9.
go back to reference Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474:609–15.CrossRef Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474:609–15.CrossRef
10.
go back to reference Laoukili J, Kooistra MRH, Brás A, Kauw J, Kerkhoven RM, Morrison A, et al. FoxM1 is required for execution of the mitotic programme and chromosome stability. Nat Cell Biol. 2005;7:126–36.CrossRefPubMed Laoukili J, Kooistra MRH, Brás A, Kauw J, Kerkhoven RM, Morrison A, et al. FoxM1 is required for execution of the mitotic programme and chromosome stability. Nat Cell Biol. 2005;7:126–36.CrossRefPubMed
11.
go back to reference Thiru P, Kern DM, McKinley KL, Monda JK, Rago F, Su KC, et al. Kinetochore genes are coordinately up-regulated in human tumors as part of a FoxM1-related cell division program. Mol Biol Cell. 2014;25:1983–94.CrossRefPubMedPubMedCentral Thiru P, Kern DM, McKinley KL, Monda JK, Rago F, Su KC, et al. Kinetochore genes are coordinately up-regulated in human tumors as part of a FoxM1-related cell division program. Mol Biol Cell. 2014;25:1983–94.CrossRefPubMedPubMedCentral
12.
go back to reference Aytes A, Mitrofanova A, Lefebvre C, Alvarez MJ, Castillo-Martin M, Zheng T, et al. Cross-species regulatory network analysis identifies a synergistic interaction between FOXM1 and CENPF that drives prostate cancer malignancy. Cancer Cell. 2014;25:638–51.CrossRefPubMedPubMedCentral Aytes A, Mitrofanova A, Lefebvre C, Alvarez MJ, Castillo-Martin M, Zheng T, et al. Cross-species regulatory network analysis identifies a synergistic interaction between FOXM1 and CENPF that drives prostate cancer malignancy. Cancer Cell. 2014;25:638–51.CrossRefPubMedPubMedCentral
13.
go back to reference Zhang N, Wei P, Gong A, Chiu WT, Lee HT, Colman H, et al. FoxM1 promotes β-catenin nuclear localization and controls Wnt target-gene expression and glioma tumorigenesis. Cancer Cell. 2011;20:427–42.CrossRefPubMedPubMedCentral Zhang N, Wei P, Gong A, Chiu WT, Lee HT, Colman H, et al. FoxM1 promotes β-catenin nuclear localization and controls Wnt target-gene expression and glioma tumorigenesis. Cancer Cell. 2011;20:427–42.CrossRefPubMedPubMedCentral
14.
go back to reference Zhao B, Barrera LA, Ersing I, Willox B, Schmidt SC, Greenfeld H, et al. The NF-κB genomic landscape in lymphoblastoid B cells. Cell Rep. 2014;8:1595–606.CrossRefPubMedPubMedCentral Zhao B, Barrera LA, Ersing I, Willox B, Schmidt SC, Greenfeld H, et al. The NF-κB genomic landscape in lymphoblastoid B cells. Cell Rep. 2014;8:1595–606.CrossRefPubMedPubMedCentral
15.
go back to reference Sanders DA, Ross-Innes CS, Beraldi D, Carroll JS, Balasubramanian S. Genome-wide mapping of FOXM1 binding reveals co-binding with estrogen receptor alpha in breast cancer cells. Genome Biol. 2013;14:R6.CrossRefPubMedPubMedCentral Sanders DA, Ross-Innes CS, Beraldi D, Carroll JS, Balasubramanian S. Genome-wide mapping of FOXM1 binding reveals co-binding with estrogen receptor alpha in breast cancer cells. Genome Biol. 2013;14:R6.CrossRefPubMedPubMedCentral
16.
go back to reference Chen X, Müller GA, Quaas M, Fischer M, Han N, Stutchbury B, et al. The forkhead transcription factor FOXM1 controls cell cycle-dependent gene expression through an atypical chromatin binding mechanism. Mol Cell Biol. 2013;33:227–36.CrossRefPubMedPubMedCentral Chen X, Müller GA, Quaas M, Fischer M, Han N, Stutchbury B, et al. The forkhead transcription factor FOXM1 controls cell cycle-dependent gene expression through an atypical chromatin binding mechanism. Mol Cell Biol. 2013;33:227–36.CrossRefPubMedPubMedCentral
17.
go back to reference Sadasivam S, Duan S, DeCaprio JA. The MuvB complex sequentially recruits B-Myb and FoxM1 to promote mitotic gene expression. Genes Dev. 2012;26:474–89.CrossRefPubMedPubMedCentral Sadasivam S, Duan S, DeCaprio JA. The MuvB complex sequentially recruits B-Myb and FoxM1 to promote mitotic gene expression. Genes Dev. 2012;26:474–89.CrossRefPubMedPubMedCentral
19.
go back to reference Grant GD, Brooks 3rd L, Zhang X, Mahoney JM, Martyanov V, Wood TA, et al. Identification of cell cycle-regulated genes periodically expressed in U2OS cells and their regulation by FOXM1 and E2F transcription factors. Mol Biol Cell. 2013;24:3634–50.CrossRefPubMedPubMedCentral Grant GD, Brooks 3rd L, Zhang X, Mahoney JM, Martyanov V, Wood TA, et al. Identification of cell cycle-regulated genes periodically expressed in U2OS cells and their regulation by FOXM1 and E2F transcription factors. Mol Biol Cell. 2013;24:3634–50.CrossRefPubMedPubMedCentral
20.
go back to reference Laoukili J, Stahl M. Medema RH FoxM1: at the crossroads of ageing and cancer. Biochim Biophys Acta. 2007;1775:92–102.PubMed Laoukili J, Stahl M. Medema RH FoxM1: at the crossroads of ageing and cancer. Biochim Biophys Acta. 2007;1775:92–102.PubMed
21.
go back to reference Whitfield ML, Sherlock G, Saldanha AJ, Murray JI, Ball CA, Alexander KE, et al. Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol Biol Cell. 2002;13:1977–2000.CrossRefPubMedPubMedCentral Whitfield ML, Sherlock G, Saldanha AJ, Murray JI, Ball CA, Alexander KE, et al. Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol Biol Cell. 2002;13:1977–2000.CrossRefPubMedPubMedCentral
22.
go back to reference Mudbhary R, Hoshida Y, Chernyavskaya Y, Jacob V, Villanueva A, Fiel MI, et al. UHRF1 overexpression drives DNA hypomethylation and hepatocellular carcinoma. Cancer Cell. 2014;25:196–209.CrossRefPubMedPubMedCentral Mudbhary R, Hoshida Y, Chernyavskaya Y, Jacob V, Villanueva A, Fiel MI, et al. UHRF1 overexpression drives DNA hypomethylation and hepatocellular carcinoma. Cancer Cell. 2014;25:196–209.CrossRefPubMedPubMedCentral
23.
go back to reference Bronner C, Krifa M, Mousli M. Increasing role of UHRF1 in the reading and inheritance of the epigenetic code as well as in tumorogenesis. Biochem Pharmacol. 2013;86:1643–9.CrossRefPubMed Bronner C, Krifa M, Mousli M. Increasing role of UHRF1 in the reading and inheritance of the epigenetic code as well as in tumorogenesis. Biochem Pharmacol. 2013;86:1643–9.CrossRefPubMed
24.
go back to reference Lorenzato M, Caudroy S, Bronner C, Evrard G, Simon M, Durlach A, et al. Cell cycle and/or proliferation markers: what is the best method to discriminate cervical high-grade lesions? Hum Pathol. 2005;36:1101–7.CrossRefPubMed Lorenzato M, Caudroy S, Bronner C, Evrard G, Simon M, Durlach A, et al. Cell cycle and/or proliferation markers: what is the best method to discriminate cervical high-grade lesions? Hum Pathol. 2005;36:1101–7.CrossRefPubMed
25.
go back to reference Oka K, Suzuki T, Onodera Y, Miki Y, Takagi K, Nagasaki S, et al. Nudix-type motif 2 in human breast carcinoma: a potent prognostic factor associated with cell proliferation. Int J Cancer. 2011;128:1770–82.CrossRefPubMed Oka K, Suzuki T, Onodera Y, Miki Y, Takagi K, Nagasaki S, et al. Nudix-type motif 2 in human breast carcinoma: a potent prognostic factor associated with cell proliferation. Int J Cancer. 2011;128:1770–82.CrossRefPubMed
26.
go back to reference Ara S, Kikuchi T, Matsumiya H, Kojima T, Kubo T, Ye RC, et al. Sorting nexin 5 of a new diagnostic marker of papillary thyroid carcinoma regulates Caspase-2. Cancer Sci. 2012;103:1356–62.CrossRefPubMed Ara S, Kikuchi T, Matsumiya H, Kojima T, Kubo T, Ye RC, et al. Sorting nexin 5 of a new diagnostic marker of papillary thyroid carcinoma regulates Caspase-2. Cancer Sci. 2012;103:1356–62.CrossRefPubMed
27.
go back to reference Tian S, Roepman P, van’t Veer LJ, Bernards R, de Snoo F, Glas AM. Biological functions of the genes in the mammaprint breast cancer profile reflect the hallmarks of cancer. Biomark Insights. 2010;5:129–38.PubMedPubMedCentral Tian S, Roepman P, van’t Veer LJ, Bernards R, de Snoo F, Glas AM. Biological functions of the genes in the mammaprint breast cancer profile reflect the hallmarks of cancer. Biomark Insights. 2010;5:129–38.PubMedPubMedCentral
28.
go back to reference Pang CL, Toh SY, He P, Teissier S, Ben Khalifa Y, Xue Y, et al. A functional interaction of E7 with B-Myb-MuvB complex promotes acute cooperative transcriptional activation of both S- and M-phase genes. Oncogene. 2014;33:4039–49.CrossRefPubMed Pang CL, Toh SY, He P, Teissier S, Ben Khalifa Y, Xue Y, et al. A functional interaction of E7 with B-Myb-MuvB complex promotes acute cooperative transcriptional activation of both S- and M-phase genes. Oncogene. 2014;33:4039–49.CrossRefPubMed
29.
go back to reference Schmit F, Cremer S, Gaubatz S. LIN54 is an essential core subunit of the DREAM/LINC complex that binds to the cdc2 promoter in a sequence-specific manner. FEBS J. 2009;276:5703–16.CrossRefPubMed Schmit F, Cremer S, Gaubatz S. LIN54 is an essential core subunit of the DREAM/LINC complex that binds to the cdc2 promoter in a sequence-specific manner. FEBS J. 2009;276:5703–16.CrossRefPubMed
30.
go back to reference Rice TW, Rusch VW, Ishwaran H, Blackstone EH, Worldwide Esophageal Cancer Collaboration. Cancer of the esophagus and esophagogastric junction: data-driven staging for the seventh edition of the American Joint Committee on Cancer/International Union Against Cancer Cancer Staging Manuals. Cancer. 2010;116:3763–73.CrossRefPubMed Rice TW, Rusch VW, Ishwaran H, Blackstone EH, Worldwide Esophageal Cancer Collaboration. Cancer of the esophagus and esophagogastric junction: data-driven staging for the seventh edition of the American Joint Committee on Cancer/International Union Against Cancer Cancer Staging Manuals. Cancer. 2010;116:3763–73.CrossRefPubMed
31.
go back to reference Keld R, Guo B, Downey P, Gulmann C, Ang YS, Sharrocks AD. The ERK MAP kinase PEA3/ETV4-MMP-1 axis is operative in oesophageal adenocarcinoma. Mol Cancer. 2010;9:313.CrossRefPubMedPubMedCentral Keld R, Guo B, Downey P, Gulmann C, Ang YS, Sharrocks AD. The ERK MAP kinase PEA3/ETV4-MMP-1 axis is operative in oesophageal adenocarcinoma. Mol Cancer. 2010;9:313.CrossRefPubMedPubMedCentral
32.
go back to reference Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25.CrossRefPubMedPubMedCentral Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25.CrossRefPubMedPubMedCentral
34.
go back to reference Shin H, Liu T, Manrai AK, Liu XS. CEAS: cis-regulatory element annotation system. Bioinformatics. 2009;25:2605–6.CrossRefPubMed Shin H, Liu T, Manrai AK, Liu XS. CEAS: cis-regulatory element annotation system. Bioinformatics. 2009;25:2605–6.CrossRefPubMed
35.
go back to reference McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, et al. GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol. 2010;28:495–501.CrossRefPubMed McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, et al. GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol. 2010;28:495–501.CrossRefPubMed
36.
go back to reference Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, Howe EA, et al. TM4 microarray software suite. Methods Enzymol. 2006;411:134–93.CrossRefPubMed Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, Howe EA, et al. TM4 microarray software suite. Methods Enzymol. 2006;411:134–93.CrossRefPubMed
Metadata
Title
Deregulation of the FOXM1 target gene network and its coregulatory partners in oesophageal adenocarcinoma
Authors
Elizabeth F Wiseman
Xi Chen
Namshik Han
Aaron Webber
Zongling Ji
Andrew D Sharrocks
Yeng S Ang
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2015
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/s12943-015-0339-8

Other articles of this Issue 1/2015

Molecular Cancer 1/2015 Go to the issue

Reviewer acknowledgement

Thanking our 2014 peer reviewers

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine