Skip to main content
Top
Published in: Molecular Cancer 1/2015

Open Access 01-12-2015 | Research

RhoC is a major target of microRNA-93-5P in epithelial ovarian carcinoma tumorigenesis and progression

Authors: Xi Chen, Shuo Chen, Yin-Ling Xiu, Kai-Xuan Sun, Zhi-Hong Zong, Yang Zhao

Published in: Molecular Cancer | Issue 1/2015

Login to get access

Abstract

Background

An increasing amount of evidence has revealed that microRNAs regulate various biological processes, including cell differentiation, cell proliferation, apoptosis, drug resistance, and fat metabolism. Studies have shown that miR-93’s targetome in cancer has not been fully defined. Moreover, the role of miR-93 in epithelial ovarian carcinoma (EOC) remains largely unknown.

Methods

MIR-93 mRNA expression in normal ovarian tissue, benign tumors, borderline tumors, primary ovarian carcinomas, and metastatic omentum was quantified. The ovarian carcinoma cell lines OVCAR3, SKOV3/DDP, and HO8910-PM were transfected with miR-93-5P, after which cell phenotype and expression of relevant molecules were assayed. Dual-luciferase reporter assay and a xenograft mouse model were used to examine miR-93 and its target gene RHOC (Ras homolog gene family member C).

Results

MIR-93 mRNA expression was significantly lower in ovarian carcinomas and borderline tumors than in normal ovarian tissues (p < 0.05), and was lower in metastatic omentum than in relative primary ovarian carcinomas (p < 0.05). MIR-93 mRNA expression was also negatively associated with differentiation (well vs. poor and moderate) and International Federation of Gynecology and Obstetrics staging (FIGO stage I/II vs. stage III/IV) in ovarian carcinoma (p < 0.05), besides, miR-93 was higher expressed in mucinous adenocarcinoma than the other types (p < 0.05). MiR-93-5P overexpression reduced proliferation (p < 0.05); promoted G1 or S arrest and apoptosis (p < 0.05); suppressed migration and invasion (p < 0.05); and reduced RhoC, P70S6 kinase, Bcl-xL, matrix metalloproteinase 9 (MMP9) mRNA or protein expression; conversely, it induced P53 and cleaved PARP expression (p < 0.05). Dual-luciferase reporter assay indicated that miR-93 directly targeted RhoC by binding its 3′ untranslated region. MiR-93-5P transfection also suppressed tumor development and RhoC expression (determined by immunohistochemistry) in vivo in the xenograft mouse model (p < 0.05).

Conclusions

This is the first demonstration that miR-93-5P may inhibit EOC tumorigenesis and progression by targeting RhoC. These findings indicate that miR-93-5P is a potential suppressor of ovarian cellular proliferation. The involvement of miR-93-5P–mediated RhoC downregulation in inhibiting EOC aggressiveness may provide extended insight into the molecular mechanisms underlying cancer aggressiveness.
Literature
1.
go back to reference Nam EJ, Yoon H, Kim SW, Kim H, Kim YT, Kim JH, et al. MicroRNA expression profiles in serous ovarian carcinoma. Clin Cancer Res. 2008;14:2690–5.CrossRefPubMed Nam EJ, Yoon H, Kim SW, Kim H, Kim YT, Kim JH, et al. MicroRNA expression profiles in serous ovarian carcinoma. Clin Cancer Res. 2008;14:2690–5.CrossRefPubMed
2.
go back to reference Zhao Y, Zong ZH, Xu HM. RhoC expression level is correlated with the clinicopathological characteristics of ovarian cancer and the expression levels of ROCK-I, VEGF, and MMP9. Gynecol Oncol. 2010;116(3):563–71.CrossRefPubMed Zhao Y, Zong ZH, Xu HM. RhoC expression level is correlated with the clinicopathological characteristics of ovarian cancer and the expression levels of ROCK-I, VEGF, and MMP9. Gynecol Oncol. 2010;116(3):563–71.CrossRefPubMed
3.
go back to reference Zhao Y, Zheng HC, Chen S, Gou WF, Xiao LJ, Niu ZF. The role of RhoC in ovarian epithelial carcinoma: a marker for carcinogenesis, progression, prognosis, and target therapy. Gynecol Oncol. 2013;130(3):570–8.CrossRefPubMed Zhao Y, Zheng HC, Chen S, Gou WF, Xiao LJ, Niu ZF. The role of RhoC in ovarian epithelial carcinoma: a marker for carcinogenesis, progression, prognosis, and target therapy. Gynecol Oncol. 2013;130(3):570–8.CrossRefPubMed
4.
go back to reference Pasquinelli AE. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet. 2012;13:271–82.PubMed Pasquinelli AE. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet. 2012;13:271–82.PubMed
5.
go back to reference Ambros V. MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell. 2003;113:673–6.CrossRefPubMed Ambros V. MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell. 2003;113:673–6.CrossRefPubMed
6.
go back to reference Ventura A, Young AG, Winslow MM, Lintault L, Meissner A, Erkeland SJ, et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell. 2008;132(5):875–86.CrossRefPubMedCentralPubMed Ventura A, Young AG, Winslow MM, Lintault L, Meissner A, Erkeland SJ, et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell. 2008;132(5):875–86.CrossRefPubMedCentralPubMed
7.
go back to reference Foshay KM, Gallicano G. miR-17 family miRNAs are expressed during early mammalian development and regulate stem cell differentiation. Dev Biol. 2009;326(2):431–43.CrossRefPubMed Foshay KM, Gallicano G. miR-17 family miRNAs are expressed during early mammalian development and regulate stem cell differentiation. Dev Biol. 2009;326(2):431–43.CrossRefPubMed
8.
go back to reference Larabee SM, Coia H, Jones S, Cheung E, Gallicano GI. MiRNA-17 members that target Bmpr2 influence signaling mechanisms important for embryonic stem cell differentiation in vitro and gastrulation in embryos. Stem Cells Dev. 2015;24(3):354–71.CrossRefPubMed Larabee SM, Coia H, Jones S, Cheung E, Gallicano GI. MiRNA-17 members that target Bmpr2 influence signaling mechanisms important for embryonic stem cell differentiation in vitro and gastrulation in embryos. Stem Cells Dev. 2015;24(3):354–71.CrossRefPubMed
9.
go back to reference Yang IP, Tsai HL, Hou MF, Chen KC, Tsai PC, Huang SW, et al. MicroRNA-93 inhibits tumor growth and early relapse of human colorectal cancer by affecting genes involved in the cell cycle. Carcinogenesis. 2012;33(8):1522–30.CrossRefPubMed Yang IP, Tsai HL, Hou MF, Chen KC, Tsai PC, Huang SW, et al. MicroRNA-93 inhibits tumor growth and early relapse of human colorectal cancer by affecting genes involved in the cell cycle. Carcinogenesis. 2012;33(8):1522–30.CrossRefPubMed
10.
go back to reference Liu S, Patel SH, Ginestier C, Ibarra I, Martin-Trevino R, Bai S, et al. MicroRNA93 regulates proliferation and differentiation of normal and malignant breast stem cells. PLoS Genet. 2012;8(6):e1002751.CrossRefPubMedCentralPubMed Liu S, Patel SH, Ginestier C, Ibarra I, Martin-Trevino R, Bai S, et al. MicroRNA93 regulates proliferation and differentiation of normal and malignant breast stem cells. PLoS Genet. 2012;8(6):e1002751.CrossRefPubMedCentralPubMed
11.
go back to reference Long J, Wang Y, Wang W, Chang BH, Danesh FR. Identification of microRNA-93 as a novel regulator of vascular endothelial growth factor in hyperglycemic conditions. J Biol Chem. 2010;285:23457–65.CrossRefPubMedCentralPubMed Long J, Wang Y, Wang W, Chang BH, Danesh FR. Identification of microRNA-93 as a novel regulator of vascular endothelial growth factor in hyperglycemic conditions. J Biol Chem. 2010;285:23457–65.CrossRefPubMedCentralPubMed
12.
go back to reference Tang Q, Zou Z, Zou C, Zhang Q, Huang R, Guan X, etal. MicroRNA-93 suppress colorectal cancer development via Wnt/β-catenin pathway downregulating. Tumour Biol. 2014; [Epub ahead of print] Tang Q, Zou Z, Zou C, Zhang Q, Huang R, Guan X, etal. MicroRNA-93 suppress colorectal cancer development via Wnt/β-catenin pathway downregulating. Tumour Biol. 2014; [Epub ahead of print]
14.
15.
go back to reference Deng S, Calin GA, Croce CM, Coukos G, Zhang L. Mechanisms of microRNA deregulation in human cancer. Cell Cycle. 2008;7:2643–6.CrossRefPubMed Deng S, Calin GA, Croce CM, Coukos G, Zhang L. Mechanisms of microRNA deregulation in human cancer. Cell Cycle. 2008;7:2643–6.CrossRefPubMed
18.
19.
go back to reference Sanchez-Diaz PC, Hsiao T-H, Chang JC, Yue D, Tan MC, Chen H-IH, et al. De-regulated MicroRNAs in pediatric cancer stem cells target pathways involved in cell proliferation, cell cycle and development. PLoS One. 2013;8:e61622.CrossRefPubMedCentralPubMed Sanchez-Diaz PC, Hsiao T-H, Chang JC, Yue D, Tan MC, Chen H-IH, et al. De-regulated MicroRNAs in pediatric cancer stem cells target pathways involved in cell proliferation, cell cycle and development. PLoS One. 2013;8:e61622.CrossRefPubMedCentralPubMed
20.
go back to reference Allegra A, Alonci A, Campo S, Penna G, Petrungaro A, Gerace D, et al. Circulating microRNAs: new biomarkers in diagnosis, prognosis and treatment of cancer (review). Int J Oncol. 2012;41:1897–912.PubMed Allegra A, Alonci A, Campo S, Penna G, Petrungaro A, Gerace D, et al. Circulating microRNAs: new biomarkers in diagnosis, prognosis and treatment of cancer (review). Int J Oncol. 2012;41:1897–912.PubMed
22.
go back to reference Liu N, Zhang G, Bi F, Pan Y, Xue Y, Shi Y, et al. RhoC is essential for the metastasis of gastric cancer. J Mol Med. 2007;85(10):1149–56.CrossRefPubMed Liu N, Zhang G, Bi F, Pan Y, Xue Y, Shi Y, et al. RhoC is essential for the metastasis of gastric cancer. J Mol Med. 2007;85(10):1149–56.CrossRefPubMed
23.
go back to reference Islam M, Lin G, Brenner JC, Pan Q, Merajver SD, Hou Y, et al. RhoC expression and head and neck cancer metastasis. Mol Cancer Res. 2009;7(11):1771–80.CrossRefPubMedCentralPubMed Islam M, Lin G, Brenner JC, Pan Q, Merajver SD, Hou Y, et al. RhoC expression and head and neck cancer metastasis. Mol Cancer Res. 2009;7(11):1771–80.CrossRefPubMedCentralPubMed
24.
go back to reference Abe H, Kamai T, Tsujii T, Nakamura F, Mashidori T, Mizuno T, et al. Possible role of the RhoC/ROCK pathway in progression of clear cell renal cell carcinoma. Biomed Res. 2008;29(3):155–61.CrossRefPubMed Abe H, Kamai T, Tsujii T, Nakamura F, Mashidori T, Mizuno T, et al. Possible role of the RhoC/ROCK pathway in progression of clear cell renal cell carcinoma. Biomed Res. 2008;29(3):155–61.CrossRefPubMed
25.
go back to reference Boone B, Van Gele M, Lambert J, Haspeslagh M, Brochez L. The role of RhoC in growth and metastatic capacity of melanoma. J Cutan Pathol. 2009;36(6):629–36.CrossRefPubMed Boone B, Van Gele M, Lambert J, Haspeslagh M, Brochez L. The role of RhoC in growth and metastatic capacity of melanoma. J Cutan Pathol. 2009;36(6):629–36.CrossRefPubMed
26.
go back to reference Kleer CG, Teknos TN, Islam M, Marcus B, Lee JS, Pan Q, et al. RhoC GTPase expression as a potential marker of lymph node metastasis in squamous cell carcinomas of the head and neck. Clin Cancer Res. 2006;12(15):4485–90.CrossRefPubMed Kleer CG, Teknos TN, Islam M, Marcus B, Lee JS, Pan Q, et al. RhoC GTPase expression as a potential marker of lymph node metastasis in squamous cell carcinomas of the head and neck. Clin Cancer Res. 2006;12(15):4485–90.CrossRefPubMed
27.
go back to reference Ogden A, Rida PC, Aneja R. Heading off with the herd: how cancer cells might maneuver supernumerary centrosomes for directional migration. Cancer Metastasis Rev. 2013;32(1–2):269–87.CrossRefPubMedCentralPubMed Ogden A, Rida PC, Aneja R. Heading off with the herd: how cancer cells might maneuver supernumerary centrosomes for directional migration. Cancer Metastasis Rev. 2013;32(1–2):269–87.CrossRefPubMedCentralPubMed
28.
go back to reference Stamenkovic I. Extracellular matrix remodelling: the role of matrix metalloproteinases. J Pathol. 2003;200(4):448–64.CrossRefPubMed Stamenkovic I. Extracellular matrix remodelling: the role of matrix metalloproteinases. J Pathol. 2003;200(4):448–64.CrossRefPubMed
30.
go back to reference Gialeli C, Theocharis AD, Karamanos NK. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J. 2011;278(1):16–27.CrossRefPubMed Gialeli C, Theocharis AD, Karamanos NK. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J. 2011;278(1):16–27.CrossRefPubMed
31.
go back to reference Park KS, Kim SJ, Kim KH, Kim JC. Clinical characteristics of TIMP2, MMP2, and MMP9 gene polymorphisms in colorectal cancer. J Gastroenterol Hepatol. 2011;26:391–7.CrossRefPubMed Park KS, Kim SJ, Kim KH, Kim JC. Clinical characteristics of TIMP2, MMP2, and MMP9 gene polymorphisms in colorectal cancer. J Gastroenterol Hepatol. 2011;26:391–7.CrossRefPubMed
32.
go back to reference Lin YL, Ramanujum R, He S. Infection of Schistosomiasis japanicum is likely to enhance proliferation and migration of human breast cancer cells: mechanism of action of differential expression of MMP2 and MMP9. Asian Pac J Trop Biomed. 2011;1:23–8.CrossRefPubMedCentralPubMed Lin YL, Ramanujum R, He S. Infection of Schistosomiasis japanicum is likely to enhance proliferation and migration of human breast cancer cells: mechanism of action of differential expression of MMP2 and MMP9. Asian Pac J Trop Biomed. 2011;1:23–8.CrossRefPubMedCentralPubMed
33.
go back to reference Yoshizaki T, Sato H, Murono S, Pagano JS, Furukawa M. Matrix metalloproteinase 9 is induced by the Epstein-Barr virus BZLF1 transactivator. Clin Exp Metastasis. 1999;17:431–6.CrossRefPubMed Yoshizaki T, Sato H, Murono S, Pagano JS, Furukawa M. Matrix metalloproteinase 9 is induced by the Epstein-Barr virus BZLF1 transactivator. Clin Exp Metastasis. 1999;17:431–6.CrossRefPubMed
Metadata
Title
RhoC is a major target of microRNA-93-5P in epithelial ovarian carcinoma tumorigenesis and progression
Authors
Xi Chen
Shuo Chen
Yin-Ling Xiu
Kai-Xuan Sun
Zhi-Hong Zong
Yang Zhao
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2015
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/s12943-015-0304-6

Other articles of this Issue 1/2015

Molecular Cancer 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine