Skip to main content
Top
Published in: Cancer Cell International 1/2020

01-12-2020 | Cervical Cancer | Primary research

Long non-coding RNA CTBP1-AS2 enhances cervical cancer progression via up-regulation of ZNF217 through sponging miR-3163

Authors: Shanshan Yang, Feng Shi, Yuting Du, Zhao Wang, Yue Feng, Jiayu Song, Yunduo Liu, Min Xiao

Published in: Cancer Cell International | Issue 1/2020

Login to get access

Abstract

Background

Long non-coding RNAs (lncRNAs) play significant roles in tumorigenesis and can contribute to identification of novel therapeutic targets for cancers. This paper was aimed at exploring the role of CTBP1 divergent transcript (CTBP1-AS2) in cervical cancer (CC) progression.

Methods

qRT-PCR and western blot assays were used to detect relevant RNA and protein expressions. In vitro functional assays, including CCK8, EdU, TUNEL and transwell assays were applied to explore the functions of CTBP1-AS2 in CC cell proliferation, apoptosis and migration. In vivo animal study was utilized to investigate the role of CTBP1-AS2 in tumor growth. Luciferase reporter, RNA pull down and RIP assays were performed to determine the specific mechanical relationship between CTBP1-AS2, miR-3163 and ZNF217.

Results

CTBP1-AS2 was significantly overexpressed in CC cell lines. Knockdown of CTBP1-AS2 curbed cell proliferation, migration and invasion, while stimulated cell apoptosis in vitro. CTBP1-AS2 facilitated xenograft tumor growth in vivo. Cytoplasmic CTBP1-AS2 was found to be a miR-3163 sponge in CC cells. MiR-3163 inhibition abolished the anti-tumor effects of CTBP1-AS2 knockdown. Additionally, Zinc finger protein 217 (ZNF217) was identified as a direct target of miR-3163. CTBP1-AS2 acted as a miR-3163 sponge to elevate ZNF217 expression. ZNF217 up-regulation abrogated the tumor suppressing effects of CTBP1-AS2 knockdown.

Conclusion

CTBP1-AS2 regulates CC progression via sponging miR-3163 to up-regulate ZNF217.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bray F, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.PubMed Bray F, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.PubMed
3.
4.
5.
go back to reference Pan R, et al. Cancer incidence and mortality: a cohort study in China, 2008–2013. Int J Cancer. 2017;141(7):1315–23.PubMedCrossRef Pan R, et al. Cancer incidence and mortality: a cohort study in China, 2008–2013. Int J Cancer. 2017;141(7):1315–23.PubMedCrossRef
6.
go back to reference Pimple SA, Mishra GA. Global strategies for cervical cancer prevention and screening. Minerva Ginecol. 2019;71(4):313–20.PubMedCrossRef Pimple SA, Mishra GA. Global strategies for cervical cancer prevention and screening. Minerva Ginecol. 2019;71(4):313–20.PubMedCrossRef
7.
go back to reference Singh SV, et al. Proteasomal inhibition sensitizes cervical cancer cells to mitomycin C-induced bystander effect: the role of tumor microenvironment. Cell Death Dis. 2015;6(10):e1934.PubMedPubMedCentralCrossRef Singh SV, et al. Proteasomal inhibition sensitizes cervical cancer cells to mitomycin C-induced bystander effect: the role of tumor microenvironment. Cell Death Dis. 2015;6(10):e1934.PubMedPubMedCentralCrossRef
8.
go back to reference Regalado Porras GO, Chavez Nogueda J, Poitevin Chacon A. Chemotherapy and molecular therapy in cervical cancer. Rep Pract Oncol Radiother. 2018;23(6):533–9.PubMedPubMedCentralCrossRef Regalado Porras GO, Chavez Nogueda J, Poitevin Chacon A. Chemotherapy and molecular therapy in cervical cancer. Rep Pract Oncol Radiother. 2018;23(6):533–9.PubMedPubMedCentralCrossRef
10.
go back to reference Derks M, et al. Surgical treatment of early-stage cervical cancer: a multi-institution experience in 2124 cases in The Netherlands over a 30-year period. Int J Gynecol Cancer. 2018;28(4):757–63.PubMedCrossRef Derks M, et al. Surgical treatment of early-stage cervical cancer: a multi-institution experience in 2124 cases in The Netherlands over a 30-year period. Int J Gynecol Cancer. 2018;28(4):757–63.PubMedCrossRef
12.
go back to reference Wang J, Cai H, Dai Z, Wang G. Correction: downregulation of LncRNA XIST inhibits cell proliferation via regulating miR-744/RING1 axis in non-small cell lung cancer. Clin Sci. 2019;133(16):1825.CrossRef Wang J, Cai H, Dai Z, Wang G. Correction: downregulation of LncRNA XIST inhibits cell proliferation via regulating miR-744/RING1 axis in non-small cell lung cancer. Clin Sci. 2019;133(16):1825.CrossRef
13.
go back to reference Dai JH, et al. Silencing of long noncoding RNA SBF2-AS1 inhibits proliferation, migration and invasion and contributes to apoptosis in osteosarcoma cells by upregulating microRNA-30a to suppress FOXA1 expression. Cell Cycle. 2019;18:1–15.CrossRef Dai JH, et al. Silencing of long noncoding RNA SBF2-AS1 inhibits proliferation, migration and invasion and contributes to apoptosis in osteosarcoma cells by upregulating microRNA-30a to suppress FOXA1 expression. Cell Cycle. 2019;18:1–15.CrossRef
14.
go back to reference Wang N, et al. Long noncoding RNA DANCR regulates proliferation and migration by epigenetically silencing FBP1 in tumorigenesis of cholangiocarcinoma. Cell Death Dis. 2019;10(8):585.PubMedPubMedCentralCrossRef Wang N, et al. Long noncoding RNA DANCR regulates proliferation and migration by epigenetically silencing FBP1 in tumorigenesis of cholangiocarcinoma. Cell Death Dis. 2019;10(8):585.PubMedPubMedCentralCrossRef
16.
go back to reference Jiang L, Li Z, Wang R. Long noncoding RNAs in lung cancer: regulation patterns, biologic function and diagnosis implications (Review). Int J Oncol. 2019;55(3):585–96.PubMedPubMedCentral Jiang L, Li Z, Wang R. Long noncoding RNAs in lung cancer: regulation patterns, biologic function and diagnosis implications (Review). Int J Oncol. 2019;55(3):585–96.PubMedPubMedCentral
17.
go back to reference Mao BD, et al. LINC00511 knockdown prevents cervical cancer cell proliferation and reduces resistance to paclitaxel. J Biosci. 2019;44(2):44.PubMedCrossRef Mao BD, et al. LINC00511 knockdown prevents cervical cancer cell proliferation and reduces resistance to paclitaxel. J Biosci. 2019;44(2):44.PubMedCrossRef
19.
20.
go back to reference Liu DL, et al. miR-17-5p and miR-20a-5p suppress postoperative metastasis of hepatocellular carcinoma via blocking HGF/ERBB3-NF-κB positive feedback loop. Theranostics. 2020;10(8):3668–83.PubMedPubMedCentralCrossRef Liu DL, et al. miR-17-5p and miR-20a-5p suppress postoperative metastasis of hepatocellular carcinoma via blocking HGF/ERBB3-NF-κB positive feedback loop. Theranostics. 2020;10(8):3668–83.PubMedPubMedCentralCrossRef
21.
22.
go back to reference Yang B, et al. MicroRNA-3163 targets ADAM-17 and enhances the sensitivity of hepatocellular carcinoma cells to molecular targeted agents. Cell Death Dis. 2019;10(10):784.PubMedPubMedCentralCrossRef Yang B, et al. MicroRNA-3163 targets ADAM-17 and enhances the sensitivity of hepatocellular carcinoma cells to molecular targeted agents. Cell Death Dis. 2019;10(10):784.PubMedPubMedCentralCrossRef
23.
go back to reference Ren H, et al. Long noncoding MAGI2-AS3 promotes colorectal cancer progression through regulating miR-3163/TMEM106B axis. J Cell Physiol. 2020;235(5):4824–33.PubMedCrossRef Ren H, et al. Long noncoding MAGI2-AS3 promotes colorectal cancer progression through regulating miR-3163/TMEM106B axis. J Cell Physiol. 2020;235(5):4824–33.PubMedCrossRef
24.
go back to reference Si W, et al. The coordination between ZNF217 and LSD1 contributes to hepatocellular carcinoma progress and is negatively regulated by miR-101. Exp Cell Res. 2019;379(1):1–10.PubMedCrossRef Si W, et al. The coordination between ZNF217 and LSD1 contributes to hepatocellular carcinoma progress and is negatively regulated by miR-101. Exp Cell Res. 2019;379(1):1–10.PubMedCrossRef
25.
go back to reference Ma XR, et al. Long non-coding RNA SNHG15 accelerates the progression of non-small cell lung cancer by absorbing miR-211-3p. Eur Rev Med Pharmacol Sci. 2019;23(4):1536–44.PubMed Ma XR, et al. Long non-coding RNA SNHG15 accelerates the progression of non-small cell lung cancer by absorbing miR-211-3p. Eur Rev Med Pharmacol Sci. 2019;23(4):1536–44.PubMed
26.
go back to reference Jia M, et al. Silencing of ABCG2 by MicroRNA-3163 Inhibits Multidrug Resistance in Retinoblastoma Cancer Stem Cells. J Korean Med Sci. 2016;31(6):836–42.PubMedPubMedCentralCrossRef Jia M, et al. Silencing of ABCG2 by MicroRNA-3163 Inhibits Multidrug Resistance in Retinoblastoma Cancer Stem Cells. J Korean Med Sci. 2016;31(6):836–42.PubMedPubMedCentralCrossRef
27.
go back to reference Jiang X, et al. Elevated expression of ZNF217 promotes prostate cancer growth by restraining ferroportin-conducted iron egress. Oncotarget. 2016;7(51):84893–906.PubMedPubMedCentralCrossRef Jiang X, et al. Elevated expression of ZNF217 promotes prostate cancer growth by restraining ferroportin-conducted iron egress. Oncotarget. 2016;7(51):84893–906.PubMedPubMedCentralCrossRef
28.
go back to reference Bellanger A, et al. The critical role of the ZNF217 oncogene in promoting breast cancer metastasis to the bone. J Pathol. 2017;242(1):73–89.PubMedCrossRef Bellanger A, et al. The critical role of the ZNF217 oncogene in promoting breast cancer metastasis to the bone. J Pathol. 2017;242(1):73–89.PubMedCrossRef
29.
go back to reference Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet. 2014;15(1):7–21.PubMedCrossRef Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet. 2014;15(1):7–21.PubMedCrossRef
30.
go back to reference Sharma S, Munger K. Expression of the cervical carcinoma expressed PCNA regulatory (CCEPR) long noncoding RNA is driven by the human papillomavirus E6 protein and modulates cell proliferation independent of PCNA. Virology. 2018;518:8–13.PubMedCrossRef Sharma S, Munger K. Expression of the cervical carcinoma expressed PCNA regulatory (CCEPR) long noncoding RNA is driven by the human papillomavirus E6 protein and modulates cell proliferation independent of PCNA. Virology. 2018;518:8–13.PubMedCrossRef
32.
34.
go back to reference Littlepage LE, et al. The transcription factor ZNF217 is a prognostic biomarker and therapeutic target during breast cancer progression. Cancer Discov. 2012;2(7):638–51.PubMedPubMedCentralCrossRef Littlepage LE, et al. The transcription factor ZNF217 is a prognostic biomarker and therapeutic target during breast cancer progression. Cancer Discov. 2012;2(7):638–51.PubMedPubMedCentralCrossRef
35.
36.
go back to reference Wen J, et al. STAT3-induced upregulation of lncRNA ABHD11-AS1 promotes tumour progression in papillary thyroid carcinoma by regulating miR-1301-3p/STAT3 axis and PI3K/AKT signalling pathway. Cell Prolif. 2019;52:e12569.PubMedPubMedCentralCrossRef Wen J, et al. STAT3-induced upregulation of lncRNA ABHD11-AS1 promotes tumour progression in papillary thyroid carcinoma by regulating miR-1301-3p/STAT3 axis and PI3K/AKT signalling pathway. Cell Prolif. 2019;52:e12569.PubMedPubMedCentralCrossRef
37.
go back to reference Huang Y, et al. LncRNA AK023391 promotes tumorigenesis and invasion of gastric cancer through activation of the PI3K/Akt signaling pathway. J. Exp Clin Cancer Res. 2017;36(1):194.PubMedPubMedCentralCrossRef Huang Y, et al. LncRNA AK023391 promotes tumorigenesis and invasion of gastric cancer through activation of the PI3K/Akt signaling pathway. J. Exp Clin Cancer Res. 2017;36(1):194.PubMedPubMedCentralCrossRef
38.
go back to reference Liu H, et al. Invasion-related circular RNA circFNDC3B inhibits bladder cancer progression through the miR-1178-3p/G3BP2/SRC/FAK axis. Mol Cancer. 2018;17(1):161.PubMedPubMedCentralCrossRef Liu H, et al. Invasion-related circular RNA circFNDC3B inhibits bladder cancer progression through the miR-1178-3p/G3BP2/SRC/FAK axis. Mol Cancer. 2018;17(1):161.PubMedPubMedCentralCrossRef
Metadata
Title
Long non-coding RNA CTBP1-AS2 enhances cervical cancer progression via up-regulation of ZNF217 through sponging miR-3163
Authors
Shanshan Yang
Feng Shi
Yuting Du
Zhao Wang
Yue Feng
Jiayu Song
Yunduo Liu
Min Xiao
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2020
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-020-01430-5

Other articles of this Issue 1/2020

Cancer Cell International 1/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine