Skip to main content
Top
Published in: Cancer Cell International 1/2019

Open Access 01-12-2019 | Glioblastoma | Primary research

SWAP-70 promotes glioblastoma cellular migration and invasion by regulating the expression of CD44s

Authors: Lin Shi, Huize Liu, Yifeng Wang, Yulong Chong, Jie Wang, Guanzheng Liu, Xu Zhang, Xiangyu Chen, Huan Li, Mingshan Niu, Jun Liang, Rutong Yu, Xuejiao Liu

Published in: Cancer Cell International | Issue 1/2019

Login to get access

Abstract

Background

Switch-associated protein 70 (SWAP-70) is a guanine nucleotide exchange factor that is involved in cytoskeletal rearrangement and regulation of migration and invasion of malignant tumors. However, the mechanism by which SWAP-70 regulates the migration and invasion of glioblastoma (GB) cells has not been fully elucidated.

Methods

This study used an online database to analyze the relationship between SWAP-70 expression and prognosis in GB patients. The in vitro wound healing assay and transwell invasion assay were used to determine the role of SWAP-70 in GB cell migration and invasion as well as the underlying mechanism.

Results

We found that patients with high SWAP-70 expression in the GB had a poor prognosis. Downregulation of SWAP-70 inhibited GB cell migration and invasion, whereas SWAP-70 overexpression had an opposite effect. Interestingly, SWAP-70 expression was positively correlated with the expression of the standard form of CD44 (CD44s) in GB tissues. Downregulation of SWAP-70 also reduced CD44s protein expression, whereas SWAP-70 overexpression enhanced CD44s protein expression. However, downregulation of SWAP-70 expression did not affect the mRNA expression of CD44s. Reversal experiments showed that overexpressing CD44s in cell lines with downregulated SWAP-70 partially abolished the inhibitory effects of downregulated SWAP-70 on GB cell migration and invasion.

Conclusions

These results suggest that SWAP-70 may promote GB cell migration and invasion by regulating the expression of CD44s. SWAP-70 may serve as a new biomarker and a potential therapeutic target for GB.
Literature
1.
go back to reference Fabian D, Guillermo Prieto Eibl MDP, Alnahhas I, Sebastian N, Giglio P, Puduvalli V, Gonzalez J, Palmer JD. Treatment of glioblastoma (GB) with the addition of tumor-treating fields (TTF): a review. Cancers. 2019;11(2):174.PubMedCentralCrossRef Fabian D, Guillermo Prieto Eibl MDP, Alnahhas I, Sebastian N, Giglio P, Puduvalli V, Gonzalez J, Palmer JD. Treatment of glioblastoma (GB) with the addition of tumor-treating fields (TTF): a review. Cancers. 2019;11(2):174.PubMedCentralCrossRef
2.
go back to reference Liu XJ, Chong YL, Tu YM, Liu N, Yue CL, Qi ZL, Liu HZ, Yao Y, Liu HM, Gao SF, et al. CRM1/XPO1 is associated with clinical outcome in glioma and represents a therapeutic target by perturbing multiple core pathways. J Hematol Oncol. 2016;9:108.PubMedPubMedCentralCrossRef Liu XJ, Chong YL, Tu YM, Liu N, Yue CL, Qi ZL, Liu HZ, Yao Y, Liu HM, Gao SF, et al. CRM1/XPO1 is associated with clinical outcome in glioma and represents a therapeutic target by perturbing multiple core pathways. J Hematol Oncol. 2016;9:108.PubMedPubMedCentralCrossRef
3.
go back to reference Lee E, Yong RL, Paddison P, Zhu J. Comparison of glioblastoma (GB) molecular classification methods. Semin Cancer Biol. 2018;53:201–11.PubMedCrossRef Lee E, Yong RL, Paddison P, Zhu J. Comparison of glioblastoma (GB) molecular classification methods. Semin Cancer Biol. 2018;53:201–11.PubMedCrossRef
4.
go back to reference Shergalis A, Bankhead A, Luesakul U, Muangsin N, Neamati N. Current challenges and opportunities in treating glioblastoma. Pharmacol Rev. 2018;70(3):412–45.PubMedPubMedCentralCrossRef Shergalis A, Bankhead A, Luesakul U, Muangsin N, Neamati N. Current challenges and opportunities in treating glioblastoma. Pharmacol Rev. 2018;70(3):412–45.PubMedPubMedCentralCrossRef
5.
go back to reference Friedl P, Alexander S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell. 2011;147(5):992–1009.PubMedCrossRef Friedl P, Alexander S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell. 2011;147(5):992–1009.PubMedCrossRef
6.
go back to reference Conlon GA, Murray GI. Recent advances in understanding the roles of matrix metalloproteinases in tumour invasion and metastasis. J Pathol. 2019;247(5):629–40.PubMedCrossRef Conlon GA, Murray GI. Recent advances in understanding the roles of matrix metalloproteinases in tumour invasion and metastasis. J Pathol. 2019;247(5):629–40.PubMedCrossRef
7.
go back to reference Brown GT, Murray GI. Current mechanistic insights into the roles of matrix metalloproteinases in tumour invasion and metastasis. J Pathol. 2015;237(3):273–81.PubMedCrossRef Brown GT, Murray GI. Current mechanistic insights into the roles of matrix metalloproteinases in tumour invasion and metastasis. J Pathol. 2015;237(3):273–81.PubMedCrossRef
8.
go back to reference Tang DD, Gerlach BD. The roles and regulation of the actin cytoskeleton, intermediate filaments and microtubules in smooth muscle cell migration. Respir Res. 2017;18:54.PubMedPubMedCentralCrossRef Tang DD, Gerlach BD. The roles and regulation of the actin cytoskeleton, intermediate filaments and microtubules in smooth muscle cell migration. Respir Res. 2017;18:54.PubMedPubMedCentralCrossRef
9.
go back to reference Zielinski A, Linnartz C, Pleschka C, Dreissen G, Springer R, Merkel R, Hoffmann B. Reorientation dynamics and structural interdependencies of actin, microtubules and intermediate filaments upon cyclic stretch application. Cytoskeleton. 2018;75(9):385–94.PubMedCrossRef Zielinski A, Linnartz C, Pleschka C, Dreissen G, Springer R, Merkel R, Hoffmann B. Reorientation dynamics and structural interdependencies of actin, microtubules and intermediate filaments upon cyclic stretch application. Cytoskeleton. 2018;75(9):385–94.PubMedCrossRef
10.
go back to reference Baranov MV, Revelo NH, Dingjan I, Maraspini R, Ter Beest M, Honigmann A, van den Bogaart G. SWAP70 organizes the actin cytoskeleton and is essential for phagocytosis. Cell Rep. 2016;17(6):1518–31.PubMedPubMedCentralCrossRef Baranov MV, Revelo NH, Dingjan I, Maraspini R, Ter Beest M, Honigmann A, van den Bogaart G. SWAP70 organizes the actin cytoskeleton and is essential for phagocytosis. Cell Rep. 2016;17(6):1518–31.PubMedPubMedCentralCrossRef
11.
go back to reference Ihara S, Oka T, Jessberger R, Fukui Y. Involvement of SWAP-70 in membrane ruffling thorough its F-actin binding domain. Mol Biol Cell. 2004;15:387a. Ihara S, Oka T, Jessberger R, Fukui Y. Involvement of SWAP-70 in membrane ruffling thorough its F-actin binding domain. Mol Biol Cell. 2004;15:387a.
12.
go back to reference Hilpela P, Oberbanscheidt P, Hahne P, Hund M, Kalhammer G, Small JV, Bahler M. SWAP-70 identifies a transitional subset of actin filaments in motile cells. Mol Biol Cell. 2003;14(8):3242–53.PubMedPubMedCentralCrossRef Hilpela P, Oberbanscheidt P, Hahne P, Hund M, Kalhammer G, Small JV, Bahler M. SWAP-70 identifies a transitional subset of actin filaments in motile cells. Mol Biol Cell. 2003;14(8):3242–53.PubMedPubMedCentralCrossRef
13.
go back to reference Fukui Y, Tanaka T, Tachikawa H, Ihara S. SWAP-70 is required for oncogenic transformation by v-Src in mouse embryo fibroblasts. Biochem Biophys Res Commun. 2007;356(2):512–6.PubMedCrossRef Fukui Y, Tanaka T, Tachikawa H, Ihara S. SWAP-70 is required for oncogenic transformation by v-Src in mouse embryo fibroblasts. Biochem Biophys Res Commun. 2007;356(2):512–6.PubMedCrossRef
14.
go back to reference Fukui Y, Morishita K, Ichikawa T, Jessberger R. SWAP-70 contributes to spontaneous transformation of mouse embryo fibroblasts. Mol Biol Cell. 2014;25:P1927. Fukui Y, Morishita K, Ichikawa T, Jessberger R. SWAP-70 contributes to spontaneous transformation of mouse embryo fibroblasts. Mol Biol Cell. 2014;25:P1927.
15.
go back to reference Shinohara M, Terada Y, Iwamatsu A, Shinohara A, Mochizuki N, Higuchi M, Gotoh Y, Ihara S, Nagata S, Itoh H, et al. SWAP-70 is a guanine-nucleotide-exchange factor that mediates signalling of membrane ruffling. Nature. 2002;416(6882):759–63.PubMedCrossRef Shinohara M, Terada Y, Iwamatsu A, Shinohara A, Mochizuki N, Higuchi M, Gotoh Y, Ihara S, Nagata S, Itoh H, et al. SWAP-70 is a guanine-nucleotide-exchange factor that mediates signalling of membrane ruffling. Nature. 2002;416(6882):759–63.PubMedCrossRef
16.
go back to reference Chacon-Martinez CA, Jessberger R. Interaction of the cytoskeletal control protein SWAP-70 with Rho GTPases. FEBS J. 2010;277:276.CrossRef Chacon-Martinez CA, Jessberger R. Interaction of the cytoskeletal control protein SWAP-70 with Rho GTPases. FEBS J. 2010;277:276.CrossRef
17.
go back to reference Seol HJ, Smith C, Salhia B, Rutka JT. The role of the guanine-nucleotide-exchange factor Swap-70 in the migration and invasiveness of human malignant glioma cells. Tansl Oncol. 2009;11(5):572. Seol HJ, Smith C, Salhia B, Rutka JT. The role of the guanine-nucleotide-exchange factor Swap-70 in the migration and invasiveness of human malignant glioma cells. Tansl Oncol. 2009;11(5):572.
19.
go back to reference Chiyomaru T, Tatarano S, Kawakami K, Enokida H, Yoshino H, Nohata N, Fuse M, Seki N, Nakagawa M. SWAP70, actin-binding protein, function as an oncogene targeting tumor-suppressive miR-145 in prostate cancer. Prostate. 2011;71(14):1559–67.PubMed Chiyomaru T, Tatarano S, Kawakami K, Enokida H, Yoshino H, Nohata N, Fuse M, Seki N, Nakagawa M. SWAP70, actin-binding protein, function as an oncogene targeting tumor-suppressive miR-145 in prostate cancer. Prostate. 2011;71(14):1559–67.PubMed
20.
go back to reference Yue CL, Niu MS, Shan QQ, Zhou T, Tu YM, Xie P, Hua L, Yu RT, Liu XJ. High expression of Bruton’s tyrosine kinase (BTK) is required for EGFR-induced NF-kappa B activation and predicts poor prognosis in human glioma. J Exp Clin Cancer Res. 2017;36:132.PubMedPubMedCentralCrossRef Yue CL, Niu MS, Shan QQ, Zhou T, Tu YM, Xie P, Hua L, Yu RT, Liu XJ. High expression of Bruton’s tyrosine kinase (BTK) is required for EGFR-induced NF-kappa B activation and predicts poor prognosis in human glioma. J Exp Clin Cancer Res. 2017;36:132.PubMedPubMedCentralCrossRef
21.
go back to reference Tu YM, Niu MS, Xie P, Yue CL, Liu N, Qi ZL, Gao SF, Liu HM, Shi Q, Yu RT, et al. Smoothened is a poor prognosis factor and a potential therapeutic target in glioma. Sci Rep. 2017;7:42630.PubMedPubMedCentralCrossRef Tu YM, Niu MS, Xie P, Yue CL, Liu N, Qi ZL, Gao SF, Liu HM, Shi Q, Yu RT, et al. Smoothened is a poor prognosis factor and a potential therapeutic target in glioma. Sci Rep. 2017;7:42630.PubMedPubMedCentralCrossRef
22.
go back to reference Tirella A, Kloc-Muniak K, Good L, Ridden J, Ashford M, Puri S, Tirelli N. CD44 targeted delivery of siRNA by using HA-decorated nanotechnologies for KRAS silencing in cancer treatment. Int J Pharm. 2019;561:114–23.PubMedCrossRef Tirella A, Kloc-Muniak K, Good L, Ridden J, Ashford M, Puri S, Tirelli N. CD44 targeted delivery of siRNA by using HA-decorated nanotechnologies for KRAS silencing in cancer treatment. Int J Pharm. 2019;561:114–23.PubMedCrossRef
23.
go back to reference Krolikoski M, Monslow J, Pure E. The CD44-HA axis and inflammation in atherosclerosis: a temporal perspective. Matrix Biol. 2019;78–79:201–18.PubMedCrossRef Krolikoski M, Monslow J, Pure E. The CD44-HA axis and inflammation in atherosclerosis: a temporal perspective. Matrix Biol. 2019;78–79:201–18.PubMedCrossRef
24.
go back to reference Mooney KL, Choy W, Sidhu S, Pelargos P, Bui TT, Voth B, Barnette N, Yang I. The role of CD44 in glioblastoma multiforme. J Clin Neurosci. 2016;34:1–5.PubMedCrossRef Mooney KL, Choy W, Sidhu S, Pelargos P, Bui TT, Voth B, Barnette N, Yang I. The role of CD44 in glioblastoma multiforme. J Clin Neurosci. 2016;34:1–5.PubMedCrossRef
25.
go back to reference Vaillant BD, Bhat K, Sulman EP, Balasubramaniyan V, Wang S, Aldape KD, Colman H. CD44 as a prognostic and predictive marker for GBM. J Clin Oncol. 2011;29(15):2049.CrossRef Vaillant BD, Bhat K, Sulman EP, Balasubramaniyan V, Wang S, Aldape KD, Colman H. CD44 as a prognostic and predictive marker for GBM. J Clin Oncol. 2011;29(15):2049.CrossRef
26.
go back to reference Daniel PM, Filiz G, Mantamadiotis T. Sensitivity of GB cells to cAMP agonist-mediated apoptosis correlates with CD44 expression and agonist resistance with MAPK signaling. Cell Death Dis. 2016;7:e2494.PubMedPubMedCentralCrossRef Daniel PM, Filiz G, Mantamadiotis T. Sensitivity of GB cells to cAMP agonist-mediated apoptosis correlates with CD44 expression and agonist resistance with MAPK signaling. Cell Death Dis. 2016;7:e2494.PubMedPubMedCentralCrossRef
27.
go back to reference Mughal AA, Zhang L, Fayzullin A, Server A, Li Y, Wu Y, Glass R, Meling T, Langmoen IA, Leergaard TB, et al. Patterns of invasive growth in malignant gliomas—the hippocampus emerges as an invasion-spared brain region. Neoplasia. 2018;20(7):643–56.PubMedPubMedCentralCrossRef Mughal AA, Zhang L, Fayzullin A, Server A, Li Y, Wu Y, Glass R, Meling T, Langmoen IA, Leergaard TB, et al. Patterns of invasive growth in malignant gliomas—the hippocampus emerges as an invasion-spared brain region. Neoplasia. 2018;20(7):643–56.PubMedPubMedCentralCrossRef
28.
go back to reference Kim EH, Song HS, Yoo SH, Yoon M. Tumor treating fields inhibit glioblastoma cell migration, invasion and angiogenesis. Oncotarget. 2016;7(40):65125–36.PubMedPubMedCentral Kim EH, Song HS, Yoo SH, Yoon M. Tumor treating fields inhibit glioblastoma cell migration, invasion and angiogenesis. Oncotarget. 2016;7(40):65125–36.PubMedPubMedCentral
29.
go back to reference Audzevich T, Pearce G, Breucha M, Gunal G, Jessberger R. Control of the STAT6-BCL6 antagonism by SWAP-70 determines IgE production. J Immunol. 2013;190(10):4946–55.PubMedCrossRef Audzevich T, Pearce G, Breucha M, Gunal G, Jessberger R. Control of the STAT6-BCL6 antagonism by SWAP-70 determines IgE production. J Immunol. 2013;190(10):4946–55.PubMedCrossRef
30.
go back to reference Ihara S, Oka T, Fukui Y. Direct binding of SWAP-70 to non-muscle actin is required for membrane ruffling. J Cell Sci. 2006;119(Pt 3):500–7.PubMedCrossRef Ihara S, Oka T, Fukui Y. Direct binding of SWAP-70 to non-muscle actin is required for membrane ruffling. J Cell Sci. 2006;119(Pt 3):500–7.PubMedCrossRef
31.
go back to reference Pearce G, Angeli V, Randolph GJ, Junt T, von Andrian U, Schnittler HJ, Jessberger R. Signaling protein SWAP-70 is required for efficient B cell homing to lymphoid organs. Nat Immunol. 2006;7(8):827–34.PubMedCrossRef Pearce G, Angeli V, Randolph GJ, Junt T, von Andrian U, Schnittler HJ, Jessberger R. Signaling protein SWAP-70 is required for efficient B cell homing to lymphoid organs. Nat Immunol. 2006;7(8):827–34.PubMedCrossRef
32.
go back to reference Heerema AE, Abbey NW, Weinstein M, Herndier BG. Expression of the diffuse B-cell lymphoma family molecule SWAP-70 in human B-cell neoplasms: immunohistochemical study of 86 cases. Appl Immunohistochem Mol Morphol. 2004;12(1):21–5.PubMedCrossRef Heerema AE, Abbey NW, Weinstein M, Herndier BG. Expression of the diffuse B-cell lymphoma family molecule SWAP-70 in human B-cell neoplasms: immunohistochemical study of 86 cases. Appl Immunohistochem Mol Morphol. 2004;12(1):21–5.PubMedCrossRef
33.
go back to reference Murugan AK, Ihara S, Tokuda E, Uematsu K, Tsuchida N, Fukui Y. SWAP-70 is important for invasive phenotypes of mouse embryo fibroblasts transformed by v-Src. IUBMB Life. 2008;60(4):236–40.PubMedCrossRef Murugan AK, Ihara S, Tokuda E, Uematsu K, Tsuchida N, Fukui Y. SWAP-70 is important for invasive phenotypes of mouse embryo fibroblasts transformed by v-Src. IUBMB Life. 2008;60(4):236–40.PubMedCrossRef
34.
go back to reference Xu HX, Tian YJ, Yuan X, Wu H, Liu Q, Pestell RG, Wu KM. The role of CD44 in epithelial–mesenchymal transition and cancer development. Oncotargets Ther. 2015;8:3783–92. Xu HX, Tian YJ, Yuan X, Wu H, Liu Q, Pestell RG, Wu KM. The role of CD44 in epithelial–mesenchymal transition and cancer development. Oncotargets Ther. 2015;8:3783–92.
35.
36.
go back to reference Nam K, Oh S, Lee KM, Yoo SA, Shin I. CD44 regulates cell proliferation, migration, and invasion via modulation of c-Src transcription in human breast cancer cells. Cell Signal. 2015;27(9):1882–94.PubMedCrossRef Nam K, Oh S, Lee KM, Yoo SA, Shin I. CD44 regulates cell proliferation, migration, and invasion via modulation of c-Src transcription in human breast cancer cells. Cell Signal. 2015;27(9):1882–94.PubMedCrossRef
37.
go back to reference Sacks JD, Main HG, Muralidhar GG, Elfituri O, Xu HL, Kajdacsy-Balla AA, Barbolina MV. Adhesion and beyond: CD44 in ovarian cancer spheroids. Clin Cancer Res. 2018;24(15):114. Sacks JD, Main HG, Muralidhar GG, Elfituri O, Xu HL, Kajdacsy-Balla AA, Barbolina MV. Adhesion and beyond: CD44 in ovarian cancer spheroids. Clin Cancer Res. 2018;24(15):114.
38.
go back to reference Mao MY, Zheng XJ, Jin BH, Zhang FB, Zhu LY, Cui LN. Effects of CD44 and E-cadherin overexpression on the proliferation, adhesion and invasion of ovarian cancer cells. Exp Ther Med. 2017;14(6):5557–63.PubMedPubMedCentral Mao MY, Zheng XJ, Jin BH, Zhang FB, Zhu LY, Cui LN. Effects of CD44 and E-cadherin overexpression on the proliferation, adhesion and invasion of ovarian cancer cells. Exp Ther Med. 2017;14(6):5557–63.PubMedPubMedCentral
39.
go back to reference Ijuin T, Takeuchi Y, Shimono Y, Fukumoto M, Tokuda E, Takenawa T. Regulation of CD44 expression and focal adhesion by Golgi phosphatidylinositol 4-phosphate in breast cancer. Cancer Sci. 2016;107(7):981–90.PubMedPubMedCentralCrossRef Ijuin T, Takeuchi Y, Shimono Y, Fukumoto M, Tokuda E, Takenawa T. Regulation of CD44 expression and focal adhesion by Golgi phosphatidylinositol 4-phosphate in breast cancer. Cancer Sci. 2016;107(7):981–90.PubMedPubMedCentralCrossRef
40.
go back to reference Ranuncolo SM, Ladeda V, Specterman S, Varela M, Lastiri J, Morandi A, Matos E, Bal de Kier Joffe E, Puricelli L, Pallotta MG. CD44 expression in human gliomas. J Surg Oncol. 2002;79(1):30–5 (discussion 35-36).PubMedCrossRef Ranuncolo SM, Ladeda V, Specterman S, Varela M, Lastiri J, Morandi A, Matos E, Bal de Kier Joffe E, Puricelli L, Pallotta MG. CD44 expression in human gliomas. J Surg Oncol. 2002;79(1):30–5 (discussion 35-36).PubMedCrossRef
41.
go back to reference Bourguignon LY, Zhu H, Shao L, Chen YW. CD44 interaction with tiam1 promotes Rac1 signaling and hyaluronic acid-mediated breast tumor cell migration. J Biol Chem. 2000;275(3):1829–38.PubMedCrossRef Bourguignon LY, Zhu H, Shao L, Chen YW. CD44 interaction with tiam1 promotes Rac1 signaling and hyaluronic acid-mediated breast tumor cell migration. J Biol Chem. 2000;275(3):1829–38.PubMedCrossRef
42.
go back to reference Okamoto I, Kawano Y, Matsumoto M, Suga M, Kaibuchi K, Ando M, Saya H. Regulated CD44 cleavage under the control of protein kinase C, calcium influx, and the Rho family of small G proteins. J Biol Chem. 1999;274(36):25525–34.PubMedCrossRef Okamoto I, Kawano Y, Matsumoto M, Suga M, Kaibuchi K, Ando M, Saya H. Regulated CD44 cleavage under the control of protein kinase C, calcium influx, and the Rho family of small G proteins. J Biol Chem. 1999;274(36):25525–34.PubMedCrossRef
Metadata
Title
SWAP-70 promotes glioblastoma cellular migration and invasion by regulating the expression of CD44s
Authors
Lin Shi
Huize Liu
Yifeng Wang
Yulong Chong
Jie Wang
Guanzheng Liu
Xu Zhang
Xiangyu Chen
Huan Li
Mingshan Niu
Jun Liang
Rutong Yu
Xuejiao Liu
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2019
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-019-1035-3

Other articles of this Issue 1/2019

Cancer Cell International 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine