Skip to main content
Top
Published in: Cancer Cell International 1/2019

Open Access 01-12-2019 | Primary research

MTHFR C677T genetic polymorphism in combination with serum vitamin B2, B12 and aberrant DNA methylation of P16 and P53 genes in esophageal squamous cell carcinoma and esophageal precancerous lesions: a case–control study

Authors: Da Pan, Ming Su, Guiling Huang, Pengfei Luo, Ting Zhang, Lingmeng Fu, Jie Wei, Shaokang Wang, Guiju Sun

Published in: Cancer Cell International | Issue 1/2019

Login to get access

Abstract

Background

The study aimed to explore the associations between the interactions of serum vitamin B2 or B12 levels, aberrant DNA methylation of p16 or p53 and MTHFR C677T polymorphism and the risks of esophageal squamous cell carcinoma (ESCC) and esophageal precancerous lesion (EPL).

Methods

200 ESCC cases, 200 EPL cases and 200 normal controls were matched by age (± 2 years) and gender. Serum vitamin B2 and B12 levels, MTHFR C677T genetic polymorphisms and the methylation status of genes were assessed. Chi square test, one-way analysis of variance and binary logistic regression were performed.

Results

The lowest quartile of both serum vitamin B2 and B12 with TT genotype showed significant increased EPL risk (OR = 4.91, 95% CI 1.31–18.35; OR = 6.88, 95% CI 1.10–42.80). The highest quartile of both serum vitamin B2 and B12 with CC genotype showed significant decreased ESCC risk (OR = 0.16, 95% CI 0.04–0.60; OR = 0.10, 95% CI 0.02–0.46). The ORs of p16 methylation for genotype CT and TT were 1.98 (95% CI 1.01–3.89) and 17.79 (95% CI 2.26–140.22) in EPL, 4.86 (95% CI 2.48–9.50) and 20.40 (95% CI 2.53–164.81) in ESCC, respectively. Similarly, p53 methylation with genotype TT was associated with increased EPL and ESCC risks (OR = 13.28, 95% CI 1.67–105.70; OR = 15.24, 95% CI 1.90–122.62).

Conclusions

The MTHFR C677T genotype and serum vitamin B2 or B12 levels may interact in ways which associated with the EPL and ESCC risks. The gene–gene interaction suggested that aberrant DNA methyaltion of either p16 or p53 combined with T alleles of MTHFR was associated with increased risks of both EPL and ESCC.
Appendix
Available only for authorised users
Literature
1.
go back to reference Arnal MJD, Arenas ÁF, Arbeloa ÁL. Esophageal cancer: risk factors, screening and endoscopictreatment in Western and Eastern countries. World J Gastroenterol. 2015;21:7933.CrossRef Arnal MJD, Arenas ÁF, Arbeloa ÁL. Esophageal cancer: risk factors, screening and endoscopictreatment in Western and Eastern countries. World J Gastroenterol. 2015;21:7933.CrossRef
2.
go back to reference Abnet CC, Arnold M, Wei WQ. Epidemiology of esophageal squamous cell carcinoma. Gastroenterology. 2018;154:360–73.PubMedCrossRef Abnet CC, Arnold M, Wei WQ. Epidemiology of esophageal squamous cell carcinoma. Gastroenterology. 2018;154:360–73.PubMedCrossRef
4.
go back to reference Arnold M, Soerjomataram I, Ferlay J, et al. Global incidence of oesophageal cancer by histological subtype in 2012. Gut. 2015;64:381.PubMedCrossRef Arnold M, Soerjomataram I, Ferlay J, et al. Global incidence of oesophageal cancer by histological subtype in 2012. Gut. 2015;64:381.PubMedCrossRef
5.
go back to reference Wang G, Abnet C, Shen Q, et al. Histological precursors of oesophageal squamous cell carcinoma: results from a 13 year prospective follow up study in a high risk population. Gut. 2005;54:187–92.PubMedPubMedCentralCrossRef Wang G, Abnet C, Shen Q, et al. Histological precursors of oesophageal squamous cell carcinoma: results from a 13 year prospective follow up study in a high risk population. Gut. 2005;54:187–92.PubMedPubMedCentralCrossRef
6.
go back to reference Taylor PR, Abnet CC, Dawsey SM. Squamous dysplasia—the precursor lesion for esophageal squamous cell carcinoma. Cancer Epidemiol Biomark Prev. 2013;22:540–52.CrossRef Taylor PR, Abnet CC, Dawsey SM. Squamous dysplasia—the precursor lesion for esophageal squamous cell carcinoma. Cancer Epidemiol Biomark Prev. 2013;22:540–52.CrossRef
7.
go back to reference Qiang Y, Li Q, Xin Y, et al. Intake of dietary one-carbon metabolism-related B vitamins and the risk of esophageal cancer: a dose-response meta-analysis. Nutrients. 2018;10:835.PubMedCentralCrossRef Qiang Y, Li Q, Xin Y, et al. Intake of dietary one-carbon metabolism-related B vitamins and the risk of esophageal cancer: a dose-response meta-analysis. Nutrients. 2018;10:835.PubMedCentralCrossRef
8.
go back to reference Xiao Q, Freedman ND, Ren J, et al. Intakes of folate, methionine, vitamin B6, and vitamin B12 with risk of esophageal and gastric cancer in a large cohort study. Br J Cancer. 2014;110:1328–33.PubMedPubMedCentralCrossRef Xiao Q, Freedman ND, Ren J, et al. Intakes of folate, methionine, vitamin B6, and vitamin B12 with risk of esophageal and gastric cancer in a large cohort study. Br J Cancer. 2014;110:1328–33.PubMedPubMedCentralCrossRef
10.
go back to reference Chen J, Huang ZJ, Duan YQ, et al. Aberrant DNA methylation of P16, MGMT, and hMLH1 genes in combination with MTHFR C677T genetic polymorphism and folate intake in esophageal squamous cell carcinoma. Asian Pac J Cancer Prev. 2011;13:5303–6.CrossRef Chen J, Huang ZJ, Duan YQ, et al. Aberrant DNA methylation of P16, MGMT, and hMLH1 genes in combination with MTHFR C677T genetic polymorphism and folate intake in esophageal squamous cell carcinoma. Asian Pac J Cancer Prev. 2011;13:5303–6.CrossRef
11.
go back to reference Rush EC, Katre P, Yajnik CS. Vitamin B12: one carbon metabolism, fetal growth and programming for chronic disease. Eur J Clin Nutr. 2014;68:2–7.PubMedCrossRef Rush EC, Katre P, Yajnik CS. Vitamin B12: one carbon metabolism, fetal growth and programming for chronic disease. Eur J Clin Nutr. 2014;68:2–7.PubMedCrossRef
12.
go back to reference Matejcic M, de Batlle J, Ricci C, et al. Biomarkers of folate and vitamin B12 and breast cancer risk: report from the EPIC cohort. Int J Cancer. 2017;140:1246–59.PubMedCrossRef Matejcic M, de Batlle J, Ricci C, et al. Biomarkers of folate and vitamin B12 and breast cancer risk: report from the EPIC cohort. Int J Cancer. 2017;140:1246–59.PubMedCrossRef
13.
go back to reference Hultdin J, Van Guelpen B, Bergh A, et al. Plasma folate, vitamin B12, and homocysteine and prostate cancer risk: a prospective study. Int J Cancer. 2005;113:819–24.PubMedCrossRef Hultdin J, Van Guelpen B, Bergh A, et al. Plasma folate, vitamin B12, and homocysteine and prostate cancer risk: a prospective study. Int J Cancer. 2005;113:819–24.PubMedCrossRef
14.
go back to reference Price AJ, Travis RC, Appleby PN, et al. Circulating folate and vitamin B12 and risk of prostate cancer: a collaborative analysis of individual participant data from six cohorts including 6875 cases and 8104 controls. Eur Urol. 2016;70:941–51.PubMedPubMedCentralCrossRef Price AJ, Travis RC, Appleby PN, et al. Circulating folate and vitamin B12 and risk of prostate cancer: a collaborative analysis of individual participant data from six cohorts including 6875 cases and 8104 controls. Eur Urol. 2016;70:941–51.PubMedPubMedCentralCrossRef
15.
go back to reference de Vogel S, Meyer K, Fredriksen A, et al. Serum folate and vitamin B12 concentrations in relation to prostate cancer risk—a Norwegian population-based nested case-control study of 3000 cases and 3000 controls within the JANUS cohort. Int J Epidemiol. 2013;42:201–10.PubMedCrossRef de Vogel S, Meyer K, Fredriksen A, et al. Serum folate and vitamin B12 concentrations in relation to prostate cancer risk—a Norwegian population-based nested case-control study of 3000 cases and 3000 controls within the JANUS cohort. Int J Epidemiol. 2013;42:201–10.PubMedCrossRef
16.
go back to reference Larsson SC, Giovannucci E, Wolk A. Folate intake, MTHFR polymorphisms, and risk of esophageal, gastric, and pancreatic cancer: a meta-analysis. Gastroenterology. 2006;131:1271–83.PubMedCrossRef Larsson SC, Giovannucci E, Wolk A. Folate intake, MTHFR polymorphisms, and risk of esophageal, gastric, and pancreatic cancer: a meta-analysis. Gastroenterology. 2006;131:1271–83.PubMedCrossRef
17.
go back to reference Wang J, Sasco AJ, Fu C, et al. Aberrant DNA methylation of P16, MGMT, and hMLH1 genes in combination with MTHFR C677T genetic polymorphism in esophageal squamous cell carcinoma. Cancer Epidemiol Biomarkers Prev. 2008;17:118–25.PubMedCrossRef Wang J, Sasco AJ, Fu C, et al. Aberrant DNA methylation of P16, MGMT, and hMLH1 genes in combination with MTHFR C677T genetic polymorphism in esophageal squamous cell carcinoma. Cancer Epidemiol Biomarkers Prev. 2008;17:118–25.PubMedCrossRef
18.
go back to reference Das M, Sharma SK, Sekhon GS, et al. p16 gene silencing along with p53 single-nucleotide polymorphism and risk of esophageal cancer in Northeast India. Tumour Biol J Int Soc Oncodev Biol Med. 2017;39:1010428317698384.CrossRef Das M, Sharma SK, Sekhon GS, et al. p16 gene silencing along with p53 single-nucleotide polymorphism and risk of esophageal cancer in Northeast India. Tumour Biol J Int Soc Oncodev Biol Med. 2017;39:1010428317698384.CrossRef
19.
go back to reference Xu R, Wang F, Wu L, et al. A systematic review of hypermethylation of p16 gene in esophageal cancer. Cancer Biomark. 2013;13:215–26.PubMedCrossRef Xu R, Wang F, Wu L, et al. A systematic review of hypermethylation of p16 gene in esophageal cancer. Cancer Biomark. 2013;13:215–26.PubMedCrossRef
20.
go back to reference Das M, Saikia BJ, Sharma SK, et al. p16 hypermethylation: a biomarker for increased esophageal cancer susceptibility in high incidence region of North East India. Tumour Biol. 2015;36:1627–42.PubMedCrossRef Das M, Saikia BJ, Sharma SK, et al. p16 hypermethylation: a biomarker for increased esophageal cancer susceptibility in high incidence region of North East India. Tumour Biol. 2015;36:1627–42.PubMedCrossRef
21.
go back to reference Shao Y, Tan W, Zhang S. P53 gene codon 72 polymorphism and risk of esophageal squamous cell carcinoma: a case/control study in a Chinese population. Dis Esophagus. 2008;21:139–43.PubMedCrossRef Shao Y, Tan W, Zhang S. P53 gene codon 72 polymorphism and risk of esophageal squamous cell carcinoma: a case/control study in a Chinese population. Dis Esophagus. 2008;21:139–43.PubMedCrossRef
22.
go back to reference Zhao LJ, Zhao XL, Wu XM, et al. Association of p53 Arg72Pro polymorphism with esophageal cancer: a meta-analysis based on 14 case-control studies. Genet Test Mol Biomarkers. 2013;17:721–6.PubMedCrossRef Zhao LJ, Zhao XL, Wu XM, et al. Association of p53 Arg72Pro polymorphism with esophageal cancer: a meta-analysis based on 14 case-control studies. Genet Test Mol Biomarkers. 2013;17:721–6.PubMedCrossRef
23.
go back to reference Piao JM, Kim HN, Song HR, et al. p53 codon 72 polymorphism and the risk of esophageal cancer: a Korean case-control study. Dis Esophagus. 2011;24:596–600.PubMedCrossRef Piao JM, Kim HN, Song HR, et al. p53 codon 72 polymorphism and the risk of esophageal cancer: a Korean case-control study. Dis Esophagus. 2011;24:596–600.PubMedCrossRef
24.
go back to reference Hibi K, Taguchi M, Nakayama H, et al. Molecular detection of p16 promoter methylation in the serum of patients with esophageal squamous cell carcinoma. Clin Cancer Res. 2001;7:3135–8.PubMed Hibi K, Taguchi M, Nakayama H, et al. Molecular detection of p16 promoter methylation in the serum of patients with esophageal squamous cell carcinoma. Clin Cancer Res. 2001;7:3135–8.PubMed
25.
go back to reference Lu Y, Zabihula B, Yibulayin W, et al. Methylation and expression of RECK, P53 and RUNX genes in patients with esophageal cancer. Oncol Lett. 2017;14:5293–8.PubMedPubMedCentral Lu Y, Zabihula B, Yibulayin W, et al. Methylation and expression of RECK, P53 and RUNX genes in patients with esophageal cancer. Oncol Lett. 2017;14:5293–8.PubMedPubMedCentral
26.
go back to reference Huang GL, Wang SK, Su M, et al. Serum folate, MTHFR C677T polymorphism and esophageal squamous cell carcinoma risk. Biomed Environ Sci. 2013;26:1008–12.PubMed Huang GL, Wang SK, Su M, et al. Serum folate, MTHFR C677T polymorphism and esophageal squamous cell carcinoma risk. Biomed Environ Sci. 2013;26:1008–12.PubMed
27.
go back to reference Pan D, Su M, Zhang T, et al. a distinct epidemiologic pattern of precancerous lesions of esophageal squamous cell carcinoma in a high-risk area of Huai’an, Jiangsu Province, China. Cancer Prevent Res. 2019;12:449–62.CrossRef Pan D, Su M, Zhang T, et al. a distinct epidemiologic pattern of precancerous lesions of esophageal squamous cell carcinoma in a high-risk area of Huai’an, Jiangsu Province, China. Cancer Prevent Res. 2019;12:449–62.CrossRef
28.
go back to reference Wang Z, Tang L, Sun G, et al. Etiological study of esophageal squamous cell carcinoma in an endemic region: a population-based case control study in Huaian, China. BMC Cancer. 2006;6:287.PubMedPubMedCentralCrossRef Wang Z, Tang L, Sun G, et al. Etiological study of esophageal squamous cell carcinoma in an endemic region: a population-based case control study in Huaian, China. BMC Cancer. 2006;6:287.PubMedPubMedCentralCrossRef
29.
go back to reference Ismail-Beigi F, Horton PF, Pope CE 2nd. Histological consequences of gastroesophageal reflux in man. Gastroenterology. 1970;58:163–74.PubMedCrossRef Ismail-Beigi F, Horton PF, Pope CE 2nd. Histological consequences of gastroesophageal reflux in man. Gastroenterology. 1970;58:163–74.PubMedCrossRef
30.
go back to reference Weinstein WM, Bogoch ER, Bowes KL. The normal human esophageal mucosa: a histological reappraisal. Gastroenterology. 1975;68:40–4.PubMed Weinstein WM, Bogoch ER, Bowes KL. The normal human esophageal mucosa: a histological reappraisal. Gastroenterology. 1975;68:40–4.PubMed
31.
go back to reference Dawsey SM, Lewin KJ, Liu FS, et al. Esophageal morphology from Linxian, China. Squamous histologic findings in 754 patients. Cancer. 1994;73:2027–37.PubMedCrossRef Dawsey SM, Lewin KJ, Liu FS, et al. Esophageal morphology from Linxian, China. Squamous histologic findings in 754 patients. Cancer. 1994;73:2027–37.PubMedCrossRef
32.
go back to reference Park HJ, Yu E, Shim YH. DNA methyltransferase expression and DNA hypermethylation in human hepatocellular carcinoma. Cancer Lett. 2006;233:271–8.PubMedCrossRef Park HJ, Yu E, Shim YH. DNA methyltransferase expression and DNA hypermethylation in human hepatocellular carcinoma. Cancer Lett. 2006;233:271–8.PubMedCrossRef
33.
go back to reference Langevin SM, Lin D, Matsuo K, et al. Review and pooled analysis of studies on MTHFR C677T polymorphism and esophageal cancer. Toxicol Lett. 2009;184:73–80.PubMedCrossRef Langevin SM, Lin D, Matsuo K, et al. Review and pooled analysis of studies on MTHFR C677T polymorphism and esophageal cancer. Toxicol Lett. 2009;184:73–80.PubMedCrossRef
34.
go back to reference Bailey LB, Gregory JF. Polymorphisms of methylenetetrahydrofolate reductase and other enzymes: metabolic significance, risks and impact on folate requirement. J Nutr. 1999;129:919–22.PubMedCrossRef Bailey LB, Gregory JF. Polymorphisms of methylenetetrahydrofolate reductase and other enzymes: metabolic significance, risks and impact on folate requirement. J Nutr. 1999;129:919–22.PubMedCrossRef
35.
go back to reference Yang CX, Matsuo K, Ito H, et al. Gene-environment interactions between alcohol drinking and the MTHFR C677T polymorphism impact on esophageal cancer risk: results of a case-control study in Japan. Carcinogenesis. 2005;26:1285–90.PubMedCrossRef Yang CX, Matsuo K, Ito H, et al. Gene-environment interactions between alcohol drinking and the MTHFR C677T polymorphism impact on esophageal cancer risk: results of a case-control study in Japan. Carcinogenesis. 2005;26:1285–90.PubMedCrossRef
36.
go back to reference Ulvik A, Ueland PM, Fredriksen A, et al. Functional inference of the methylenetetrahydrofolate reductase 677 C > T and 1298A > C polymorphisms from a large-scale epidemiological study. Hum Genet. 2007;121:57–64.PubMedCrossRef Ulvik A, Ueland PM, Fredriksen A, et al. Functional inference of the methylenetetrahydrofolate reductase 677 C > T and 1298A > C polymorphisms from a large-scale epidemiological study. Hum Genet. 2007;121:57–64.PubMedCrossRef
37.
go back to reference Sinclair KD, Allegrucci C, Singh R, et al. DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proc Natl Acad Sci USA. 2007;104:19351–6.PubMedCrossRefPubMedCentral Sinclair KD, Allegrucci C, Singh R, et al. DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proc Natl Acad Sci USA. 2007;104:19351–6.PubMedCrossRefPubMedCentral
38.
go back to reference Lillycrop KA. Effect of maternal diet on the epigenome: implications for human metabolic disease. Proc Nutr Soc. 2011;70:64–72.PubMedCrossRef Lillycrop KA. Effect of maternal diet on the epigenome: implications for human metabolic disease. Proc Nutr Soc. 2011;70:64–72.PubMedCrossRef
39.
40.
go back to reference Kumar A, Kumari S, Poojary D, et al. Estimation of serum micronutrient levels and the possible risk of oral cancer and premalignancy. Int J Innov Res Sci Eng Technol. 2014;3:8360–3. Kumar A, Kumari S, Poojary D, et al. Estimation of serum micronutrient levels and the possible risk of oral cancer and premalignancy. Int J Innov Res Sci Eng Technol. 2014;3:8360–3.
41.
go back to reference Siassi F, Ghadirian P. Riboflavin deficiency and esophageal cancer: a case control-household study in the Caspian Littoral of Iran. Cancer Detect Prev. 2005;29:464–9.PubMedCrossRef Siassi F, Ghadirian P. Riboflavin deficiency and esophageal cancer: a case control-household study in the Caspian Littoral of Iran. Cancer Detect Prev. 2005;29:464–9.PubMedCrossRef
42.
go back to reference Ulrich CM. Folate and cancer prevention: a closer look at a complex picture. Am J Clin Nutr. 2007;86:271–3.PubMedCrossRef Ulrich CM. Folate and cancer prevention: a closer look at a complex picture. Am J Clin Nutr. 2007;86:271–3.PubMedCrossRef
43.
44.
go back to reference Liu AY, Scherer D, Poole E, et al. Gene-diet-interactions in folate-mediated one-carbon metabolism modify colon cancer risk. Mol Nutr Food Res. 2013;57:721–34.PubMedCrossRef Liu AY, Scherer D, Poole E, et al. Gene-diet-interactions in folate-mediated one-carbon metabolism modify colon cancer risk. Mol Nutr Food Res. 2013;57:721–34.PubMedCrossRef
45.
go back to reference Morita R, Hirohashi Y, Suzuki H, et al. DNA methyltransferase 1 is essential for initiation of the colon cancers. Exp Mol Pathol. 2013;94:322–9.PubMedCrossRef Morita R, Hirohashi Y, Suzuki H, et al. DNA methyltransferase 1 is essential for initiation of the colon cancers. Exp Mol Pathol. 2013;94:322–9.PubMedCrossRef
46.
go back to reference Pathania R, Ramachandran S, Elangovan S, et al. DNMT1 is essential for mammary and cancer stem cell maintenance and tumorigenesis. Nat Commun. 2015;6:6910.PubMedCrossRef Pathania R, Ramachandran S, Elangovan S, et al. DNMT1 is essential for mammary and cancer stem cell maintenance and tumorigenesis. Nat Commun. 2015;6:6910.PubMedCrossRef
47.
go back to reference Mayne ST, Risch HA, Dubrow R, et al. Nutrient intake and risk of subtypes of esophageal and gastric cancer. Cancer Epidemiol Biomark Prev. 2001;10:1055–62. Mayne ST, Risch HA, Dubrow R, et al. Nutrient intake and risk of subtypes of esophageal and gastric cancer. Cancer Epidemiol Biomark Prev. 2001;10:1055–62.
49.
go back to reference Zhang SM, Cook NR, Albert CM, et al. Effect of combined folic acid, vitamin B6, and vitamin B12 on cancer risk in women: a randomized trial. JAMA. 2008;300:2012–21.PubMedPubMedCentralCrossRef Zhang SM, Cook NR, Albert CM, et al. Effect of combined folic acid, vitamin B6, and vitamin B12 on cancer risk in women: a randomized trial. JAMA. 2008;300:2012–21.PubMedPubMedCentralCrossRef
50.
go back to reference Brasky TM, White E, Chen CL. Long-term, supplemental, one-carbon metabolism-related vitamin B use in relation to lung cancer risk in the vitamins and lifestyle (VITAL) cohort. J Clin Oncol. 2017;35:3440–8.PubMedPubMedCentralCrossRef Brasky TM, White E, Chen CL. Long-term, supplemental, one-carbon metabolism-related vitamin B use in relation to lung cancer risk in the vitamins and lifestyle (VITAL) cohort. J Clin Oncol. 2017;35:3440–8.PubMedPubMedCentralCrossRef
51.
go back to reference Kang JH, Kim SJ, Noh DY, et al. Methylation in the p53 promoter is a supplementary route to breast carcinogenesis: correlation between CpG methylation in the p53 promoter and the mutation of the p53 gene in the progression from ductal carcinoma in situ to invasive ductal carcinoma. Lab Invest. 2001;81:573–9.PubMedCrossRef Kang JH, Kim SJ, Noh DY, et al. Methylation in the p53 promoter is a supplementary route to breast carcinogenesis: correlation between CpG methylation in the p53 promoter and the mutation of the p53 gene in the progression from ductal carcinoma in situ to invasive ductal carcinoma. Lab Invest. 2001;81:573–9.PubMedCrossRef
52.
go back to reference Amatya VJ, Naumann U, Weller M, et al. TP53 promoter methylation in human gliomas. Acta Neuropathol. 2005;110:178–84.PubMedCrossRef Amatya VJ, Naumann U, Weller M, et al. TP53 promoter methylation in human gliomas. Acta Neuropathol. 2005;110:178–84.PubMedCrossRef
53.
go back to reference Agirre X, Vizmanos JL, Calasanz MJ, et al. Methylation of CpG dinucleotides and/or CCWGG motifs at the promoter of TP53 correlates with decreased gene expression in a subset of acute lymphoblastic leukemia patients. Oncogene. 2003;22:1070–2.PubMedCrossRef Agirre X, Vizmanos JL, Calasanz MJ, et al. Methylation of CpG dinucleotides and/or CCWGG motifs at the promoter of TP53 correlates with decreased gene expression in a subset of acute lymphoblastic leukemia patients. Oncogene. 2003;22:1070–2.PubMedCrossRef
54.
go back to reference Pogribny IP, James SJ. Reduction of p53 gene expression in human primary hepatocellular carcinoma is associated with promoter region methylation without coding region mutation. Cancer Lett. 2002;176:169–74.PubMedCrossRef Pogribny IP, James SJ. Reduction of p53 gene expression in human primary hepatocellular carcinoma is associated with promoter region methylation without coding region mutation. Cancer Lett. 2002;176:169–74.PubMedCrossRef
55.
go back to reference Chmelarova M, Krepinska E, Spacek J, et al. Methylation in the p53 promoter in epithelial ovarian cancer. Clin Transl Oncol. 2013;15:160–3.PubMedCrossRef Chmelarova M, Krepinska E, Spacek J, et al. Methylation in the p53 promoter in epithelial ovarian cancer. Clin Transl Oncol. 2013;15:160–3.PubMedCrossRef
56.
go back to reference Kim J, Bowlby R, Mungall AJ, et al. Integrated genomic characterization of oesophageal carcinoma. Nature. 2017;541:169.CrossRef Kim J, Bowlby R, Mungall AJ, et al. Integrated genomic characterization of oesophageal carcinoma. Nature. 2017;541:169.CrossRef
57.
go back to reference Friso S, Choi SW, Girelli D, et al. A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. Proc Natl Acad Sci USA. 2002;99:5606–11.PubMedCrossRefPubMedCentral Friso S, Choi SW, Girelli D, et al. A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. Proc Natl Acad Sci USA. 2002;99:5606–11.PubMedCrossRefPubMedCentral
Metadata
Title
MTHFR C677T genetic polymorphism in combination with serum vitamin B2, B12 and aberrant DNA methylation of P16 and P53 genes in esophageal squamous cell carcinoma and esophageal precancerous lesions: a case–control study
Authors
Da Pan
Ming Su
Guiling Huang
Pengfei Luo
Ting Zhang
Lingmeng Fu
Jie Wei
Shaokang Wang
Guiju Sun
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2019
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-019-1012-x

Other articles of this Issue 1/2019

Cancer Cell International 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine