Skip to main content
Top
Published in: Cancer Cell International 1/2019

Open Access 01-12-2019 | Cervical Cancer | Primary research

Mfn2 inhibits proliferation and cell-cycle in Hela cells via Ras-NF-κB signal pathway

Authors: Xiaowen Liu, Jun Sun, Ping Yuan, Kangquan Shou, Yuanhong Zhou, Wenqi Gao, Jin She, Jun Hu, Jun Yang, Jian Yang

Published in: Cancer Cell International | Issue 1/2019

Login to get access

Abstract

Background

Mitofusin 2 (Mfn2) is outer membrane protein, as the inhibitor of Ras protein. This study aimed to investigate the effect of Mfn2 on cell proliferation, and cell-cycle in Hela cervical carcinoma cell lines.

Methods

After treated with Adv-mfn2 or Adv-control for 48 h and 60 h, the RNA and protein of Mfn2 in Hela cells were detected by qRT-PCR and western blot. The immunofluorescence assay was performed to observe the expression and sub-location of Mfn2 in Hela cells. The flow cytometry was performed to detect the cell cycle of Hela cells, while western blots were performed to observe the Ras-NF-κB signal pathway. Then, the xenografted cervix carcinoma mouse model was used to confirm the effect of Mfn2 in Hela cells in vivo and the expression of Ras-NF-κB signaling pathway in vivo.

Results

In immunofluorescence detection, Mfn2 was located in cytoplasmic, not in the nucleus. In addition, Mfn2 inhibited cell proliferation of Hela cells through reducing PCNA protein expression. Mfn2 induced arrest in G0/G1 phase of the cell cycle in Hela cells. Meanwhile, Mfn2 reduced Cyclin D1 protein expression. Moreover, Mfn2 decreased the Ras signal pathway proteins such as Myc, NF-κB p65, STAT3 in a dose-dependent manner. Then, the in vivo experiment also confirmed that Mfn2 could inhibit the tumor growth, and depress the Cyclin D1, Ras, Myc, NF-κB p65, Erk1/2 and mTOR protein expression.

Conclusions

Mfn2 could significantly inhibit cell proliferation in Hela cells. It might be acted as an potential anti-cancer target through inducing cell cycle arrest in human cervical carcinoma cells.
Literature
1.
go back to reference Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.CrossRef Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.CrossRef
2.
3.
go back to reference Rocha AG, Franco A, Krezel AM, Rumsey JM, Alberti JM, Knight WC, et al. MFN2 agonists reverse mitochondrial defects in preclinical models of Charcot-Marie-Tooth disease type 2A. Science. 2018;360:336–41.CrossRef Rocha AG, Franco A, Krezel AM, Rumsey JM, Alberti JM, Knight WC, et al. MFN2 agonists reverse mitochondrial defects in preclinical models of Charcot-Marie-Tooth disease type 2A. Science. 2018;360:336–41.CrossRef
4.
go back to reference Wang W, Sun Q, Wu Z, Zhou D, Wei J, Xie H, et al. Mitochondrial dysfunction-related genes in hepatocellular carcinoma. Front Biosci (Landmark Ed). 2013;18:1141–9.CrossRef Wang W, Sun Q, Wu Z, Zhou D, Wei J, Xie H, et al. Mitochondrial dysfunction-related genes in hepatocellular carcinoma. Front Biosci (Landmark Ed). 2013;18:1141–9.CrossRef
5.
go back to reference Sanchis-Gomar F, Derbre F. Mitochondrial fission and fusion in human diseases. N Engl J Med. 2014;370:1073–4.CrossRef Sanchis-Gomar F, Derbre F. Mitochondrial fission and fusion in human diseases. N Engl J Med. 2014;370:1073–4.CrossRef
6.
go back to reference Serasinghe MN, Chipuk JE. Mitochondrial fission in human diseases. Handb Exp Pharmacol. 2017;240:159–88.CrossRef Serasinghe MN, Chipuk JE. Mitochondrial fission in human diseases. Handb Exp Pharmacol. 2017;240:159–88.CrossRef
7.
go back to reference Ahn SY, Li C, Zhang X, Hyun YM. Mitofusin-2 expression is implicated in cervical cancer pathogenesis. Anticancer Res. 2018;38:3419–26.CrossRef Ahn SY, Li C, Zhang X, Hyun YM. Mitofusin-2 expression is implicated in cervical cancer pathogenesis. Anticancer Res. 2018;38:3419–26.CrossRef
8.
go back to reference Wang W, Liu X, Guo X, Quan H. Mitofusin-2 triggers cervical carcinoma cell hela apoptosis via mitochondrial pathway in mouse model. Cell Physiol Biochem. 2018;46:69–81.CrossRef Wang W, Liu X, Guo X, Quan H. Mitofusin-2 triggers cervical carcinoma cell hela apoptosis via mitochondrial pathway in mouse model. Cell Physiol Biochem. 2018;46:69–81.CrossRef
9.
go back to reference Xue R, Meng Q, Lu D, Liu X, Wang Y, Hao J. Mitofusin2 induces cell autophagy of pancreatic cancer through inhibiting the PI3K/Akt/mTOR signaling pathway. Oxid Med Cell Longev. 2018;2018:2798070.PubMedPubMedCentral Xue R, Meng Q, Lu D, Liu X, Wang Y, Hao J. Mitofusin2 induces cell autophagy of pancreatic cancer through inhibiting the PI3K/Akt/mTOR signaling pathway. Oxid Med Cell Longev. 2018;2018:2798070.PubMedPubMedCentral
10.
go back to reference Li Y, Dong W, Shan X, Hong H, Liu Y, Liu Y, et al. The anti-tumor effects of Mfn2 in breast cancer are dependent on promoter DNA methylation, the P21(Ras) motif and PKA phosphorylation site. Oncol Lett. 2018;15(5):8011–8.PubMedPubMedCentral Li Y, Dong W, Shan X, Hong H, Liu Y, Liu Y, et al. The anti-tumor effects of Mfn2 in breast cancer are dependent on promoter DNA methylation, the P21(Ras) motif and PKA phosphorylation site. Oncol Lett. 2018;15(5):8011–8.PubMedPubMedCentral
11.
go back to reference Santel A. Get the balance right: mitofusins roles in health and disease. Biochim Biophys Acta. 2006;1763:490–9.CrossRef Santel A. Get the balance right: mitofusins roles in health and disease. Biochim Biophys Acta. 2006;1763:490–9.CrossRef
12.
go back to reference Guo X, Chen KH, Guo Y, Liao H, Tang J, Xiao RP. Mitofusin 2 triggers vascular smooth muscle cell apoptosis via mitochondrial death pathway. Circ Res. 2007;101:1113–22.CrossRef Guo X, Chen KH, Guo Y, Liao H, Tang J, Xiao RP. Mitofusin 2 triggers vascular smooth muscle cell apoptosis via mitochondrial death pathway. Circ Res. 2007;101:1113–22.CrossRef
13.
go back to reference Schrepfer E, Scorrano L. Mitofusins, from mitochondria to metabolism. Mol Cell. 2016;61:683–94.CrossRef Schrepfer E, Scorrano L. Mitofusins, from mitochondria to metabolism. Mol Cell. 2016;61:683–94.CrossRef
14.
go back to reference Chandhok G, Lazarou M, Neumann B. Structure, function, and regulation of mitofusin-2 in health and disease. Biol Rev. 2018;93:933–49.CrossRef Chandhok G, Lazarou M, Neumann B. Structure, function, and regulation of mitofusin-2 in health and disease. Biol Rev. 2018;93:933–49.CrossRef
15.
go back to reference Chen KH, Guo X, Ma D, Guo Y, Li Q, Yang D, et al. Dysregulation of HSG triggers vascular proliferative disorders. Nat Cell Biol. 2004;6:872–83.CrossRef Chen KH, Guo X, Ma D, Guo Y, Li Q, Yang D, et al. Dysregulation of HSG triggers vascular proliferative disorders. Nat Cell Biol. 2004;6:872–83.CrossRef
16.
go back to reference Liu XW, Yuan P, Tian J, Li LJ, Wang Y, Huang SC, et al. PTD4-apoptin induces Bcl-2-insensitive apoptosis in human cervical carcinoma in vitro and in vivo. Anticancer Drugs. 2016;27(10):979–87.CrossRef Liu XW, Yuan P, Tian J, Li LJ, Wang Y, Huang SC, et al. PTD4-apoptin induces Bcl-2-insensitive apoptosis in human cervical carcinoma in vitro and in vivo. Anticancer Drugs. 2016;27(10):979–87.CrossRef
17.
go back to reference Sun J, Yan Y, Wang XT, Liu XW, Peng DJ, Wang M, et al. PTD4-apoptin protein therapy inhibits tumor growth in vivo. Int J Cancer. 2009;124:2973–81.CrossRef Sun J, Yan Y, Wang XT, Liu XW, Peng DJ, Wang M, et al. PTD4-apoptin protein therapy inhibits tumor growth in vivo. Int J Cancer. 2009;124:2973–81.CrossRef
18.
go back to reference Albero R, Enjuanes A, Demajo S, Castellano G, Pinyol M, Garcia N, et al. Cyclin D1 overexpression induces global transcriptional downregulation in lymphoid neoplasms. J Clin Invest. 2018;128(9):4132–47.CrossRef Albero R, Enjuanes A, Demajo S, Castellano G, Pinyol M, Garcia N, et al. Cyclin D1 overexpression induces global transcriptional downregulation in lymphoid neoplasms. J Clin Invest. 2018;128(9):4132–47.CrossRef
19.
go back to reference Slade D. Maneuvers on PCNA rings during DNA replication and repair. Genes (Basel). 2018;9:416.CrossRef Slade D. Maneuvers on PCNA rings during DNA replication and repair. Genes (Basel). 2018;9:416.CrossRef
20.
go back to reference Masliah-Planchon J, Garinet S, Pasmant E. RAS-MAPK pathway epigenetic activation in cancer: miRNAs in action. Oncotarget. 2016;7(25):38892–907.CrossRef Masliah-Planchon J, Garinet S, Pasmant E. RAS-MAPK pathway epigenetic activation in cancer: miRNAs in action. Oncotarget. 2016;7(25):38892–907.CrossRef
21.
go back to reference Eleveld TF, Schild L, Koster J, Zwijnenburg DA, Alles LK, Ebus ME, et al. RAS-MAPK pathway-driven tumor progression is associated with loss of CIC and other genomic aberrations in neuroblastoma. Cancer Res. 2018;78:6297–307.CrossRef Eleveld TF, Schild L, Koster J, Zwijnenburg DA, Alles LK, Ebus ME, et al. RAS-MAPK pathway-driven tumor progression is associated with loss of CIC and other genomic aberrations in neuroblastoma. Cancer Res. 2018;78:6297–307.CrossRef
22.
go back to reference Chen KH, Dasgupta A, Ding J, Indig FE, Ghosh P, Longo DL. Role of mitofusin 2 (Mfn2) in controlling cellular proliferation. FASEB J. 2014;28(1):382–94.CrossRef Chen KH, Dasgupta A, Ding J, Indig FE, Ghosh P, Longo DL. Role of mitofusin 2 (Mfn2) in controlling cellular proliferation. FASEB J. 2014;28(1):382–94.CrossRef
23.
go back to reference Zanichelli F, Capasso S, Cipollaro M, Pagnotta E, Cartenì M, Casale F, et al. Dose-dependent effects of R-sulforaphane isothiocyanate on the biology of human mesenchymal stem cells, at dietary amounts, it promotes cell proliferation and reduces senescence and apoptosis, while at anti-cancer drug doses, it has a cytotoxic effect. Age. 2012;34:281–93.CrossRef Zanichelli F, Capasso S, Cipollaro M, Pagnotta E, Cartenì M, Casale F, et al. Dose-dependent effects of R-sulforaphane isothiocyanate on the biology of human mesenchymal stem cells, at dietary amounts, it promotes cell proliferation and reduces senescence and apoptosis, while at anti-cancer drug doses, it has a cytotoxic effect. Age. 2012;34:281–93.CrossRef
24.
go back to reference Nicola Alessio TSSÖ, Venditti MMGP. Stress and stem cells: adult Muse cells tolerate extensive genotoxic stimuli better than mesenchymal stromal cells. Oncotarget. 2018;27:19328–41. Nicola Alessio TSSÖ, Venditti MMGP. Stress and stem cells: adult Muse cells tolerate extensive genotoxic stimuli better than mesenchymal stromal cells. Oncotarget. 2018;27:19328–41.
25.
go back to reference Rodenak-Kladniew B, Castro A, Starkel P, De Saeger C, Garcia DBM, Crespo R. Linalool induces cell cycle arrest and apoptosis in HepG2 cells through oxidative stress generation and modulation of Ras/MAPK and Akt/mTOR pathways. Life Sci. 2018;199:48–59.CrossRef Rodenak-Kladniew B, Castro A, Starkel P, De Saeger C, Garcia DBM, Crespo R. Linalool induces cell cycle arrest and apoptosis in HepG2 cells through oxidative stress generation and modulation of Ras/MAPK and Akt/mTOR pathways. Life Sci. 2018;199:48–59.CrossRef
26.
go back to reference Rosenberg L, Yoon CH, Sharma G, Bertagnolli MM, Cho NL. Sorafenib inhibits proliferation and invasion in desmoid-derived cells by targeting Ras/MEK/ERK and PI3 K/Akt/mTOR pathways. Carcinogenesis. 2018;39:681–8.CrossRef Rosenberg L, Yoon CH, Sharma G, Bertagnolli MM, Cho NL. Sorafenib inhibits proliferation and invasion in desmoid-derived cells by targeting Ras/MEK/ERK and PI3 K/Akt/mTOR pathways. Carcinogenesis. 2018;39:681–8.CrossRef
27.
go back to reference Tilborghs S, Corthouts J, Verhoeven Y, Arias D, Rolfo C, Trinh XB, et al. The role of nuclear factor-kappa B signaling in human cervical cancer. Crit Rev Oncol Hematol. 2017;120:141–50.CrossRef Tilborghs S, Corthouts J, Verhoeven Y, Arias D, Rolfo C, Trinh XB, et al. The role of nuclear factor-kappa B signaling in human cervical cancer. Crit Rev Oncol Hematol. 2017;120:141–50.CrossRef
28.
go back to reference Chaturvedi MM, Sung B, Yadav VR, Kannappan R, Aggarwal BB. NF-kappaB addiction and its role in cancer: ‘one size does not fit all’. Oncogene. 2011;30:1615–30.CrossRef Chaturvedi MM, Sung B, Yadav VR, Kannappan R, Aggarwal BB. NF-kappaB addiction and its role in cancer: ‘one size does not fit all’. Oncogene. 2011;30:1615–30.CrossRef
29.
go back to reference Perkins ND. Achieving transcriptional specificity with NF-kappa B. Int J Biochem Cell Biol. 1997;29:1433–48.CrossRef Perkins ND. Achieving transcriptional specificity with NF-kappa B. Int J Biochem Cell Biol. 1997;29:1433–48.CrossRef
30.
go back to reference La Rosa FA, Pierce JW, Sonenshein GE. Differential regulation of the c-myc oncogene promoter by the NF-kappa B rel family of transcription factors. Mol Cell Biol. 1994;14:1039–44.CrossRef La Rosa FA, Pierce JW, Sonenshein GE. Differential regulation of the c-myc oncogene promoter by the NF-kappa B rel family of transcription factors. Mol Cell Biol. 1994;14:1039–44.CrossRef
31.
go back to reference Li WM, Han CL, Liu C, Xing HY, Ding DC. ANGPTL2 deletion inhibits osteoclast generation by modulating NF-kappaB/MAPKs/Cyclin pathways. Biochem Biophys Res Commun. 2018;503:1471–7.CrossRef Li WM, Han CL, Liu C, Xing HY, Ding DC. ANGPTL2 deletion inhibits osteoclast generation by modulating NF-kappaB/MAPKs/Cyclin pathways. Biochem Biophys Res Commun. 2018;503:1471–7.CrossRef
32.
go back to reference Hoesel B, Schmid JA. The complexity of NF-kappaB signaling in inflammation and cancer. Mol Cancer. 2013;12:86.CrossRef Hoesel B, Schmid JA. The complexity of NF-kappaB signaling in inflammation and cancer. Mol Cancer. 2013;12:86.CrossRef
33.
go back to reference Aggarwal BB, Kunnumakkara AB, Harikumar KB, Gupta SR, Tharakan ST, Koca C, et al. Signal transducer and activator of transcription-3, inflammation, and cancer: how intimate is the relationship? Ann N Y Acad Sci. 2009;1171:59–76.CrossRef Aggarwal BB, Kunnumakkara AB, Harikumar KB, Gupta SR, Tharakan ST, Koca C, et al. Signal transducer and activator of transcription-3, inflammation, and cancer: how intimate is the relationship? Ann N Y Acad Sci. 2009;1171:59–76.CrossRef
34.
go back to reference Grivennikov SI, Karin M. Dangerous liaisons: STAT3 and NF-kappaB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev. 2010;21:11–9.CrossRef Grivennikov SI, Karin M. Dangerous liaisons: STAT3 and NF-kappaB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev. 2010;21:11–9.CrossRef
Metadata
Title
Mfn2 inhibits proliferation and cell-cycle in Hela cells via Ras-NF-κB signal pathway
Authors
Xiaowen Liu
Jun Sun
Ping Yuan
Kangquan Shou
Yuanhong Zhou
Wenqi Gao
Jin She
Jun Hu
Jun Yang
Jian Yang
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2019
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-019-0916-9

Other articles of this Issue 1/2019

Cancer Cell International 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine