Skip to main content
Top
Published in: Cancer Cell International 1/2019

Open Access 01-12-2019 | Helminths | Primary research

Harmine suppresses hyper-activated Ras–MAPK pathway by selectively targeting oncogenic mutated Ras/Raf in Caenorhabditis elegans

Authors: Jiaojiao Ji, Jiang Yuan, Xiaoyu Guo, Ruifang Ji, Qinghua Quan, Mei Ding, Xia Li, Yonggang Liu

Published in: Cancer Cell International | Issue 1/2019

Login to get access

Abstract

Background

Mutationally activated Ras proteins are closely linked to a wide variety of human cancers. Hence, there has been an intensive search for anti-Ras therapies for cancer treatment. The sole Ras gene, which encodes LET-60, in Caenorhabditis elegans regulates vulval development. While the loss of let-60 function leads to failure of vulva formation, the let-60(n1046gf) allele, which contains a missense mutation mimicking a Ras codon 13 mutation found in human cancers, results in extra vulval tissue, a phenotype named Muv (multiple vulvas).

Methods

By taking advantage of the easy-to-score Muv phenotype of let-60(n1046gf), we used a step-by-step screening approach (from crude extract to active fraction to active natural compound) to search for inhibitors of oncogenic Ras. Mutants of other key components in the Ras–mitogen-activated protein kinase (MAPK) pathway were used to identify other candidate targets.

Results

The natural compound harmine, isolated from the plant Peganum harmala, was found to suppress the Muv phenotype of let-60(n1046gf). In addition, harmine targets the hyper-activation of the Ras/MAPK pathway specifically caused by overexpression or mutated forms of LET-60/Ras and its immediate downstream molecule LIN-45/Raf. Finally, harmine can be absorbed into the worm body and probably functions in its native form, rather than requiring metabolic activation.

Conclusion

In sum, we have revealed for the first time the anti-Ras activity of harmine in a C. elegans model system. Our results revealed the potential anti-cancer mechanism of harmine, which may be useful for the treatment of specific human cancers that are associated with oncogenic Ras mutations.
Literature
1.
go back to reference Albright CF, Giddings BW, Liu J, Vito M, Weinberg RA. Characterization of a guanine nucleotide dissociation stimulator for a ras-related GTPase. EMBO J. 1993;12(1):339–47.PubMedPubMedCentralCrossRef Albright CF, Giddings BW, Liu J, Vito M, Weinberg RA. Characterization of a guanine nucleotide dissociation stimulator for a ras-related GTPase. EMBO J. 1993;12(1):339–47.PubMedPubMedCentralCrossRef
3.
go back to reference Cherfils J, Zeghouf M. Regulation of Small GTPases by GEFs, GAPs, and GDIs. Physiol Rev. 2013;93(1):269–309.PubMedCrossRef Cherfils J, Zeghouf M. Regulation of Small GTPases by GEFs, GAPs, and GDIs. Physiol Rev. 2013;93(1):269–309.PubMedCrossRef
5.
go back to reference Asati V, Mahapatra DK, Bharti SK. K-Ras and its inhibitors towards personalized cancer treatment: pharmacological and structural perspectives. Eur J Med Chem. 2017;125:299–314.PubMedCrossRef Asati V, Mahapatra DK, Bharti SK. K-Ras and its inhibitors towards personalized cancer treatment: pharmacological and structural perspectives. Eur J Med Chem. 2017;125:299–314.PubMedCrossRef
6.
go back to reference Capon DJ, Seeburg PH, McGrath JP, Hayflick JS, Edman U, Levinson AD, Goeddel DV. Activation of Ki-ras 2 gene in human colon and lung carcinomas by two different point mutations. Nature. 1983;304(5926):507–13.PubMedCrossRef Capon DJ, Seeburg PH, McGrath JP, Hayflick JS, Edman U, Levinson AD, Goeddel DV. Activation of Ki-ras 2 gene in human colon and lung carcinomas by two different point mutations. Nature. 1983;304(5926):507–13.PubMedCrossRef
7.
go back to reference Buhrman G, Holzapfel G, Fetics S, Mattos C. Allosteric modulation of Ras positions Q61 for a direct role in catalysis. Proc Natl Acad Sci USA. 2010;107(11):4931–6.PubMedCrossRef Buhrman G, Holzapfel G, Fetics S, Mattos C. Allosteric modulation of Ras positions Q61 for a direct role in catalysis. Proc Natl Acad Sci USA. 2010;107(11):4931–6.PubMedCrossRef
8.
go back to reference Scheidig AJ, Burmester C, Goody RS. The pre-hydrolysis state of p21ras in complex with GTP: new insights into the role of water molecules in the GTP hydrolysis reaction of ras-like proteins. Structure. 1999;7(11):1311–24.PubMedCrossRef Scheidig AJ, Burmester C, Goody RS. The pre-hydrolysis state of p21ras in complex with GTP: new insights into the role of water molecules in the GTP hydrolysis reaction of ras-like proteins. Structure. 1999;7(11):1311–24.PubMedCrossRef
9.
go back to reference Scheffzek K, Ahmadian MR, Kabsch W, Wiesmüller L, Lautwein A, Schmitz F, Wittinghofer A. The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science. 1997;277(5324):333–8.PubMedCrossRef Scheffzek K, Ahmadian MR, Kabsch W, Wiesmüller L, Lautwein A, Schmitz F, Wittinghofer A. The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science. 1997;277(5324):333–8.PubMedCrossRef
10.
go back to reference Hara M, Han M. Ras farnesyltransferase inhibitors suppress the phenotype resulting from an activated ras mutation in Caenorhabditis elegans. Proc Natl Acad Sci USA. 1995;92(8):3333–7.PubMedCrossRef Hara M, Han M. Ras farnesyltransferase inhibitors suppress the phenotype resulting from an activated ras mutation in Caenorhabditis elegans. Proc Natl Acad Sci USA. 1995;92(8):3333–7.PubMedCrossRef
11.
go back to reference Beitel GJ, Clark SG, Horvitz HR. Caenorhabditis elegans ras gene let-60 acts as a switch in the pathway of vulval induction. Nature. 1990;348(6301):503–9.PubMedCrossRef Beitel GJ, Clark SG, Horvitz HR. Caenorhabditis elegans ras gene let-60 acts as a switch in the pathway of vulval induction. Nature. 1990;348(6301):503–9.PubMedCrossRef
12.
go back to reference Han M, Aroian RV, Sternberg PW. The let-60 locus controls the switch between vulval and nonvulval cell fates in Caenorhabditis elegans. Genetics. 1990;126(4):899–913.PubMedPubMedCentral Han M, Aroian RV, Sternberg PW. The let-60 locus controls the switch between vulval and nonvulval cell fates in Caenorhabditis elegans. Genetics. 1990;126(4):899–913.PubMedPubMedCentral
13.
go back to reference Chong H, Vikis HG, Guan KL. Mechanisms of regulating the Raf kinase family. Cell Signal. 2003;15(5):463–9.PubMedCrossRef Chong H, Vikis HG, Guan KL. Mechanisms of regulating the Raf kinase family. Cell Signal. 2003;15(5):463–9.PubMedCrossRef
14.
17.
go back to reference Herraiz T, González D, Ancín-Azpilicueta C, Arán VJ, Guillén H. β-Carboline alkaloids in Peganum harmala and inhibition of human monoamine oxidase (MAO). Food Chem Toxicol. 2010;48(3):839–45.PubMedCrossRef Herraiz T, González D, Ancín-Azpilicueta C, Arán VJ, Guillén H. β-Carboline alkaloids in Peganum harmala and inhibition of human monoamine oxidase (MAO). Food Chem Toxicol. 2010;48(3):839–45.PubMedCrossRef
18.
go back to reference Liu H, Han D, Liu Y, Hou X, Wu J, Li H, Yang J, Shen C, Yang G, Fu C, et al. Harmine hydrochloride inhibits Akt phosphorylation and depletes the pool of cancer stem-like cells of glioblastoma. J Neurooncol. 2013;112(1):39–48.PubMedCrossRef Liu H, Han D, Liu Y, Hou X, Wu J, Li H, Yang J, Shen C, Yang G, Fu C, et al. Harmine hydrochloride inhibits Akt phosphorylation and depletes the pool of cancer stem-like cells of glioblastoma. J Neurooncol. 2013;112(1):39–48.PubMedCrossRef
19.
go back to reference Liu J, Li Q, Liu Z, Lin L, Zhang X, Cao M, Jiang J. Harmine induces cell cycle arrest and mitochondrial pathway-mediated cellular apoptosis in SW620 cells via inhibition of the Akt and ERK signaling pathways. Oncol Rep. 2016;35(6):3363–70.PubMedCrossRef Liu J, Li Q, Liu Z, Lin L, Zhang X, Cao M, Jiang J. Harmine induces cell cycle arrest and mitochondrial pathway-mediated cellular apoptosis in SW620 cells via inhibition of the Akt and ERK signaling pathways. Oncol Rep. 2016;35(6):3363–70.PubMedCrossRef
20.
go back to reference Schmid T, Snoek LB, Fröhli E, van der Bent ML, Kammenga J, Hajnal A. Systemic regulation of RAS/MAPK signaling by the serotonin metabolite 5-HIAA. PLoS Genet. 2015;11(5):e1005236.PubMedPubMedCentralCrossRef Schmid T, Snoek LB, Fröhli E, van der Bent ML, Kammenga J, Hajnal A. Systemic regulation of RAS/MAPK signaling by the serotonin metabolite 5-HIAA. PLoS Genet. 2015;11(5):e1005236.PubMedPubMedCentralCrossRef
21.
go back to reference Zhang L, Zhang F, Zhang W, Chen L, Gao N, Men Y, Xu X, Jiang Y. Harmine suppresses homologous recombination repair and inhibits proliferation of hepatoma cells. Cancer Biol Ther. 2015;16(11):1585–92.PubMedPubMedCentralCrossRef Zhang L, Zhang F, Zhang W, Chen L, Gao N, Men Y, Xu X, Jiang Y. Harmine suppresses homologous recombination repair and inhibits proliferation of hepatoma cells. Cancer Biol Ther. 2015;16(11):1585–92.PubMedPubMedCentralCrossRef
22.
go back to reference Chen Q, Chao R, Chen H, Hou X, Yan H, Zhou S, Peng W, Xu A. Antitumor and neurotoxic effects of novel harmine derivatives and structure-activity relationship analysis. Int J Cancer. 2005;114(5):675–82.PubMedCrossRef Chen Q, Chao R, Chen H, Hou X, Yan H, Zhou S, Peng W, Xu A. Antitumor and neurotoxic effects of novel harmine derivatives and structure-activity relationship analysis. Int J Cancer. 2005;114(5):675–82.PubMedCrossRef
23.
go back to reference Eisenmann DM, Kim SK. Mechanism of activation of the Caenorhabditis elegans ras homologue let-60 by a novel, temperature-sensitive, gain-of-function mutation. Genetics. 1997;146(2):553–65.PubMedPubMedCentral Eisenmann DM, Kim SK. Mechanism of activation of the Caenorhabditis elegans ras homologue let-60 by a novel, temperature-sensitive, gain-of-function mutation. Genetics. 1997;146(2):553–65.PubMedPubMedCentral
24.
go back to reference Sun K, Tang XH, Xie YK. Paclitaxel combined with harmine inhibits the migration and invasion of gastric cancer cells through downregulation of cyclooxygenase-2 expression. Oncol Lett. 2015;10(3):1649–54.PubMedPubMedCentralCrossRef Sun K, Tang XH, Xie YK. Paclitaxel combined with harmine inhibits the migration and invasion of gastric cancer cells through downregulation of cyclooxygenase-2 expression. Oncol Lett. 2015;10(3):1649–54.PubMedPubMedCentralCrossRef
25.
go back to reference Yoder JH, Chong H, Guan KL, Han M. Modulation of KSR activity in Caenorhabditis elegans by Zn ions, PAR-1 kinase and PP2A phosphatase. EMBO J. 2004;23(1):111–9.PubMedCrossRef Yoder JH, Chong H, Guan KL, Han M. Modulation of KSR activity in Caenorhabditis elegans by Zn ions, PAR-1 kinase and PP2A phosphatase. EMBO J. 2004;23(1):111–9.PubMedCrossRef
26.
go back to reference Chuang E, Barnard D, Hettich L, Zhang XF, Avruch J, Marshall MS. Critical binding and regulatory interactions between Ras and Raf occur through a small, stable N-terminal domain of Raf and specific Ras effector residues. Mol Cell Biol. 1994;14(8):5318–25.PubMedPubMedCentralCrossRef Chuang E, Barnard D, Hettich L, Zhang XF, Avruch J, Marshall MS. Critical binding and regulatory interactions between Ras and Raf occur through a small, stable N-terminal domain of Raf and specific Ras effector residues. Mol Cell Biol. 1994;14(8):5318–25.PubMedPubMedCentralCrossRef
27.
go back to reference Bae YK, Sung JY, Kim YN, Kim S, Hong KM, Kim HT, Choi MS, Kwon JY, Shim J. An in vivo C. elegans model system for screening EGFR-inhibiting anti-cancer drugs. PLoS ONE. 2012;7(9):e42441.PubMedPubMedCentralCrossRef Bae YK, Sung JY, Kim YN, Kim S, Hong KM, Kim HT, Choi MS, Kwon JY, Shim J. An in vivo C. elegans model system for screening EGFR-inhibiting anti-cancer drugs. PLoS ONE. 2012;7(9):e42441.PubMedPubMedCentralCrossRef
28.
go back to reference Clark SG, Lu X, Horvitz HR. The Caenorhabditis elegans locus lin-15, a negative regulator of a tyrosine kinase signaling pathway, encodes two different proteins. Genetics. 1994;137(4):987–97.PubMedPubMedCentral Clark SG, Lu X, Horvitz HR. The Caenorhabditis elegans locus lin-15, a negative regulator of a tyrosine kinase signaling pathway, encodes two different proteins. Genetics. 1994;137(4):987–97.PubMedPubMedCentral
29.
go back to reference Tan PB, Lackner MR, Kim SK. MAP kinase signaling specificity mediated by the LIN-1 Ets/LIN-31 WH transcription factor complex during C. elegans vulval induction. Cell. 1998;93(4):569–80.PubMedCrossRef Tan PB, Lackner MR, Kim SK. MAP kinase signaling specificity mediated by the LIN-1 Ets/LIN-31 WH transcription factor complex during C. elegans vulval induction. Cell. 1998;93(4):569–80.PubMedCrossRef
30.
go back to reference Carvalho A, Chu J, Meinguet C, Kiss R, Vandenbussche G, Masereel B, Wouters J, Kornienko A, Pelletier J, Mathieu V. A harmine-derived beta-carboline displays anti-cancer effects in vitro by targeting protein synthesis. Eur J Pharmacol. 2017;805:25–35.PubMedPubMedCentralCrossRef Carvalho A, Chu J, Meinguet C, Kiss R, Vandenbussche G, Masereel B, Wouters J, Kornienko A, Pelletier J, Mathieu V. A harmine-derived beta-carboline displays anti-cancer effects in vitro by targeting protein synthesis. Eur J Pharmacol. 2017;805:25–35.PubMedPubMedCentralCrossRef
31.
go back to reference Zhang H, Sun K, Ding J, Xu H, Zhu L, Zhang K, Li X, Sun W. Harmine induces apoptosis and inhibits tumor cell proliferation, migration and invasion through down-regulation of cyclooxygenase-2 expression in gastric cancer. Phytomedicine. 2014;21(3):348–55.PubMedCrossRef Zhang H, Sun K, Ding J, Xu H, Zhu L, Zhang K, Li X, Sun W. Harmine induces apoptosis and inhibits tumor cell proliferation, migration and invasion through down-regulation of cyclooxygenase-2 expression in gastric cancer. Phytomedicine. 2014;21(3):348–55.PubMedCrossRef
32.
go back to reference Abbassi R, Johns TG, Kassiou M, Munoz L. DYRK1A in neurodegeneration and cancer: molecular basis and clinical implications. Pharmacol Ther. 2015;151:87–98.PubMedCrossRef Abbassi R, Johns TG, Kassiou M, Munoz L. DYRK1A in neurodegeneration and cancer: molecular basis and clinical implications. Pharmacol Ther. 2015;151:87–98.PubMedCrossRef
33.
go back to reference Seifert A, Allan LA, Clarke PR. DYRK1A phosphorylates caspase 9 at an inhibitory site and is potently inhibited in human cells by harmine. FEBS J. 2008;275(24):6268–80.PubMedCrossRef Seifert A, Allan LA, Clarke PR. DYRK1A phosphorylates caspase 9 at an inhibitory site and is potently inhibited in human cells by harmine. FEBS J. 2008;275(24):6268–80.PubMedCrossRef
34.
go back to reference Dai F, Chen Y, Song Y, Huang L, Zhai D, Dong Y, Lai L, Zhang T, Li D, Pang X. A natural small molecule harmine inhibits angiogenesis and suppresses tumour growth through activation of p53 in endothelial cells. PLoS ONE. 2012;7(12):e52162.PubMedPubMedCentralCrossRef Dai F, Chen Y, Song Y, Huang L, Zhai D, Dong Y, Lai L, Zhang T, Li D, Pang X. A natural small molecule harmine inhibits angiogenesis and suppresses tumour growth through activation of p53 in endothelial cells. PLoS ONE. 2012;7(12):e52162.PubMedPubMedCentralCrossRef
35.
go back to reference Ma Y, Wink M. The beta-carboline alkaloid harmine inhibits BCRP and can reverse resistance to the anticancer drugs mitoxantrone and camptothecin in breast cancer cells. Phytother Res. 2010;24(1):146–9.PubMedCrossRef Ma Y, Wink M. The beta-carboline alkaloid harmine inhibits BCRP and can reverse resistance to the anticancer drugs mitoxantrone and camptothecin in breast cancer cells. Phytother Res. 2010;24(1):146–9.PubMedCrossRef
36.
go back to reference Lai CH, Chou CY, Ch’ang LY, Liu CS, Lin W. Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics. Genome Res. 2000;10(5):703–13.PubMedPubMedCentralCrossRef Lai CH, Chou CY, Ch’ang LY, Liu CS, Lin W. Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics. Genome Res. 2000;10(5):703–13.PubMedPubMedCentralCrossRef
37.
go back to reference O’Reilly LP, Luke CJ, Perlmutter DH, Silverman GA, Pak SCC. elegans in high-throughput drug discovery. Adv Drug Deliv Rev. 2014;69–70:247–53.PubMedCrossRef O’Reilly LP, Luke CJ, Perlmutter DH, Silverman GA, Pak SCC. elegans in high-throughput drug discovery. Adv Drug Deliv Rev. 2014;69–70:247–53.PubMedCrossRef
38.
go back to reference O’Brien KP, Westerlund I, Sonnhammer EL. OrthoDisease: a database of human disease orthologs. Hum Mutat. 2004;24(2):112–9.PubMedCrossRef O’Brien KP, Westerlund I, Sonnhammer EL. OrthoDisease: a database of human disease orthologs. Hum Mutat. 2004;24(2):112–9.PubMedCrossRef
39.
go back to reference Burns AR, Luciani GM, Musso G, Bagg R, Yeo M, Zhang Y, Rajendran L, Glavin J, Hunter R, Redman E, et al. Caenorhabditis elegans is a useful model for anthelmintic discovery. Nat Commun. 2015;6:7485.PubMedPubMedCentralCrossRef Burns AR, Luciani GM, Musso G, Bagg R, Yeo M, Zhang Y, Rajendran L, Glavin J, Hunter R, Redman E, et al. Caenorhabditis elegans is a useful model for anthelmintic discovery. Nat Commun. 2015;6:7485.PubMedPubMedCentralCrossRef
40.
41.
go back to reference Liu H, Guo M, Xue T, Guan J, Luo L, Zhuang Z. Screening lifespan-extending drugs in Caenorhabditis elegans via label propagation on drug-protein networks. BMC Syst Biol. 2016;10:131.PubMedPubMedCentralCrossRef Liu H, Guo M, Xue T, Guan J, Luo L, Zhuang Z. Screening lifespan-extending drugs in Caenorhabditis elegans via label propagation on drug-protein networks. BMC Syst Biol. 2016;10:131.PubMedPubMedCentralCrossRef
42.
go back to reference Maglioni S, Ventura NC. C. elegans as a model organism for human mitochondrial associated disorders. Mitochondrion. 2016;30:117–25.PubMedCrossRef Maglioni S, Ventura NC. C. elegans as a model organism for human mitochondrial associated disorders. Mitochondrion. 2016;30:117–25.PubMedCrossRef
43.
go back to reference Saito RM, van den Heuvel S. Malignant worms: what cancer research can learn from C. elegans. Cancer Invest. 2002;20(2):264–75.PubMedCrossRef Saito RM, van den Heuvel S. Malignant worms: what cancer research can learn from C. elegans. Cancer Invest. 2002;20(2):264–75.PubMedCrossRef
44.
go back to reference Chin L, Tam A, Pomerantz J, Wong M, Holash J, Bardeesy N, Shen Q, O’Hagan R, Pantginis J, Zhou H, et al. Essential role for oncogenic Ras in tumour maintenance. Nature. 1999;400(6743):468–72.PubMedCrossRef Chin L, Tam A, Pomerantz J, Wong M, Holash J, Bardeesy N, Shen Q, O’Hagan R, Pantginis J, Zhou H, et al. Essential role for oncogenic Ras in tumour maintenance. Nature. 1999;400(6743):468–72.PubMedCrossRef
45.
go back to reference Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KM. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature. 2013;503(7477):548–51.PubMedPubMedCentralCrossRef Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KM. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature. 2013;503(7477):548–51.PubMedPubMedCentralCrossRef
46.
go back to reference Welsch ME, Kaplan A, Chambers JM, Stokes ME, Bos PH, Zask A, Zhang Y, Sanchez-Martin M, Badgley MA, Huang CS, et al. Multivalent small-molecule Pan-RAS inhibitors. Cell. 2017;168(5):878–889.e29.PubMedPubMedCentralCrossRef Welsch ME, Kaplan A, Chambers JM, Stokes ME, Bos PH, Zask A, Zhang Y, Sanchez-Martin M, Badgley MA, Huang CS, et al. Multivalent small-molecule Pan-RAS inhibitors. Cell. 2017;168(5):878–889.e29.PubMedPubMedCentralCrossRef
47.
go back to reference Weber CK, Slupsky JR, Kalmes HA, Rapp UR. Active Ras induces heterodimerization of cRaf and BRaf. Cancer Res. 2001;61(9):3595–8.PubMed Weber CK, Slupsky JR, Kalmes HA, Rapp UR. Active Ras induces heterodimerization of cRaf and BRaf. Cancer Res. 2001;61(9):3595–8.PubMed
48.
go back to reference Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.PubMedCrossRef Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.PubMedCrossRef
49.
go back to reference Zhang C, Spevak W, Zhang Y, Burton EA, Ma Y, Habets G, Zhang J, Lin J, Ewing T, Matusow B, et al. RAF inhibitors that evade paradoxical MAPK pathway activation. Nature. 2015;526(7574):583–6.PubMedCrossRef Zhang C, Spevak W, Zhang Y, Burton EA, Ma Y, Habets G, Zhang J, Lin J, Ewing T, Matusow B, et al. RAF inhibitors that evade paradoxical MAPK pathway activation. Nature. 2015;526(7574):583–6.PubMedCrossRef
50.
go back to reference Heidorn SJ, Milagre C, Whittaker S, Nourry A, Niculescu-Duvas I, Dhomen N, Hussain J, Reis-Filho JS, Springer CJ, Pritchard C, et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell. 2010;140(2):209–21.PubMedPubMedCentralCrossRef Heidorn SJ, Milagre C, Whittaker S, Nourry A, Niculescu-Duvas I, Dhomen N, Hussain J, Reis-Filho JS, Springer CJ, Pritchard C, et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell. 2010;140(2):209–21.PubMedPubMedCentralCrossRef
Metadata
Title
Harmine suppresses hyper-activated Ras–MAPK pathway by selectively targeting oncogenic mutated Ras/Raf in Caenorhabditis elegans
Authors
Jiaojiao Ji
Jiang Yuan
Xiaoyu Guo
Ruifang Ji
Qinghua Quan
Mei Ding
Xia Li
Yonggang Liu
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Helminths
Published in
Cancer Cell International / Issue 1/2019
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-019-0880-4

Other articles of this Issue 1/2019

Cancer Cell International 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine