Skip to main content
Top
Published in: Cancer Cell International 1/2019

Open Access 01-12-2019 | Primary research

SENP1-mediated deSUMOylation of USP28 regulated HIF-1α accumulation and activation during hypoxia response

Authors: Shi-chun Du, Lan Zhu, Yu-xing Wang, Jie Liu, Die Zhang, Yu-lu Chen, Qing Peng, Wei Liu, Bin Liu

Published in: Cancer Cell International | Issue 1/2019

Login to get access

Abstract

Background

The ubiquitin-specific protease 28 (USP28) is an oncogenic deubiquitinase, which plays a critical role in tumorigenesis via antagonizing the ubiquitination and degradation of tumor suppressor protein FBXW7-mediated oncogenic substrates. USP28 controls hypoxia-dependent angiogenesis and metastasis by preventing FBXW7-dependent hypoxia-inducible transcription factor-1α (HIF-1α) degradation during hypoxia. However, it remains unclear how USP28 activation and HIF-1α signaling are coordinated in response to hypoxia.

Methods

The in vitro deubiquitinating activity assay was used to determine the regulation of USP28 by hypoxia. The co-immunoprecipitation and GST Pull-down assays were used to determine the interaction between USP28 and SENP1. The in vivo deSUMOylation assay was performed to determine the regulation of USP28 by SENP1. The luciferase reporter assay was used to determine the transcriptional activity of HIF-1α.

Results

Here, we report that USP28 is a SUMOylated protein in normoxia with moderate deubiquitinating activity towards HIF-1α in vitro, while hypoxia and HIF-1α activate USP28 through SENP1-mediated USP28 deSUMOylation to further accumulate HIF-1α protein in cells. In agreement with this, a SUMOylation mutant USP28 showed enhanced ability to increase HIF-1α level as well as control the transcriptional activity of HIF-1α.

Conclusion

Collectively, our results reveal a novel SENP1–USP28–HIF-1α positive feedback loop to maximize the concentration of HIF-1a protein and amplify its downstream effects during hypoxia response.
Literature
1.
go back to reference Denko NC. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer. 2008;8:705–13.CrossRef Denko NC. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer. 2008;8:705–13.CrossRef
2.
go back to reference Keith B, Johnson RS, Simon MC. HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer. 2011;12:9–22.CrossRef Keith B, Johnson RS, Simon MC. HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer. 2011;12:9–22.CrossRef
3.
go back to reference Gossage L, Eisen T, Maher ER. VHL, the story of a tumour suppressor gene. Nat Rev Cancer. 2015;15:55–64.CrossRef Gossage L, Eisen T, Maher ER. VHL, the story of a tumour suppressor gene. Nat Rev Cancer. 2015;15:55–64.CrossRef
4.
go back to reference Flugel D, Gorlach A, Kietzmann T. GSK-3beta regulates cell growth, migration, and angiogenesis via Fbw7 and USP28-dependent degradation of HIF-1alpha. Blood. 2012;119:1292–301.CrossRef Flugel D, Gorlach A, Kietzmann T. GSK-3beta regulates cell growth, migration, and angiogenesis via Fbw7 and USP28-dependent degradation of HIF-1alpha. Blood. 2012;119:1292–301.CrossRef
5.
go back to reference Cassavaugh JM, Hale SA, Wellman TL, Howe AK, Wong C, Lounsbury KM. Negative regulation of HIF-1alpha by an FBW7-mediated degradation pathway during hypoxia. J Cell Biochem. 2011;112:3882–90.CrossRef Cassavaugh JM, Hale SA, Wellman TL, Howe AK, Wong C, Lounsbury KM. Negative regulation of HIF-1alpha by an FBW7-mediated degradation pathway during hypoxia. J Cell Biochem. 2011;112:3882–90.CrossRef
6.
go back to reference Seeler JS, Dejean A. SUMO and the robustness of cancer. Nat Rev Cancer. 2017;17:184–97.CrossRef Seeler JS, Dejean A. SUMO and the robustness of cancer. Nat Rev Cancer. 2017;17:184–97.CrossRef
7.
go back to reference Gareau JR, Lima CD. The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol. 2010;11:861–71.CrossRef Gareau JR, Lima CD. The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol. 2010;11:861–71.CrossRef
8.
go back to reference Cheng J, Kang X, Zhang S, Yeh ET. SUMO-specific protease 1 is essential for stabilization of HIF1alpha during hypoxia. Cell. 2007;131:584–95.CrossRef Cheng J, Kang X, Zhang S, Yeh ET. SUMO-specific protease 1 is essential for stabilization of HIF1alpha during hypoxia. Cell. 2007;131:584–95.CrossRef
9.
go back to reference Carbia-Nagashima A, Gerez J, Perez-Castro C, Paez-Pereda M, Silberstein S, Stalla GK, Holsboer F, Arzt E. RSUME, a small RWD-containing protein, enhances SUMO conjugation and stabilizes HIF-1alpha during hypoxia. Cell. 2007;131:309–23.CrossRef Carbia-Nagashima A, Gerez J, Perez-Castro C, Paez-Pereda M, Silberstein S, Stalla GK, Holsboer F, Arzt E. RSUME, a small RWD-containing protein, enhances SUMO conjugation and stabilizes HIF-1alpha during hypoxia. Cell. 2007;131:309–23.CrossRef
10.
go back to reference Berta MA, Mazure N, Hattab M, Pouyssegur J, Brahimi-Horn MC. SUMOylation of hypoxia-inducible factor-1alpha reduces its transcriptional activity. Biochem Biophys Res Commun. 2007;360:646–52.CrossRef Berta MA, Mazure N, Hattab M, Pouyssegur J, Brahimi-Horn MC. SUMOylation of hypoxia-inducible factor-1alpha reduces its transcriptional activity. Biochem Biophys Res Commun. 2007;360:646–52.CrossRef
11.
go back to reference Cui CP, Wong CC, Kai AK, Ho DW, Lau EY, Tsui YM, Chan LK, Cheung TT, Chok KS, Chan ACY, Lo RC, Lee JM, Lee TK, Ng IOL. SENP1 promotes hypoxia-induced cancer stemness by HIF-1alpha deSUMOylation and SENP1/HIF-1alpha positive feedback loop. Gut. 2017;66:2149–59.CrossRef Cui CP, Wong CC, Kai AK, Ho DW, Lau EY, Tsui YM, Chan LK, Cheung TT, Chok KS, Chan ACY, Lo RC, Lee JM, Lee TK, Ng IOL. SENP1 promotes hypoxia-induced cancer stemness by HIF-1alpha deSUMOylation and SENP1/HIF-1alpha positive feedback loop. Gut. 2017;66:2149–59.CrossRef
12.
go back to reference Xu Y, Zuo Y, Zhang H, Kang X, Yue F, Yi Z, Liu M, Yeh ET, Chen G, Cheng J. Induction of SENP1 in endothelial cells contributes to hypoxia-driven VEGF expression and angiogenesis. J Biol Chem. 2010;285:36682–8.CrossRef Xu Y, Zuo Y, Zhang H, Kang X, Yue F, Yi Z, Liu M, Yeh ET, Chen G, Cheng J. Induction of SENP1 in endothelial cells contributes to hypoxia-driven VEGF expression and angiogenesis. J Biol Chem. 2010;285:36682–8.CrossRef
13.
go back to reference Zhen Y, Knobel PA, Stracker TH, Reverter D. Regulation of USP28 deubiquitinating activity by SUMO conjugation. J Biol Chem. 2014;289:34838–50.CrossRef Zhen Y, Knobel PA, Stracker TH, Reverter D. Regulation of USP28 deubiquitinating activity by SUMO conjugation. J Biol Chem. 2014;289:34838–50.CrossRef
14.
go back to reference Liu B, Lu H, Li D, Xiong X, Gao L, Wu Z, Lu Y. Aberrant expression of FBXO2 disrupts glucose homeostasis through ubiquitin-mediated degradation of insulin receptor in obese mice. Diabetes. 2017;66:689–98.CrossRef Liu B, Lu H, Li D, Xiong X, Gao L, Wu Z, Lu Y. Aberrant expression of FBXO2 disrupts glucose homeostasis through ubiquitin-mediated degradation of insulin receptor in obese mice. Diabetes. 2017;66:689–98.CrossRef
15.
go back to reference Chen X, Duan LH, Luo PC, Hu G, Yu X, Liu J, Lu H, Liu B. FBXO6-mediated ubiquitination and degradation of ero1l inhibits endoplasmic reticulum stress-induced apoptosis. Cell Physiol Biochem. 2016;39:2501–8.CrossRef Chen X, Duan LH, Luo PC, Hu G, Yu X, Liu J, Lu H, Liu B. FBXO6-mediated ubiquitination and degradation of ero1l inhibits endoplasmic reticulum stress-induced apoptosis. Cell Physiol Biochem. 2016;39:2501–8.CrossRef
16.
go back to reference Lu H, Liu B, Zhang FJ, Zhang J, Dong R, Chen L, Qu DM, Lu Y, Yu BW. The E3 ligase APC/C-Cdh1 regulates MEF2A-dependent transcription by targeting SUMO-specific protease 2 for ubiquitination and degradation. Cell Cycle. 2014;13:3892–902.CrossRef Lu H, Liu B, Zhang FJ, Zhang J, Dong R, Chen L, Qu DM, Lu Y, Yu BW. The E3 ligase APC/C-Cdh1 regulates MEF2A-dependent transcription by targeting SUMO-specific protease 2 for ubiquitination and degradation. Cell Cycle. 2014;13:3892–902.CrossRef
17.
go back to reference Diefenbacher ME, Chakraborty A, Blake SM, Mitter R, Popov N, Eilers M, Behrens A. Usp28 counteracts Fbw7 in intestinal homeostasis and cancer. Cancer Res. 2015;75:1181–6.CrossRef Diefenbacher ME, Chakraborty A, Blake SM, Mitter R, Popov N, Eilers M, Behrens A. Usp28 counteracts Fbw7 in intestinal homeostasis and cancer. Cancer Res. 2015;75:1181–6.CrossRef
18.
go back to reference Diefenbacher ME, Popov N, Blake SM, Schulein-Volk C, Nye E, Spencer-Dene B, Jaenicke LA, Eilers M, Behrens A. The deubiquitinase USP28 controls intestinal homeostasis and promotes colorectal cancer. J Clin Invest. 2014;124:3407–18.CrossRef Diefenbacher ME, Popov N, Blake SM, Schulein-Volk C, Nye E, Spencer-Dene B, Jaenicke LA, Eilers M, Behrens A. The deubiquitinase USP28 controls intestinal homeostasis and promotes colorectal cancer. J Clin Invest. 2014;124:3407–18.CrossRef
Metadata
Title
SENP1-mediated deSUMOylation of USP28 regulated HIF-1α accumulation and activation during hypoxia response
Authors
Shi-chun Du
Lan Zhu
Yu-xing Wang
Jie Liu
Die Zhang
Yu-lu Chen
Qing Peng
Wei Liu
Bin Liu
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2019
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-018-0722-9

Other articles of this Issue 1/2019

Cancer Cell International 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine